Amazon Rekognition examples using AWS CLI
The following code examples show you how to perform actions and implement common scenarios by using the AWS Command Line Interface with Amazon Rekognition.
Actions are code excerpts from larger programs and must be run in context. While actions show you how to call individual service functions, you can see actions in context in their related scenarios.
Each example includes a link to the complete source code, where you can find instructions on how to set up and run the code in context.
Topics
Actions
The following code example shows how to use compare-faces
.
For more information, see Comparing faces in images.
- AWS CLI
-
To compare faces in two images
The following
compare-faces
command compares faces in two images stored in an Amazon S3 bucket.aws rekognition compare-faces \ --source-image '
{"S3Object":{"Bucket":"MyImageS3Bucket","Name":"source.jpg"}}
' \ --target-image '{"S3Object":{"Bucket":"MyImageS3Bucket","Name":"target.jpg"}}
'Output:
{ "UnmatchedFaces": [], "FaceMatches": [ { "Face": { "BoundingBox": { "Width": 0.12368916720151901, "Top": 0.16007372736930847, "Left": 0.5901257991790771, "Height": 0.25140416622161865 }, "Confidence": 100.0, "Pose": { "Yaw": -3.7351467609405518, "Roll": -0.10309021919965744, "Pitch": 0.8637830018997192 }, "Quality": { "Sharpness": 95.51618957519531, "Brightness": 65.29893493652344 }, "Landmarks": [ { "Y": 0.26721030473709106, "X": 0.6204193830490112, "Type": "eyeLeft" }, { "Y": 0.26831310987472534, "X": 0.6776827573776245, "Type": "eyeRight" }, { "Y": 0.3514654338359833, "X": 0.6241428852081299, "Type": "mouthLeft" }, { "Y": 0.35258132219314575, "X": 0.6713621020317078, "Type": "mouthRight" }, { "Y": 0.3140771687030792, "X": 0.6428444981575012, "Type": "nose" } ] }, "Similarity": 100.0 } ], "SourceImageFace": { "BoundingBox": { "Width": 0.12368916720151901, "Top": 0.16007372736930847, "Left": 0.5901257991790771, "Height": 0.25140416622161865 }, "Confidence": 100.0 } }
For more information, see Comparing Faces in Images in the Amazon Rekognition Developer Guide.
-
For API details, see CompareFaces
in AWS CLI Command Reference.
-
The following code example shows how to use create-collection
.
For more information, see Creating a collection.
- AWS CLI
-
To create a collection
The following
create-collection
command creates a collection with the specified name.aws rekognition create-collection \ --collection-id
"MyCollection"
Output:
{ "CollectionArn": "aws:rekognition:us-west-2:123456789012:collection/MyCollection", "FaceModelVersion": "4.0", "StatusCode": 200 }
For more information, see Creating a Collection in the Amazon Rekognition Developer Guide.
-
For API details, see CreateCollection
in AWS CLI Command Reference.
-
The following code example shows how to use create-stream-processor
.
- AWS CLI
-
To create a new stream processor
The following
create-stream-processor
example creates a new stream processor with the specified configuration.aws rekognition create-stream-processor --name
my-stream-processor
\ --input '{"KinesisVideoStream":{"Arn":"arn:aws:kinesisvideo:us-west-2:123456789012:stream/macwebcam/1530559711205"}}
'\ --stream-processor-output '{"KinesisDataStream":{"Arn":"arn:aws:kinesis:us-west-2:123456789012:stream/AmazonRekognitionRekStream"}}
'\ --role-arnarn:aws:iam::123456789012:role/AmazonRekognitionDetect
\ --settings '{"FaceSearch":{"CollectionId":"MyCollection","FaceMatchThreshold":85.5}}
'Output:
{ "StreamProcessorArn": "arn:aws:rekognition:us-west-2:123456789012:streamprocessor/my-stream-processor" }
For more information, see Working with Streaming Videos in the Amazon Rekognition Developer Guide.
-
For API details, see CreateStreamProcessor
in AWS CLI Command Reference.
-
The following code example shows how to use delete-collection
.
For more information, see Deleting a collection.
- AWS CLI
-
To delete a collection
The following
delete-collection
command deletes the specified collection.aws rekognition delete-collection \ --collection-id
MyCollection
Output:
{ "StatusCode": 200 }
For more information, see Deleting a Collection in the Amazon Rekognition Developer Guide.
-
For API details, see DeleteCollection
in AWS CLI Command Reference.
-
The following code example shows how to use delete-faces
.
For more information, see Deleting faces from a collection.
- AWS CLI
-
To delete faces from a collection
The following
delete-faces
command deletes the specified face from a collection.aws rekognition delete-faces \ --collection-id
MyCollection
--face-ids '["0040279c-0178-436e-b70a-e61b074e96b0"]
'Output:
{ "DeletedFaces": [ "0040279c-0178-436e-b70a-e61b074e96b0" ] }
For more information, see Deleting Faces from a Collection in the Amazon Rekognition Developer Guide.
-
For API details, see DeleteFaces
in AWS CLI Command Reference.
-
The following code example shows how to use delete-stream-processor
.
- AWS CLI
-
To delete a stream processor
The following
delete-stream-processor
command deletes the specified stream processor.aws rekognition delete-stream-processor \ --name
my-stream-processor
This command produces no output.
For more information, see Working with Streaming Videos in the Amazon Rekognition Developer Guide.
-
For API details, see DeleteStreamProcessor
in AWS CLI Command Reference.
-
The following code example shows how to use describe-collection
.
For more information, see Describing a collection.
- AWS CLI
-
To describe a collection
The following
describe-collection
example displays the details about the specified collection.aws rekognition describe-collection \ --collection-id
MyCollection
Output:
{ "FaceCount": 200, "CreationTimestamp": 1569444828.274, "CollectionARN": "arn:aws:rekognition:us-west-2:123456789012:collection/MyCollection", "FaceModelVersion": "4.0" }
For more information, see Describing a Collection in the Amazon Rekognition Developer Guide.
-
For API details, see DescribeCollection
in AWS CLI Command Reference.
-
The following code example shows how to use describe-stream-processor
.
- AWS CLI
-
To get information about a stream processor
The following
describe-stream-processor
command displays details about the specified stream processor.aws rekognition describe-stream-processor \ --name
my-stream-processor
Output:
{ "Status": "STOPPED", "Name": "my-stream-processor", "LastUpdateTimestamp": 1532449292.712, "Settings": { "FaceSearch": { "FaceMatchThreshold": 80.0, "CollectionId": "my-collection" } }, "RoleArn": "arn:aws:iam::123456789012:role/AmazonRekognitionDetectStream", "StreamProcessorArn": "arn:aws:rekognition:us-west-2:123456789012:streamprocessor/my-stream-processpr", "Output": { "KinesisDataStream": { "Arn": "arn:aws:kinesis:us-west-2:123456789012:stream/AmazonRekognitionRekStream" } }, "Input": { "KinesisVideoStream": { "Arn": "arn:aws:kinesisvideo:us-west-2:123456789012:stream/macwebcam/123456789012" } }, "CreationTimestamp": 1532449292.712 }
For more information, see Working with Streaming Videos in the Amazon Rekognition Developer Guide.
-
For API details, see DescribeStreamProcessor
in AWS CLI Command Reference.
-
The following code example shows how to use detect-faces
.
For more information, see Detecting faces in an image.
