刪除人工循環 - Amazon SageMaker

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

刪除人工循環

當您刪除人工循環時,狀態會變更為Deleting。刪除人工循環時,相關聯的人工審核任務將無法再供工作者使用。在下列其中一種情況下,您可能想要刪除人工循環:

  • 用來產生工作者「使用者界面」的工作者任務範本未正確呈現,或無法正常運作。

  • 單一資料物件意外傳送給工作者多次。

  • 您不再需要人工審核的資料物件。

如果人類循環的狀態是InProgress,則必須在刪除人類循環之前停止該循環。當您停止人工循環時,狀態會在停止Stopping時變更為。當狀態會變更為 Stopped,可以刪除人工循環。

如果人力工作者已經在處理任務,而當您停止相關人工循環時,則該任務仍然可用,直到完成或過期為止。只要工作人員仍在處理任務,您的人工循環的狀態為Stopping。如果這些任務已完成,結果會儲存在您的人工審查工作流程所指定的 Amazon S3 儲存貯體 URI 中。如果工作者在未提交工作的情況下離開工作,則會停止工作,且工作者無法返回工作。如果沒有工作者開始處理工作,則會立即停止該工作。

如果您刪除用於創建人工循環的 AWS 帳戶,則該帳戶將被停止並自動刪除。

人工循環資料保留與刪除

當人工完成人工審核任務時,結果會存放在您在用於建立人工循環的人工審查工作流程中指定的 Amazon S3 輸出儲存貯體中。刪除或停止人工循環並不會移除 S3 儲存貯體中的任何背景工作者答案。

此外,Amazon A2I 會暫時在內部存放人工循環輸入和輸出資料,原因如下:

  • 如果您設定人工循環,以便將單一資料物件傳送給多個工作者進行審核,則 Amazon A2I 不會將輸出資料寫入 S3 儲存貯體,直到所有工作者完成審核任務。Amazon A2I 會在內部存放部分答案 (個別工作人員的答案),以便將完整的結果寫入 S3 儲存貯體。

  • 如果您回報低品質的人工審查結果,Amazon A2I 可以調查並回應您的問題。

  • 如果您無法存取或刪除用於建立人工循環的人工審查工作流程中指定的輸出 S3 儲存貯體,且任務已傳送給一或多個工作者,Amazon A2I 需要一個暫時存放人工審查結果的位置。

Amazon A2I 會在人工循環的狀態變更為下列其中一項後 30 天內刪除此資料:DeletedStopped、或。Completed換句話說,數據會在人類循環完成、停止或刪除 30 天後刪除。此外,如果您關閉用於建立關聯人工迴圈的 AWS 帳戶,則會在 30 天後刪除此資料。

使用主控台或 Amazon A2I API ,停止或刪除流程定義

您可以在 Augmented AI 控制台或使用 SageMaker API 停止和刪除人工循環。當狀態會變更為 Deleted,可以刪除人工循環。

刪除人工循環 (主控台)
  1. 導覽至 Augmented AI 主控台,網址為 https://console.aws.amazon.com/a2i/

  2. 在導覽窗格的 Augmented AI 區段下,選擇人工檢閱工作流程

  3. 選擇用於創建要刪除的人工循環的人工審閱工作流程的超連結名稱。

  4. 在頁面底部的「人工循環」區段中,選取您要停止並刪除的人工循環。

  5. 如果人為循環狀態為CompletedStopped、或Failed,請選取刪除

    如果「人工循環狀態」為InProgress,請選取「停止」。當狀態變更為 [已停止] 時,請選取 [刪除]。

刪除人工循環 (API)
  1. 使用 Augmented AI 執行階段 API 作業DescribeHumanLoop檢查人工循環的狀態。請參閱下表中使用此操作的示例。

    AWS SDK for Python (Boto3)

    下面的例子使用 SDK for Python (Boto3) 來描述名為的人類循環。example-human-loop有關詳細信息,請參閱描述人類循環AWS 適用於 Python 的軟件開發工具包(博託)API 參考

    import boto3 a2i_runtime_client = boto3.client('sagemaker-a2i-runtime') response = a2i_runtime_client.describe_human_loop(HumanLoopName='example-human-loop') human_loop_status = response['HumanLoopStatus'] print(f'example-human-loop status is: {human_loop_status}')
    AWS CLI

    下面的例子使用 AWS CLI 來描述名為的人類循環example-human-loop。如需詳細資訊,請參閱 AWS CLI 命令參考中的 describe-human-loop

    $ aws sagemaker-a2i-runtime describe-human-loop --human-loop-name 'example-human-loop'
  2. 如果流程定義狀態為CompletedStopped、或Failed,請使用 Augmented AI 執行階段 API 作業DeleteHumanLoop刪除流程定義。

    AWS SDK for Python (Boto3)

    下面的例子使用 SDK for Python (Boto3) 來刪除名為的人類循環。example-human-loop有關詳細信息,請參閱刪除人類循環AWS 適用於 Python 的軟件開發工具包(博託)API 參考

    import boto3 a2i_runtime_client = boto3.client('sagemaker-a2i-runtime') response = a2i_runtime_client.delete_human_loop(HumanLoopName='example-human-loop')
    AWS CLI

    下列範例會使用 AWS CLI 刪除名為的人工迴圈example-human-loop。如需詳細資訊,請參閱 AWS CLI 命令參考中的 delete-human-loop

    $ aws sagemaker-a2i-runtime delete-human-loop --human-loop-name 'example-human-loop'

    如果人工循環狀態為InProgress,請使用StopHumanLoop停止使用人工循環,然後使用DeleteHumanLoop將其刪除。

    AWS SDK for Python (Boto3)

    下面的例子使用 SDK for Python (Boto3) 來描述名為的人類循環。example-human-loop有關詳細信息,請參閱停止人類循環AWS 適用於 Python 的軟件開發工具包(博託)API 參考

    import boto3 a2i_runtime_client = boto3.client('sagemaker-a2i-runtime') response = a2i_runtime_client.stop_human_loop(HumanLoopName='example-human-loop')
    AWS CLI

    下面的例子使用 AWS CLI 來描述名為的人類循環example-human-loop。如需詳細資訊,請參閱 AWS CLI 命令參考中的 stop-human-loop

    $ aws sagemaker-a2i-runtime stop-human-loop --human-loop-name 'example-human-loop'