- AWS CLI
-
To detect faces in an image
The following
detect-faces
command detects faces in the specified image stored in an Amazon S3 bucket.aws rekognition detect-faces \ --image '
{"S3Object":{"Bucket":"MyImageS3Bucket","Name":"MyFriend.jpg"}}
' \ --attributes"ALL"
Output:
{ "FaceDetails": [ { "Confidence": 100.0, "Eyeglasses": { "Confidence": 98.91107940673828, "Value": false }, "Sunglasses": { "Confidence": 99.7966537475586, "Value": false }, "Gender": { "Confidence": 99.56611633300781, "Value": "Male" }, "Landmarks": [ { "Y": 0.26721030473709106, "X": 0.6204193830490112, "Type": "eyeLeft" }, { "Y": 0.26831310987472534, "X": 0.6776827573776245, "Type": "eyeRight" }, { "Y": 0.3514654338359833, "X": 0.6241428852081299, "Type": "mouthLeft" }, { "Y": 0.35258132219314575, "X": 0.6713621020317078, "Type": "mouthRight" }, { "Y": 0.3140771687030792, "X": 0.6428444981575012, "Type": "nose" }, { "Y": 0.24662546813488007, "X": 0.6001564860343933, "Type": "leftEyeBrowLeft" }, { "Y": 0.24326619505882263, "X": 0.6303644776344299, "Type": "leftEyeBrowRight" }, { "Y": 0.23818562924861908, "X": 0.6146903038024902, "Type": "leftEyeBrowUp" }, { "Y": 0.24373626708984375, "X": 0.6640064716339111, "Type": "rightEyeBrowLeft" }, { "Y": 0.24877218902111053, "X": 0.7025929093360901, "Type": "rightEyeBrowRight" }, { "Y": 0.23938551545143127, "X": 0.6823262572288513, "Type": "rightEyeBrowUp" }, { "Y": 0.265746533870697, "X": 0.6112898588180542, "Type": "leftEyeLeft" }, { "Y": 0.2676128149032593, "X": 0.6317071914672852, "Type": "leftEyeRight" }, { "Y": 0.262735515832901, "X": 0.6201658248901367, "Type": "leftEyeUp" }, { "Y": 0.27025148272514343, "X": 0.6206279993057251, "Type": "leftEyeDown" }, { "Y": 0.268223375082016, "X": 0.6658390760421753, "Type": "rightEyeLeft" }, { "Y": 0.2672517001628876, "X": 0.687832236289978, "Type": "rightEyeRight" }, { "Y": 0.26383838057518005, "X": 0.6769183874130249, "Type": "rightEyeUp" }, { "Y": 0.27138751745224, "X": 0.676596462726593, "Type": "rightEyeDown" }, { "Y": 0.32283174991607666, "X": 0.6350004076957703, "Type": "noseLeft" }, { "Y": 0.3219289481639862, "X": 0.6567046642303467, "Type": "noseRight" }, { "Y": 0.3420318365097046, "X": 0.6450609564781189, "Type": "mouthUp" }, { "Y": 0.3664324879646301, "X": 0.6455618143081665, "Type": "mouthDown" }, { "Y": 0.26721030473709106, "X": 0.6204193830490112, "Type": "leftPupil" }, { "Y": 0.26831310987472534, "X": 0.6776827573776245, "Type": "rightPupil" }, { "Y": 0.26343393325805664, "X": 0.5946047306060791, "Type": "upperJawlineLeft" }, { "Y": 0.3543180525302887, "X": 0.6044883728027344, "Type": "midJawlineLeft" }, { "Y": 0.4084877669811249, "X": 0.6477024555206299, "Type": "chinBottom" }, { "Y": 0.3562754988670349, "X": 0.707981526851654, "Type": "midJawlineRight" }, { "Y": 0.26580461859703064, "X": 0.7234612107276917, "Type": "upperJawlineRight" } ], "Pose": { "Yaw": -3.7351467609405518, "Roll": -0.10309021919965744, "Pitch": 0.8637830018997192 }, "Emotions": [ { "Confidence": 8.74203109741211, "Type": "SURPRISED" }, { "Confidence": 2.501944065093994, "Type": "ANGRY" }, { "Confidence": 0.7378743290901184, "Type": "DISGUSTED" }, { "Confidence": 3.5296201705932617, "Type": "HAPPY" }, { "Confidence": 1.7162904739379883, "Type": "SAD" }, { "Confidence": 9.518536567687988, "Type": "CONFUSED" }, { "Confidence": 0.45474427938461304, "Type": "FEAR" }, { "Confidence": 72.79895782470703, "Type": "CALM" } ], "AgeRange": { "High": 48, "Low": 32 }, "EyesOpen": { "Confidence": 98.93987274169922, "Value": true }, "BoundingBox": { "Width": 0.12368916720151901, "Top": 0.16007372736930847, "Left": 0.5901257991790771, "Height": 0.25140416622161865 }, "Smile": { "Confidence": 93.4493179321289, "Value": false }, "MouthOpen": { "Confidence": 90.53053283691406, "Value": false }, "Quality": { "Sharpness": 95.51618957519531, "Brightness": 65.29893493652344 }, "Mustache": { "Confidence": 89.85221099853516, "Value": false }, "Beard": { "Confidence": 86.1991195678711, "Value": true } } ] }
For more information, see Detecting Faces in an Image in the Amazon Rekognition Developer Guide.
-
For API details, see DetectFaces
in AWS CLI Command Reference.
-
The following code example shows how to use detect-labels
.
For more information, see Detecting labels in an image.
- AWS CLI
-
To detect a label in an image
The following
detect-labels
example detects scenes and objects in an image stored in an Amazon S3 bucket.aws rekognition detect-labels \ --image '
{"S3Object":{"Bucket":"bucket","Name":"image"}}
'Output:
{ "Labels": [ { "Instances": [], "Confidence": 99.15271759033203, "Parents": [ { "Name": "Vehicle" }, { "Name": "Transportation" } ], "Name": "Automobile" }, { "Instances": [], "Confidence": 99.15271759033203, "Parents": [ { "Name": "Transportation" } ], "Name": "Vehicle" }, { "Instances": [], "Confidence": 99.15271759033203, "Parents": [], "Name": "Transportation" }, { "Instances": [ { "BoundingBox": { "Width": 0.10616336017847061, "Top": 0.5039216876029968, "Left": 0.0037978808395564556, "Height": 0.18528179824352264 }, "Confidence": 99.15271759033203 }, { "BoundingBox": { "Width": 0.2429988533258438, "Top": 0.5251884460449219, "Left": 0.7309805154800415, "Height": 0.21577216684818268 }, "Confidence": 99.1286392211914 }, { "BoundingBox": { "Width": 0.14233611524105072, "Top": 0.5333095788955688, "Left": 0.6494812965393066, "Height": 0.15528248250484467 }, "Confidence": 98.48368072509766 }, { "BoundingBox": { "Width": 0.11086395382881165, "Top": 0.5354844927787781, "Left": 0.10355594009160995, "Height": 0.10271988064050674 }, "Confidence": 96.45606231689453 }, { "BoundingBox": { "Width": 0.06254628300666809, "Top": 0.5573825240135193, "Left": 0.46083059906959534, "Height": 0.053911514580249786 }, "Confidence": 93.65448760986328 }, { "BoundingBox": { "Width": 0.10105438530445099, "Top": 0.534368634223938, "Left": 0.5743985772132874, "Height": 0.12226245552301407 }, "Confidence": 93.06217193603516 }, { "BoundingBox": { "Width": 0.056389667093753815, "Top": 0.5235804319381714, "Left": 0.9427769780158997, "Height": 0.17163699865341187 }, "Confidence": 92.6864013671875 }, { "BoundingBox": { "Width": 0.06003860384225845, "Top": 0.5441341400146484, "Left": 0.22409997880458832, "Height": 0.06737709045410156 }, "Confidence": 90.4227066040039 }, { "BoundingBox": { "Width": 0.02848697081208229, "Top": 0.5107086896896362, "Left": 0, "Height": 0.19150497019290924 }, "Confidence": 86.65286254882812 }, { "BoundingBox": { "Width": 0.04067881405353546, "Top": 0.5566273927688599, "Left": 0.316415935754776, "Height": 0.03428703173995018 }, "Confidence": 85.36471557617188 }, { "BoundingBox": { "Width": 0.043411049991846085, "Top": 0.5394920110702515, "Left": 0.18293385207653046, "Height": 0.0893595889210701 }, "Confidence": 82.21705627441406 }, { "BoundingBox": { "Width": 0.031183116137981415, "Top": 0.5579366683959961, "Left": 0.2853088080883026, "Height": 0.03989990055561066 }, "Confidence": 81.0157470703125 }, { "BoundingBox": { "Width": 0.031113790348172188, "Top": 0.5504819750785828, "Left": 0.2580395042896271, "Height": 0.056484755128622055 }, "Confidence": 56.13441467285156 }, { "BoundingBox": { "Width": 0.08586374670267105, "Top": 0.5438792705535889, "Left": 0.5128012895584106, "Height": 0.08550430089235306 }, "Confidence": 52.37760925292969 } ], "Confidence": 99.15271759033203, "Parents": [ { "Name": "Vehicle" }, { "Name": "Transportation" } ], "Name": "Car" }, { "Instances": [], "Confidence": 98.9914321899414, "Parents": [], "Name": "Human" }, { "Instances": [ { "BoundingBox": { "Width": 0.19360728561878204, "Top": 0.35072067379951477, "Left": 0.43734854459762573, "Height": 0.2742200493812561 }, "Confidence": 98.9914321899414 }, { "BoundingBox": { "Width": 0.03801717236638069, "Top": 0.5010883808135986, "Left": 0.9155802130699158, "Height": 0.06597328186035156 }, "Confidence": 85.02790832519531 } ], "Confidence": 98.9914321899414, "Parents": [], "Name": "Person" }, { "Instances": [], "Confidence": 93.24951934814453, "Parents": [], "Name": "Machine" }, { "Instances": [ { "BoundingBox": { "Width": 0.03561960905790329, "Top": 0.6468243598937988, "Left": 0.7850857377052307, "Height": 0.08878646790981293 }, "Confidence": 93.24951934814453 }, { "BoundingBox": { "Width": 0.02217046171426773, "Top": 0.6149078607559204, "Left": 0.04757237061858177, "Height": 0.07136218994855881 }, "Confidence": 91.5025863647461 }, { "BoundingBox": { "Width": 0.016197510063648224, "Top": 0.6274210214614868, "Left": 0.6472989320755005, "Height": 0.04955997318029404 }, "Confidence": 85.14686584472656 }, { "BoundingBox": { "Width": 0.020207518711686134, "Top": 0.6348286867141724, "Left": 0.7295016646385193, "Height": 0.07059963047504425 }, "Confidence": 83.34547424316406 }, { "BoundingBox": { "Width": 0.020280985161662102, "Top": 0.6171894669532776, "Left": 0.08744934946298599, "Height": 0.05297485366463661 }, "Confidence": 79.9981460571289 }, { "BoundingBox": { "Width": 0.018318990245461464, "Top": 0.623889148235321, "Left": 0.6836880445480347, "Height": 0.06730121374130249 }, "Confidence": 78.87144470214844 }, { "BoundingBox": { "Width": 0.021310249343514442, "Top": 0.6167286038398743, "Left": 0.004064912907779217, "Height": 0.08317798376083374 }, "Confidence": 75.89361572265625 }, { "BoundingBox": { "Width": 0.03604431077837944, "Top": 0.7030032277107239, "Left": 0.9254803657531738, "Height": 0.04569442570209503 }, "Confidence": 64.402587890625 }, { "BoundingBox": { "Width": 0.009834849275648594, "Top": 0.5821820497512817, "Left": 0.28094568848609924, "Height": 0.01964157074689865 }, "Confidence": 62.79907989501953 }, { "BoundingBox": { "Width": 0.01475677452981472, "Top": 0.6137543320655823, "Left": 0.5950819253921509, "Height": 0.039063986390829086 }, "Confidence": 59.40483474731445 } ], "Confidence": 93.24951934814453, "Parents": [ { "Name": "Machine" } ], "Name": "Wheel" }, { "Instances": [], "Confidence": 92.61514282226562, "Parents": [], "Name": "Road" }, { "Instances": [], "Confidence": 92.37877655029297, "Parents": [ { "Name": "Person" } ], "Name": "Sport" }, { "Instances": [], "Confidence": 92.37877655029297, "Parents": [ { "Name": "Person" } ], "Name": "Sports" }, { "Instances": [ { "BoundingBox": { "Width": 0.12326609343290329, "Top": 0.6332163214683533, "Left": 0.44815489649772644, "Height": 0.058117982000112534 }, "Confidence": 92.37877655029297 } ], "Confidence": 92.37877655029297, "Parents": [ { "Name": "Person" }, { "Name": "Sport" } ], "Name": "Skateboard" }, { "Instances": [], "Confidence": 90.62931060791016, "Parents": [ { "Name": "Person" } ], "Name": "Pedestrian" }, { "Instances": [], "Confidence": 88.81334686279297, "Parents": [], "Name": "Asphalt" }, { "Instances": [], "Confidence": 88.81334686279297, "Parents": [], "Name": "Tarmac" }, { "Instances": [], "Confidence": 88.23201751708984, "Parents": [], "Name": "Path" }, { "Instances": [], "Confidence": 80.26520538330078, "Parents": [], "Name": "Urban" }, { "Instances": [], "Confidence": 80.26520538330078, "Parents": [ { "Name": "Building" }, { "Name": "Urban" } ], "Name": "Town" }, { "Instances": [], "Confidence": 80.26520538330078, "Parents": [], "Name": "Building" }, { "Instances": [], "Confidence": 80.26520538330078, "Parents": [ { "Name": "Building" }, { "Name": "Urban" } ], "Name": "City" }, { "Instances": [], "Confidence": 78.37934875488281, "Parents": [ { "Name": "Car" }, { "Name": "Vehicle" }, { "Name": "Transportation" } ], "Name": "Parking Lot" }, { "Instances": [], "Confidence": 78.37934875488281, "Parents": [ { "Name": "Car" }, { "Name": "Vehicle" }, { "Name": "Transportation" } ], "Name": "Parking" }, { "Instances": [], "Confidence": 74.37590026855469, "Parents": [ { "Name": "Building" }, { "Name": "Urban" }, { "Name": "City" } ], "Name": "Downtown" }, { "Instances": [], "Confidence": 69.84622955322266, "Parents": [ { "Name": "Road" } ], "Name": "Intersection" }, { "Instances": [], "Confidence": 57.68518829345703, "Parents": [ { "Name": "Sports Car" }, { "Name": "Car" }, { "Name": "Vehicle" }, { "Name": "Transportation" } ], "Name": "Coupe" }, { "Instances": [], "Confidence": 57.68518829345703, "Parents": [ { "Name": "Car" }, { "Name": "Vehicle" }, { "Name": "Transportation" } ], "Name": "Sports Car" }, { "Instances": [], "Confidence": 56.59492111206055, "Parents": [ { "Name": "Path" } ], "Name": "Sidewalk" }, { "Instances": [], "Confidence": 56.59492111206055, "Parents": [ { "Name": "Path" } ], "Name": "Pavement" }, { "Instances": [], "Confidence": 55.58770751953125, "Parents": [ { "Name": "Building" }, { "Name": "Urban" } ], "Name": "Neighborhood" } ], "LabelModelVersion": "2.0" }
For more information, see Detecting Labels in an Image in the Amazon Rekognition Developer Guide.
-
For API details, see DetectLabels
in AWS CLI Command Reference.
-
The following code example shows how to use detect-moderation-labels
.
For more information, see Detecting inappropriate images.
- AWS CLI
-
To detect unsafe content in an image
The following
detect-moderation-labels
command detects unsafe content in the specified image stored in an Amazon S3 bucket.aws rekognition detect-moderation-labels \ --image
"S3Object={Bucket=MyImageS3Bucket,Name=gun.jpg}"
Output:
{ "ModerationModelVersion": "3.0", "ModerationLabels": [ { "Confidence": 97.29618072509766, "ParentName": "Violence", "Name": "Weapon Violence" }, { "Confidence": 97.29618072509766, "ParentName": "", "Name": "Violence" } ] }
For more information, see Detecting Unsafe Images in the Amazon Rekognition Developer Guide.
-
For API details, see DetectModerationLabels
in AWS CLI Command Reference.
-
The following code example shows how to use detect-text
.
For more information, see Detecting text in an image.
- AWS CLI
-
To detect text in an image
The following
detect-text
command detects text in the specified image.aws rekognition detect-text \ --image '
{"S3Object":{"Bucket":"MyImageS3Bucket","Name":"ExamplePicture.jpg"}}
'Output:
{ "TextDetections": [ { "Geometry": { "BoundingBox": { "Width": 0.24624845385551453, "Top": 0.28288066387176514, "Left": 0.391388863325119, "Height": 0.022687450051307678 }, "Polygon": [ { "Y": 0.28288066387176514, "X": 0.391388863325119 }, { "Y": 0.2826388478279114, "X": 0.6376373171806335 }, { "Y": 0.30532628297805786, "X": 0.637677013874054 }, { "Y": 0.305568128824234, "X": 0.39142853021621704 } ] }, "Confidence": 94.35709381103516, "DetectedText": "ESTD 1882", "Type": "LINE", "Id": 0 }, { "Geometry": { "BoundingBox": { "Width": 0.33933889865875244, "Top": 0.32603850960731506, "Left": 0.34534579515457153, "Height": 0.07126858830451965 }, "Polygon": [ { "Y": 0.32603850960731506, "X": 0.34534579515457153 }, { "Y": 0.32633158564567566, "X": 0.684684693813324 }, { "Y": 0.3976001739501953, "X": 0.684575080871582 }, { "Y": 0.3973070979118347, "X": 0.345236212015152 } ] }, "Confidence": 99.95779418945312, "DetectedText": "BRAINS", "Type": "LINE", "Id": 1 }, { "Confidence": 97.22098541259766, "Geometry": { "BoundingBox": { "Width": 0.061079490929841995, "Top": 0.2843210697174072, "Left": 0.391391396522522, "Height": 0.021029088646173477 }, "Polygon": [ { "Y": 0.2843210697174072, "X": 0.391391396522522 }, { "Y": 0.2828207015991211, "X": 0.4524524509906769 }, { "Y": 0.3038259446620941, "X": 0.4534534513950348 }, { "Y": 0.30532634258270264, "X": 0.3923923969268799 } ] }, "DetectedText": "ESTD", "ParentId": 0, "Type": "WORD", "Id": 2 }, { "Confidence": 91.49320983886719, "Geometry": { "BoundingBox": { "Width": 0.07007007300853729, "Top": 0.2828207015991211, "Left": 0.5675675868988037, "Height": 0.02250562608242035 }, "Polygon": [ { "Y": 0.2828207015991211, "X": 0.5675675868988037 }, { "Y": 0.2828207015991211, "X": 0.6376376152038574 }, { "Y": 0.30532634258270264, "X": 0.6376376152038574 }, { "Y": 0.30532634258270264, "X": 0.5675675868988037 } ] }, "DetectedText": "1882", "ParentId": 0, "Type": "WORD", "Id": 3 }, { "Confidence": 99.95779418945312, "Geometry": { "BoundingBox": { "Width": 0.33933934569358826, "Top": 0.32633158564567566, "Left": 0.3453453481197357, "Height": 0.07127484679222107 }, "Polygon": [ { "Y": 0.32633158564567566, "X": 0.3453453481197357 }, { "Y": 0.32633158564567566, "X": 0.684684693813324 }, { "Y": 0.39759939908981323, "X": 0.6836836934089661 }, { "Y": 0.39684921503067017, "X": 0.3453453481197357 } ] }, "DetectedText": "BRAINS", "ParentId": 1, "Type": "WORD", "Id": 4 } ] }
-
For API details, see DetectText
in AWS CLI Command Reference.
-
The following code example shows how to use disassociate-faces
.
- AWS CLI
-
aws rekognition disassociate-faces --face-ids list-of-face-ids --user-id user-id --collection-id collection-name --region region-name
-
For API details, see DisassociateFaces
in AWS CLI Command Reference.
-
The following code example shows how to use get-celebrity-info
.
- AWS CLI
-
To get information about a celebrity
The following
get-celebrity-info
command displays information about the specified celebrity. Theid
parameter comes from a previous call torecognize-celebrities
.aws rekognition get-celebrity-info --id
nnnnnnn
Output:
{ "Name": "Celeb A", "Urls": [ "www.imdb.com/name/aaaaaaaaa" ] }
For more information, see Getting Information About a Celebrity in the Amazon Rekognition Developer Guide.
-
For API details, see GetCelebrityInfo
in AWS CLI Command Reference.
-
The following code example shows how to use get-celebrity-recognition
.
- AWS CLI
-
To get the results of a celebrity recognition operation
The following
get-celebrity-recognition
command diplays the results of a celebrity recognition operation that you started previously by callingstart-celebrity-recognition
.aws rekognition get-celebrity-recognition \ --job-id
1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef
Output:
{ "NextToken": "3D01ClxlCiT31VsRDkAO3IybLb/h5AtDWSGuhYi+N1FIJwwPtAkuKzDhL2rV3GcwmNt77+12", "Celebrities": [ { "Timestamp": 0, "Celebrity": { "Confidence": 96.0, "Face": { "BoundingBox": { "Width": 0.70333331823349, "Top": 0.16750000417232513, "Left": 0.19555555284023285, "Height": 0.3956249952316284 }, "Landmarks": [ { "Y": 0.31031012535095215, "X": 0.441436767578125, "Type": "eyeLeft" }, { "Y": 0.3081788718700409, "X": 0.6437258720397949, "Type": "eyeRight" }, { "Y": 0.39542075991630554, "X": 0.5572493076324463, "Type": "nose" }, { "Y": 0.4597957134246826, "X": 0.4579732120037079, "Type": "mouthLeft" }, { "Y": 0.45688048005104065, "X": 0.6349081993103027, "Type": "mouthRight" } ], "Pose": { "Yaw": 8.943398475646973, "Roll": -2.0309247970581055, "Pitch": -0.5674862861633301 }, "Quality": { "Sharpness": 99.40211486816406, "Brightness": 89.47132110595703 }, "Confidence": 99.99861145019531 }, "Name": "CelebrityA", "Urls": [ "www.imdb.com/name/111111111" ], "Id": "nnnnnn" } }, { "Timestamp": 467, "Celebrity": { "Confidence": 99.0, "Face": { "BoundingBox": { "Width": 0.6877777576446533, "Top": 0.18437500298023224, "Left": 0.20555555820465088, "Height": 0.3868750035762787 }, "Landmarks": [ { "Y": 0.31895750761032104, "X": 0.4411413371562958, "Type": "eyeLeft" }, { "Y": 0.3140959143638611, "X": 0.6523157954216003, "Type": "eyeRight" }, { "Y": 0.4016456604003906, "X": 0.5682755708694458, "Type": "nose" }, { "Y": 0.46894142031669617, "X": 0.4597797095775604, "Type": "mouthLeft" }, { "Y": 0.46971091628074646, "X": 0.6286435127258301, "Type": "mouthRight" } ], "Pose": { "Yaw": 10.433465957641602, "Roll": -3.347442388534546, "Pitch": 1.3709543943405151 }, "Quality": { "Sharpness": 99.5531005859375, "Brightness": 88.5764389038086 }, "Confidence": 99.99148559570312 }, "Name": "Jane Celebrity", "Urls": [ "www.imdb.com/name/111111111" ], "Id": "nnnnnn" } } ], "JobStatus": "SUCCEEDED", "VideoMetadata": { "Format": "QuickTime / MOV", "FrameRate": 29.978118896484375, "Codec": "h264", "DurationMillis": 4570, "FrameHeight": 1920, "FrameWidth": 1080 } }
For more information, see Recognizing Celebrities in a Stored Video in the Amazon Rekognition Developer Guide.
-
For API details, see GetCelebrityRecognition
in AWS CLI Command Reference.
-
The following code example shows how to use get-content-moderation
.
- AWS CLI
-
To get the results of an unsafe content operation
The following
get-content-moderation
command displays the results of an unsafe content operation that you started previously by callingstart-content-moderation
.aws rekognition get-content-moderation \ --job-id
1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef
Output:
{ "NextToken": "dlhcKMHMzpCBGFukz6IO3JMcWiJAamCVhXHt3r6b4b5Tfbyw3q7o+Jeezt+ZpgfOnW9FCCgQ", "ModerationLabels": [ { "Timestamp": 0, "ModerationLabel": { "Confidence": 97.39583587646484, "ParentName": "", "Name": "Violence" } }, { "Timestamp": 0, "ModerationLabel": { "Confidence": 97.39583587646484, "ParentName": "Violence", "Name": "Weapon Violence" } } ], "JobStatus": "SUCCEEDED", "VideoMetadata": { "Format": "QuickTime / MOV", "FrameRate": 29.97515869140625, "Codec": "h264", "DurationMillis": 6039, "FrameHeight": 1920, "FrameWidth": 1080 } }
For more information, see Detecting Unsafe Stored Videos in the Amazon Rekognition Developer Guide.
-
For API details, see GetContentModeration
in AWS CLI Command Reference.
-
The following code example shows how to use get-face-detection
.
- AWS CLI
-
To get the results of a face detection operation
The following
get-face-detection
command displays the results of a face detection operation that you started previously by callingstart-face-detection
.aws rekognition get-face-detection \ --job-id
1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef
Output:
{ "Faces": [ { "Timestamp": 467, "Face": { "BoundingBox": { "Width": 0.1560753583908081, "Top": 0.13555361330509186, "Left": -0.0952017530798912, "Height": 0.6934483051300049 }, "Landmarks": [ { "Y": 0.4013825058937073, "X": -0.041750285774469376, "Type": "eyeLeft" }, { "Y": 0.41695496439933777, "X": 0.027979329228401184, "Type": "eyeRight" }, { "Y": 0.6375303268432617, "X": -0.04034662991762161, "Type": "mouthLeft" }, { "Y": 0.6497718691825867, "X": 0.013960429467260838, "Type": "mouthRight" }, { "Y": 0.5238034129142761, "X": 0.008022055961191654, "Type": "nose" } ], "Pose": { "Yaw": -58.07863998413086, "Roll": 1.9384294748306274, "Pitch": -24.66305160522461 }, "Quality": { "Sharpness": 83.14741516113281, "Brightness": 25.75942611694336 }, "Confidence": 87.7622299194336 } }, { "Timestamp": 967, "Face": { "BoundingBox": { "Width": 0.28559377789497375, "Top": 0.19436298310756683, "Left": 0.024553587660193443, "Height": 0.7216082215309143 }, "Landmarks": [ { "Y": 0.4650231599807739, "X": 0.16269078850746155, "Type": "eyeLeft" }, { "Y": 0.4843238294124603, "X": 0.2782580852508545, "Type": "eyeRight" }, { "Y": 0.71530681848526, "X": 0.1741468608379364, "Type": "mouthLeft" }, { "Y": 0.7310671210289001, "X": 0.26857468485832214, "Type": "mouthRight" }, { "Y": 0.582602322101593, "X": 0.2566150426864624, "Type": "nose" } ], "Pose": { "Yaw": 11.487052917480469, "Roll": 5.074230670928955, "Pitch": 15.396159172058105 }, "Quality": { "Sharpness": 73.32209777832031, "Brightness": 54.96497344970703 }, "Confidence": 99.99998474121094 } } ], "NextToken": "OzL223pDKy9116O/02KXRqFIEAwxjy4PkgYcm3hSo0rdysbXg5Ex0eFgTGEj0ADEac6S037U", "JobStatus": "SUCCEEDED", "VideoMetadata": { "Format": "QuickTime / MOV", "FrameRate": 29.970617294311523, "Codec": "h264", "DurationMillis": 6806, "FrameHeight": 1080, "FrameWidth": 1920 } }
For more information, see Detecting Faces in a Stored Video in the Amazon Rekognition Developer Guide.
-
For API details, see GetFaceDetection
in AWS CLI Command Reference.
-
The following code example shows how to use get-face-search
.
- AWS CLI
-
To get the results of a face search operation
The following
get-face-search
command displays the results of a face search operation that you started previously by callingstart-face-search
.aws rekognition get-face-search \ --job-id
1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef
Output:
{ "Persons": [ { "Timestamp": 467, "FaceMatches": [], "Person": { "Index": 0, "Face": { "BoundingBox": { "Width": 0.1560753583908081, "Top": 0.13555361330509186, "Left": -0.0952017530798912, "Height": 0.6934483051300049 }, "Landmarks": [ { "Y": 0.4013825058937073, "X": -0.041750285774469376, "Type": "eyeLeft" }, { "Y": 0.41695496439933777, "X": 0.027979329228401184, "Type": "eyeRight" }, { "Y": 0.6375303268432617, "X": -0.04034662991762161, "Type": "mouthLeft" }, { "Y": 0.6497718691825867, "X": 0.013960429467260838, "Type": "mouthRight" }, { "Y": 0.5238034129142761, "X": 0.008022055961191654, "Type": "nose" } ], "Pose": { "Yaw": -58.07863998413086, "Roll": 1.9384294748306274, "Pitch": -24.66305160522461 }, "Quality": { "Sharpness": 83.14741516113281, "Brightness": 25.75942611694336 }, "Confidence": 87.7622299194336 } } }, { "Timestamp": 967, "FaceMatches": [ { "Face": { "BoundingBox": { "Width": 0.12368900328874588, "Top": 0.16007399559020996, "Left": 0.5901259779930115, "Height": 0.2514039874076843 }, "FaceId": "056a95fa-2060-4159-9cab-7ed4daa030fa", "ExternalImageId": "image3.jpg", "Confidence": 100.0, "ImageId": "08f8a078-8929-37fd-8e8f-aadf690e8232" }, "Similarity": 98.44476318359375 } ], "Person": { "Index": 1, "Face": { "BoundingBox": { "Width": 0.28559377789497375, "Top": 0.19436298310756683, "Left": 0.024553587660193443, "Height": 0.7216082215309143 }, "Landmarks": [ { "Y": 0.4650231599807739, "X": 0.16269078850746155, "Type": "eyeLeft" }, { "Y": 0.4843238294124603, "X": 0.2782580852508545, "Type": "eyeRight" }, { "Y": 0.71530681848526, "X": 0.1741468608379364, "Type": "mouthLeft" }, { "Y": 0.7310671210289001, "X": 0.26857468485832214, "Type": "mouthRight" }, { "Y": 0.582602322101593, "X": 0.2566150426864624, "Type": "nose" } ], "Pose": { "Yaw": 11.487052917480469, "Roll": 5.074230670928955, "Pitch": 15.396159172058105 }, "Quality": { "Sharpness": 73.32209777832031, "Brightness": 54.96497344970703 }, "Confidence": 99.99998474121094 } } } ], "NextToken": "5bkgcezyuaqhtWk3C8OTW6cjRghrwV9XDMivm5B3MXm+Lv6G+L+GejyFHPhoNa/ldXIC4c/d", "JobStatus": "SUCCEEDED", "VideoMetadata": { "Format": "QuickTime / MOV", "FrameRate": 29.970617294311523, "Codec": "h264", "DurationMillis": 6806, "FrameHeight": 1080, "FrameWidth": 1920 } }
For more information, see Searching Stored Videos for Faces in the Amazon Rekognition Developer Guide.
-
For API details, see GetFaceSearch
in AWS CLI Command Reference.
-
The following code example shows how to use get-label-detection
.
- AWS CLI
-
To get the results of an objects and scenes detection operation
The following
get-label-detection
command displays the results of an objects and scenes detection operation that you started previously by callingstart-label-detection
.aws rekognition get-label-detection \ --job-id
1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef
Output:
{ "Labels": [ { "Timestamp": 0, "Label": { "Instances": [], "Confidence": 50.19071578979492, "Parents": [ { "Name": "Person" }, { "Name": "Crowd" } ], "Name": "Audience" } }, { "Timestamp": 0, "Label": { "Instances": [], "Confidence": 55.74115753173828, "Parents": [ { "Name": "Room" }, { "Name": "Indoors" }, { "Name": "School" } ], "Name": "Classroom" } } ], "JobStatus": "SUCCEEDED", "LabelModelVersion": "2.0", "VideoMetadata": { "Format": "QuickTime / MOV", "FrameRate": 29.970617294311523, "Codec": "h264", "DurationMillis": 6806, "FrameHeight": 1080, "FrameWidth": 1920 }, "NextToken": "BMugzAi4L72IERzQdbpyMQuEFBsjlo5W0Yx3mfG+sR9mm98E1/CpObenspRfs/5FBQFs4X7G" }
For more information, see Detecting Labels in a Video in the Amazon Rekognition Developer Guide.
-
For API details, see GetLabelDetection
in AWS CLI Command Reference.
-
The following code example shows how to use get-person-tracking
.
- AWS CLI
-
To get the results of a people pathing operation
The following
get-person-tracking
command displays the results of a people pathing operation that you started previously by callingstart-person-tracking
.aws rekognition get-person-tracking \ --job-id
1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef
Output:
{ "Persons": [ { "Timestamp": 500, "Person": { "BoundingBox": { "Width": 0.4151041805744171, "Top": 0.07870370149612427, "Left": 0.0, "Height": 0.9212962985038757 }, "Index": 0 } }, { "Timestamp": 567, "Person": { "BoundingBox": { "Width": 0.4755208194255829, "Top": 0.07777778059244156, "Left": 0.0, "Height": 0.9194444417953491 }, "Index": 0 } } ], "NextToken": "D/vRIYNyhG79ugdta3f+8cRg9oSRo+HigGOuxRiYpTn0ExnqTi1CJektVAc4HrAXDv25eHYk", "JobStatus": "SUCCEEDED", "VideoMetadata": { "Format": "QuickTime / MOV", "FrameRate": 29.970617294311523, "Codec": "h264", "DurationMillis": 6806, "FrameHeight": 1080, "FrameWidth": 1920 } }
For more information, see People Pathing in the Amazon Rekognition Developer Guide.
-
For API details, see GetPersonTracking
in AWS CLI Command Reference.
-
The following code example shows how to use index-faces
.
For more information, see Adding faces to a collection.
- AWS CLI
-
To add faces to a collection
The following
index-faces
command adds the faces found in an image to the specified collection.aws rekognition index-faces \ --image '
{"S3Object":{"Bucket":"MyVideoS3Bucket","Name":"MyPicture.jpg"}}
' \ --collection-idMyCollection
\ --max-faces1
\ --quality-filter"AUTO"
\ --detection-attributes"ALL"
\ --external-image-id"MyPicture.jpg"
Output:
{ "FaceRecords": [ { "FaceDetail": { "Confidence": 99.993408203125, "Eyeglasses": { "Confidence": 99.11750030517578, "Value": false }, "Sunglasses": { "Confidence": 99.98249053955078, "Value": false }, "Gender": { "Confidence": 99.92769622802734, "Value": "Male" }, "Landmarks": [ { "Y": 0.26750367879867554, "X": 0.6202793717384338, "Type": "eyeLeft" }, { "Y": 0.26642778515815735, "X": 0.6787431836128235, "Type": "eyeRight" }, { "Y": 0.31361380219459534, "X": 0.6421601176261902, "Type": "nose" }, { "Y": 0.3495299220085144, "X": 0.6216195225715637, "Type": "mouthLeft" }, { "Y": 0.35194727778434753, "X": 0.669899046421051, "Type": "mouthRight" }, { "Y": 0.26844894886016846, "X": 0.6210268139839172, "Type": "leftPupil" }, { "Y": 0.26707562804222107, "X": 0.6817160844802856, "Type": "rightPupil" }, { "Y": 0.24834522604942322, "X": 0.6018546223640442, "Type": "leftEyeBrowLeft" }, { "Y": 0.24397172033786774, "X": 0.6172008514404297, "Type": "leftEyeBrowUp" }, { "Y": 0.24677404761314392, "X": 0.6339119076728821, "Type": "leftEyeBrowRight" }, { "Y": 0.24582654237747192, "X": 0.6619398593902588, "Type": "rightEyeBrowLeft" }, { "Y": 0.23973053693771362, "X": 0.6804757118225098, "Type": "rightEyeBrowUp" }, { "Y": 0.24441994726657867, "X": 0.6978968977928162, "Type": "rightEyeBrowRight" }, { "Y": 0.2695908546447754, "X": 0.6085202693939209, "Type": "leftEyeLeft" }, { "Y": 0.26716896891593933, "X": 0.6315826177597046, "Type": "leftEyeRight" }, { "Y": 0.26289820671081543, "X": 0.6202316880226135, "Type": "leftEyeUp" }, { "Y": 0.27123287320137024, "X": 0.6205548048019409, "Type": "leftEyeDown" }, { "Y": 0.2668408751487732, "X": 0.6663622260093689, "Type": "rightEyeLeft" }, { "Y": 0.26741549372673035, "X": 0.6910083889961243, "Type": "rightEyeRight" }, { "Y": 0.2614026665687561, "X": 0.6785826086997986, "Type": "rightEyeUp" }, { "Y": 0.27075251936912537, "X": 0.6789616942405701, "Type": "rightEyeDown" }, { "Y": 0.3211299479007721, "X": 0.6324167847633362, "Type": "noseLeft" }, { "Y": 0.32276326417922974, "X": 0.6558475494384766, "Type": "noseRight" }, { "Y": 0.34385165572166443, "X": 0.6444970965385437, "Type": "mouthUp" }, { "Y": 0.3671635091304779, "X": 0.6459195017814636, "Type": "mouthDown" } ], "Pose": { "Yaw": -9.54541015625, "Roll": -0.5709401965141296, "Pitch": 0.6045494675636292 }, "Emotions": [ { "Confidence": 39.90074157714844, "Type": "HAPPY" }, { "Confidence": 23.38753890991211, "Type": "CALM" }, { "Confidence": 5.840933322906494, "Type": "CONFUSED" } ], "AgeRange": { "High": 63, "Low": 45 }, "EyesOpen": { "Confidence": 99.80887603759766, "Value": true }, "BoundingBox": { "Width": 0.18562500178813934, "Top": 0.1618015021085739, "Left": 0.5575000047683716, "Height": 0.24770642817020416 }, "Smile": { "Confidence": 99.69740295410156, "Value": false }, "MouthOpen": { "Confidence": 99.97393798828125, "Value": false }, "Quality": { "Sharpness": 95.54405975341797, "Brightness": 63.867706298828125 }, "Mustache": { "Confidence": 97.05007934570312, "Value": false }, "Beard": { "Confidence": 87.34505462646484, "Value": false } }, "Face": { "BoundingBox": { "Width": 0.18562500178813934, "Top": 0.1618015021085739, "Left": 0.5575000047683716, "Height": 0.24770642817020416 }, "FaceId": "ce7ed422-2132-4a11-ab14-06c5c410f29f", "ExternalImageId": "example-image.jpg", "Confidence": 99.993408203125, "ImageId": "8d67061e-90d2-598f-9fbd-29c8497039c0" } } ], "UnindexedFaces": [], "FaceModelVersion": "3.0", "OrientationCorrection": "ROTATE_0" }
For more information, see Adding Faces to a Collection in the Amazon Rekognition Developer Guide.
-
For API details, see IndexFaces
in AWS CLI Command Reference.
-
The following code example shows how to use list-collections
.
For more information, see Listing collections.
- AWS CLI
-
To list the available collections
The following
list-collections
command lists the available collections in the AWS account.aws rekognition list-collections
Output:
{ "FaceModelVersions": [ "2.0", "3.0", "3.0", "3.0", "4.0", "1.0", "3.0", "4.0", "4.0", "4.0" ], "CollectionIds": [ "MyCollection1", "MyCollection2", "MyCollection3", "MyCollection4", "MyCollection5", "MyCollection6", "MyCollection7", "MyCollection8", "MyCollection9", "MyCollection10" ] }
For more information, see Listing Collections in the Amazon Rekognition Developer Guide.
-
For API details, see ListCollections
in AWS CLI Command Reference.
-
The following code example shows how to use list-faces
.
For more information, see Listing faces in a collection.
- AWS CLI
-
To list the faces in a collection
The following
list-faces
command lists the faces in the specified collection.aws rekognition list-faces \ --collection-id
MyCollection
Output:
{ "FaceModelVersion": "3.0", "Faces": [ { "BoundingBox": { "Width": 0.5216310024261475, "Top": 0.3256250023841858, "Left": 0.13394300639629364, "Height": 0.3918749988079071 }, "FaceId": "0040279c-0178-436e-b70a-e61b074e96b0", "ExternalImageId": "image1.jpg", "Confidence": 100.0, "ImageId": "f976e487-3719-5e2d-be8b-ea2724c26991" }, { "BoundingBox": { "Width": 0.5074880123138428, "Top": 0.3774999976158142, "Left": 0.18302799761295319, "Height": 0.3812499940395355 }, "FaceId": "086261e8-6deb-4bc0-ac73-ab22323cc38d", "ExternalImageId": "image2.jpg", "Confidence": 99.99930572509766, "ImageId": "ae1593b0-a8f6-5e24-a306-abf529e276fa" }, { "BoundingBox": { "Width": 0.5574039816856384, "Top": 0.37187498807907104, "Left": 0.14559100568294525, "Height": 0.4181250035762787 }, "FaceId": "11c4bd3c-19c5-4eb8-aecc-24feb93a26e1", "ExternalImageId": "image3.jpg", "Confidence": 99.99960327148438, "ImageId": "80739b4d-883f-5b78-97cf-5124038e26b9" }, { "BoundingBox": { "Width": 0.18562500178813934, "Top": 0.1618019938468933, "Left": 0.5575000047683716, "Height": 0.24770599603652954 }, "FaceId": "13692fe4-990a-4679-b14a-5ac23d135eab", "ExternalImageId": "image4.jpg", "Confidence": 99.99340057373047, "ImageId": "8df18239-9ad1-5acd-a46a-6581ff98f51b" }, { "BoundingBox": { "Width": 0.5307819843292236, "Top": 0.2862499952316284, "Left": 0.1564060002565384, "Height": 0.3987500071525574 }, "FaceId": "2eb5f3fd-e2a9-4b1c-a89f-afa0a518fe06", "ExternalImageId": "image5.jpg", "Confidence": 99.99970245361328, "ImageId": "3c314792-197d-528d-bbb6-798ed012c150" }, { "BoundingBox": { "Width": 0.5773710012435913, "Top": 0.34437501430511475, "Left": 0.12396000325679779, "Height": 0.4337500035762787 }, "FaceId": "57189455-42b0-4839-a86c-abda48b13174", "ExternalImageId": "image6.jpg", "Confidence": 100.0, "ImageId": "0aff2f37-e7a2-5dbc-a3a3-4ef6ec18eaa0" }, { "BoundingBox": { "Width": 0.5349419713020325, "Top": 0.29124999046325684, "Left": 0.16389399766921997, "Height": 0.40187498927116394 }, "FaceId": "745f7509-b1fa-44e0-8b95-367b1359638a", "ExternalImageId": "image7.jpg", "Confidence": 99.99979400634766, "ImageId": "67a34327-48d1-5179-b042-01e52ccfeada" }, { "BoundingBox": { "Width": 0.41499999165534973, "Top": 0.09187500178813934, "Left": 0.28083300590515137, "Height": 0.3112500011920929 }, "FaceId": "8d3cfc70-4ba8-4b36-9644-90fba29c2dac", "ExternalImageId": "image8.jpg", "Confidence": 99.99769592285156, "ImageId": "a294da46-2cb1-5cc4-9045-61d7ca567662" }, { "BoundingBox": { "Width": 0.48166701197624207, "Top": 0.20999999344348907, "Left": 0.21250000596046448, "Height": 0.36125001311302185 }, "FaceId": "bd4ceb4d-9acc-4ab7-8ef8-1c2d2ba0a66a", "ExternalImageId": "image9.jpg", "Confidence": 99.99949645996094, "ImageId": "5e1a7588-e5a0-5ee3-bd00-c642518dfe3a" }, { "BoundingBox": { "Width": 0.18562500178813934, "Top": 0.1618019938468933, "Left": 0.5575000047683716, "Height": 0.24770599603652954 }, "FaceId": "ce7ed422-2132-4a11-ab14-06c5c410f29f", "ExternalImageId": "image10.jpg", "Confidence": 99.99340057373047, "ImageId": "8d67061e-90d2-598f-9fbd-29c8497039c0" } ] }
For more information, see Listing Faces in a Collection in the Amazon Rekognition Developer Guide.
-
For API details, see ListFaces
in AWS CLI Command Reference.
-
The following code example shows how to use list-stream-processors
.
- AWS CLI
-
To list the stream processors in your account
The following
list-stream-processors
command lists the stream processors in your account and the state of each.aws rekognition list-stream-processors
Output:
{ "StreamProcessors": [ { "Status": "STOPPED", "Name": "my-stream-processor" } ] }
For more information, see Working with Streaming Videos in the Amazon Rekognition Developer Guide.
-
For API details, see ListStreamProcessors
in AWS CLI Command Reference.
-
The following code example shows how to use recognize-celebrities
.
For more information, see Recognizing celebrities in an image.
- AWS CLI
-
To recognize celebrities in an image
The following
recognize-celebrities
command recognizes celebrities in the specified image stored in an Amazon S3 bucket.:aws rekognition recognize-celebrities \ --image
"S3Object={Bucket=MyImageS3Bucket,Name=moviestars.jpg}"
Output:
{ "UnrecognizedFaces": [ { "BoundingBox": { "Width": 0.14416666328907013, "Top": 0.07777778059244156, "Left": 0.625, "Height": 0.2746031880378723 }, "Confidence": 99.9990234375, "Pose": { "Yaw": 10.80408763885498, "Roll": -12.761146545410156, "Pitch": 10.96889877319336 }, "Quality": { "Sharpness": 94.1185531616211, "Brightness": 79.18367004394531 }, "Landmarks": [ { "Y": 0.18220913410186768, "X": 0.6702951788902283, "Type": "eyeLeft" }, { "Y": 0.16337193548679352, "X": 0.7188183665275574, "Type": "eyeRight" }, { "Y": 0.20739148557186127, "X": 0.7055801749229431, "Type": "nose" }, { "Y": 0.2889308035373688, "X": 0.687512218952179, "Type": "mouthLeft" }, { "Y": 0.2706988751888275, "X": 0.7250053286552429, "Type": "mouthRight" } ] } ], "CelebrityFaces": [ { "MatchConfidence": 100.0, "Face": { "BoundingBox": { "Width": 0.14000000059604645, "Top": 0.1190476194024086, "Left": 0.82833331823349, "Height": 0.2666666805744171 }, "Confidence": 99.99359130859375, "Pose": { "Yaw": -10.509642601013184, "Roll": -14.51749324798584, "Pitch": 13.799399375915527 }, "Quality": { "Sharpness": 78.74752044677734, "Brightness": 42.201324462890625 }, "Landmarks": [ { "Y": 0.2290833294391632, "X": 0.8709492087364197, "Type": "eyeLeft" }, { "Y": 0.20639978349208832, "X": 0.9153988361358643, "Type": "eyeRight" }, { "Y": 0.25417643785476685, "X": 0.8907724022865295, "Type": "nose" }, { "Y": 0.32729196548461914, "X": 0.8876466155052185, "Type": "mouthLeft" }, { "Y": 0.3115464746952057, "X": 0.9238573312759399, "Type": "mouthRight" } ] }, "Name": "Celeb A", "Urls": [ "www.imdb.com/name/aaaaaaaaa" ], "Id": "1111111" }, { "MatchConfidence": 97.0, "Face": { "BoundingBox": { "Width": 0.13333334028720856, "Top": 0.24920634925365448, "Left": 0.4449999928474426, "Height": 0.2539682686328888 }, "Confidence": 99.99979400634766, "Pose": { "Yaw": 6.557040691375732, "Roll": -7.316643714904785, "Pitch": 9.272967338562012 }, "Quality": { "Sharpness": 83.23492431640625, "Brightness": 78.83267974853516 }, "Landmarks": [ { "Y": 0.3625510632991791, "X": 0.48898839950561523, "Type": "eyeLeft" }, { "Y": 0.35366007685661316, "X": 0.5313721299171448, "Type": "eyeRight" }, { "Y": 0.3894785940647125, "X": 0.5173314809799194, "Type": "nose" }, { "Y": 0.44889405369758606, "X": 0.5020005702972412, "Type": "mouthLeft" }, { "Y": 0.4408611059188843, "X": 0.5351271629333496, "Type": "mouthRight" } ] }, "Name": "Celeb B", "Urls": [ "www.imdb.com/name/bbbbbbbbb" ], "Id": "2222222" }, { "MatchConfidence": 100.0, "Face": { "BoundingBox": { "Width": 0.12416666746139526, "Top": 0.2968254089355469, "Left": 0.2150000035762787, "Height": 0.23650793731212616 }, "Confidence": 99.99958801269531, "Pose": { "Yaw": 7.801797866821289, "Roll": -8.326810836791992, "Pitch": 7.844768047332764 }, "Quality": { "Sharpness": 86.93206024169922, "Brightness": 79.81291198730469 }, "Landmarks": [ { "Y": 0.4027804136276245, "X": 0.2575301229953766, "Type": "eyeLeft" }, { "Y": 0.3934555947780609, "X": 0.2956969439983368, "Type": "eyeRight" }, { "Y": 0.4309830069541931, "X": 0.2837020754814148, "Type": "nose" }, { "Y": 0.48186683654785156, "X": 0.26812544465065, "Type": "mouthLeft" }, { "Y": 0.47338807582855225, "X": 0.29905644059181213, "Type": "mouthRight" } ] }, "Name": "Celeb C", "Urls": [ "www.imdb.com/name/ccccccccc" ], "Id": "3333333" }, { "MatchConfidence": 97.0, "Face": { "BoundingBox": { "Width": 0.11916666477918625, "Top": 0.3698412775993347, "Left": 0.008333333767950535, "Height": 0.22698412835597992 }, "Confidence": 99.99999237060547, "Pose": { "Yaw": 16.38478660583496, "Roll": -1.0260354280471802, "Pitch": 5.975185394287109 }, "Quality": { "Sharpness": 83.23492431640625, "Brightness": 61.408443450927734 }, "Landmarks": [ { "Y": 0.4632347822189331, "X": 0.049406956881284714, "Type": "eyeLeft" }, { "Y": 0.46388113498687744, "X": 0.08722897619009018, "Type": "eyeRight" }, { "Y": 0.5020678639411926, "X": 0.0758260041475296, "Type": "nose" }, { "Y": 0.544157862663269, "X": 0.054029736667871475, "Type": "mouthLeft" }, { "Y": 0.5463630557060242, "X": 0.08464983850717545, "Type": "mouthRight" } ] }, "Name": "Celeb D", "Urls": [ "www.imdb.com/name/ddddddddd" ], "Id": "4444444" } ] }
For more information, see Recognizing Celebrities in an Image in the Amazon Rekognition Developer Guide.
-
For API details, see RecognizeCelebrities
in AWS CLI Command Reference.
-
The following code example shows how to use search-faces-by-image
.
For more information, see Searching for a face (image).
- AWS CLI
-
To search for faces in a collection that match the largest face in an image.
The following
search-faces-by-image
command searches for faces in a collection that match the largest face in the specified image.:aws rekognition search-faces-by-image \ --image '
{"S3Object":{"Bucket":"MyImageS3Bucket","Name":"ExamplePerson.jpg"}}
' \ --collection-idMyFaceImageCollection
{
"SearchedFaceBoundingBox":{
"Width":0.18562500178813934,
"Top":0.1618015021085739,
"Left":0.5575000047683716,
"Height":0.24770642817020416
},
"SearchedFaceConfidence":99.993408203125,
"FaceMatches":[
{
"Face":{
"BoundingBox":{
"Width":0.18562500178813934,
"Top":0.1618019938468933,
"Left":0.5575000047683716,
"Height":0.24770599603652954
},
"FaceId": "ce7ed422-2132-4a11-ab14-06c5c410f29f", "ExternalImageId": "example-image.jpg", "Confidence":99.99340057373047,
"ImageId":"8d67061e-90d2-598f-9fbd-29c8497039c0"
},
"Similarity":99.97913360595703
},
{
"Face":{
"BoundingBox":{
"Width":0.18562500178813934,
"Top":0.1618019938468933,
"Left":0.5575000047683716,
"Height":0.24770599603652954
},
"FaceId": "13692fe4-990a-4679-b14a-5ac23d135eab", "ExternalImageId": "image3.jpg", "Confidence":99.99340057373047,
"ImageId":"8df18239-9ad1-5acd-a46a-6581ff98f51b"
},
"Similarity":99.97913360595703
},
{
"Face":{
"BoundingBox":{
"Width":0.41499999165534973,
"Top":0.09187500178813934,
"Left":0.28083300590515137,
"Height":0.3112500011920929
},
"FaceId": "8d3cfc70-4ba8-4b36-9644-90fba29c2dac", "ExternalImageId": "image2.jpg", "Confidence":99.99769592285156,
"ImageId":"a294da46-2cb1-5cc4-9045-61d7ca567662"
},
"Similarity":99.18069458007812
},
{
"Face":{
"BoundingBox":{
"Width":0.48166701197624207,
"Top":0.20999999344348907,
"Left":0.21250000596046448,
"Height":0.36125001311302185
},
"FaceId": "bd4ceb4d-9acc-4ab7-8ef8-1c2d2ba0a66a", "ExternalImageId": "image1.jpg", "Confidence":99.99949645996094,
"ImageId":"5e1a7588-e5a0-5ee3-bd00-c642518dfe3a"
},
"Similarity":98.66607666015625
},
{
"Face":{
"BoundingBox":{
"Width":0.5349419713020325,
"Top":0.29124999046325684,
"Left":0.16389399766921997,
"Height":0.40187498927116394
},
"FaceId": "745f7509-b1fa-44e0-8b95-367b1359638a", "ExternalImageId": "image9.jpg", "Confidence":99.99979400634766,
"ImageId":"67a34327-48d1-5179-b042-01e52ccfeada"
},
"Similarity":98.24278259277344
},
{
"Face":{
"BoundingBox":{
"Width":0.5307819843292236,
"Top":0.2862499952316284,
"Left":0.1564060002565384,
"Height":0.3987500071525574
},
"FaceId": "2eb5f3fd-e2a9-4b1c-a89f-afa0a518fe06", "ExternalImageId": "image10.jpg", "Confidence":99.99970245361328,
"ImageId":"3c314792-197d-528d-bbb6-798ed012c150"
},
"Similarity":98.10665893554688
},
{
"Face":{
"BoundingBox":{
"Width":0.5074880123138428,
"Top":0.3774999976158142,
"Left":0.18302799761295319,
"Height":0.3812499940395355
},
"FaceId": "086261e8-6deb-4bc0-ac73-ab22323cc38d", "ExternalImageId": "image6.jpg", "Confidence":99.99930572509766,
"ImageId":"ae1593b0-a8f6-5e24-a306-abf529e276fa"
},
"Similarity":98.10526275634766
},
{
"Face":{
"BoundingBox":{
"Width":0.5574039816856384,
"Top":0.37187498807907104,
"Left":0.14559100568294525,
"Height":0.4181250035762787
},
"FaceId": "11c4bd3c-19c5-4eb8-aecc-24feb93a26e1", "ExternalImageId": "image5.jpg", "Confidence":99.99960327148438,
"ImageId":"80739b4d-883f-5b78-97cf-5124038e26b9"
},
"Similarity":97.94659423828125
},
{
"Face":{
"BoundingBox":{
"Width":0.5773710012435913,
"Top":0.34437501430511475,
"Left":0.12396000325679779,
"Height":0.4337500035762787
},
"FaceId": "57189455-42b0-4839-a86c-abda48b13174", "ExternalImageId": "image8.jpg", "Confidence":100.0,
"ImageId":"0aff2f37-e7a2-5dbc-a3a3-4ef6ec18eaa0"
},
"Similarity":97.93476867675781
}
],
"FaceModelVersion":"3.0"
}
For more information, see Searching for a Face Using an Image in the Amazon Rekognition Developer Guide.
-
For API details, see SearchFacesByImage
in AWS CLI Command Reference.
-
The following code example shows how to use search-faces
.
For more information, see Searching for a face (face ID).
- AWS CLI
-
To search for faces in a collection that match a face ID.
The following
search-faces
command searches for faces in a collection that match the specified face ID.aws rekognition search-faces \ --face-id
8d3cfc70-4ba8-4b36-9644-90fba29c2dac
\ --collection-idMyCollection
Output:
{ "SearchedFaceId": "8d3cfc70-4ba8-4b36-9644-90fba29c2dac", "FaceModelVersion": "3.0", "FaceMatches": [ { "Face": { "BoundingBox": { "Width": 0.48166701197624207, "Top": 0.20999999344348907, "Left": 0.21250000596046448, "Height": 0.36125001311302185 }, "FaceId": "bd4ceb4d-9acc-4ab7-8ef8-1c2d2ba0a66a", "ExternalImageId": "image1.jpg", "Confidence": 99.99949645996094, "ImageId": "5e1a7588-e5a0-5ee3-bd00-c642518dfe3a" }, "Similarity": 99.30997467041016 }, { "Face": { "BoundingBox": { "Width": 0.18562500178813934, "Top": 0.1618019938468933, "Left": 0.5575000047683716, "Height": 0.24770599603652954 }, "FaceId": "ce7ed422-2132-4a11-ab14-06c5c410f29f", "ExternalImageId": "example-image.jpg", "Confidence": 99.99340057373047, "ImageId": "8d67061e-90d2-598f-9fbd-29c8497039c0" }, "Similarity": 99.24862670898438 }, { "Face": { "BoundingBox": { "Width": 0.18562500178813934, "Top": 0.1618019938468933, "Left": 0.5575000047683716, "Height": 0.24770599603652954 }, "FaceId": "13692fe4-990a-4679-b14a-5ac23d135eab", "ExternalImageId": "image3.jpg", "Confidence": 99.99340057373047, "ImageId": "8df18239-9ad1-5acd-a46a-6581ff98f51b" }, "Similarity": 99.24862670898438 }, { "Face": { "BoundingBox": { "Width": 0.5349419713020325, "Top": 0.29124999046325684, "Left": 0.16389399766921997, "Height": 0.40187498927116394 }, "FaceId": "745f7509-b1fa-44e0-8b95-367b1359638a", "ExternalImageId": "image9.jpg", "Confidence": 99.99979400634766, "ImageId": "67a34327-48d1-5179-b042-01e52ccfeada" }, "Similarity": 96.73158264160156 }, { "Face": { "BoundingBox": { "Width": 0.5307819843292236, "Top": 0.2862499952316284, "Left": 0.1564060002565384, "Height": 0.3987500071525574 }, "FaceId": "2eb5f3fd-e2a9-4b1c-a89f-afa0a518fe06", "ExternalImageId": "image10.jpg", "Confidence": 99.99970245361328, "ImageId": "3c314792-197d-528d-bbb6-798ed012c150" }, "Similarity": 96.48291015625 }, { "Face": { "BoundingBox": { "Width": 0.5074880123138428, "Top": 0.3774999976158142, "Left": 0.18302799761295319, "Height": 0.3812499940395355 }, "FaceId": "086261e8-6deb-4bc0-ac73-ab22323cc38d", "ExternalImageId": "image6.jpg", "Confidence": 99.99930572509766, "ImageId": "ae1593b0-a8f6-5e24-a306-abf529e276fa" }, "Similarity": 96.43287658691406 }, { "Face": { "BoundingBox": { "Width": 0.5574039816856384, "Top": 0.37187498807907104, "Left": 0.14559100568294525, "Height": 0.4181250035762787 }, "FaceId": "11c4bd3c-19c5-4eb8-aecc-24feb93a26e1", "ExternalImageId": "image5.jpg", "Confidence": 99.99960327148438, "ImageId": "80739b4d-883f-5b78-97cf-5124038e26b9" }, "Similarity": 95.25305938720703 }, { "Face": { "BoundingBox": { "Width": 0.5773710012435913, "Top": 0.34437501430511475, "Left": 0.12396000325679779, "Height": 0.4337500035762787 }, "FaceId": "57189455-42b0-4839-a86c-abda48b13174", "ExternalImageId": "image8.jpg", "Confidence": 100.0, "ImageId": "0aff2f37-e7a2-5dbc-a3a3-4ef6ec18eaa0" }, "Similarity": 95.22837829589844 } ] }
For more information, see Searching for a Face Using Its Face ID in the Amazon Rekognition Developer Guide.
-
For API details, see SearchFaces
in AWS CLI Command Reference.
-
The following code example shows how to use start-celebrity-recognition
.
- AWS CLI
-
To start the recognition of celebrities in a stored video
The following
start-celebrity-recognition
command starts a job to look for celebrities in the specified video file stored in an Amazon S3 bucket.aws rekognition start-celebrity-recognition \ --video
"S3Object={Bucket=MyVideoS3Bucket,Name=MyVideoFile.mpg}"
Output:
{ "JobId": "1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef" }
For more information, see Recognizing Celebrities in a Stored Video in the Amazon Rekognition Developer Guide.
-
For API details, see StartCelebrityRecognition
in AWS CLI Command Reference.
-
The following code example shows how to use start-content-moderation
.
- AWS CLI
-
To start the recognition of unsafe content in a stored video
The following
start-content-moderation
command starts a job to detect unsafe content in the specified video file stored in an Amazon S3 bucket.aws rekognition start-content-moderation \ --video
"S3Object={Bucket=MyVideoS3Bucket,Name=MyVideoFile.mpg}"
Output:
{ "JobId": "1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef" }
For more information, see Detecting Unsafe Stored Videos in the Amazon Rekognition Developer Guide.
-
For API details, see StartContentModeration
in AWS CLI Command Reference.
-
The following code example shows how to use start-face-detection
.
- AWS CLI
-
To detect faces in a video
The following
start-face-detection
command starts a job to detect faces in the specified video file stored in an Amazon S3 bucket.aws rekognition start-face-detection --video
"S3Object={Bucket=MyVideoS3Bucket,Name=MyVideoFile.mpg}"
Output:
{ "JobId": "1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef" }
For more information, see Detecting Faces in a Stored Video in the Amazon Rekognition Developer Guide.
-
For API details, see StartFaceDetection
in AWS CLI Command Reference.
-
The following code example shows how to use start-face-search
.
- AWS CLI
-
To search for faces in a collection that match faces detected in a video
The following
start-face-search
command starts a job to search for faces in a collection that match faces detected in the specified video file in an Amazon S3 bucket.aws rekognition start-face-search \ --video
"S3Object={Bucket=MyVideoS3Bucket,Name=MyVideoFile.mpg}"
\ --collection
-id collectionOutput:
{ "JobId": "1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef" }
For more information, see Searching Stored Videos for Faces in the Amazon Rekognition Developer Guide.
-
For API details, see StartFaceSearch
in AWS CLI Command Reference.
-
The following code example shows how to use start-label-detection
.
- AWS CLI
-
To detect objects and scenes in a video
The following
start-label-detection
command starts a job to detect objects and scenes in the specified video file stored in an Amazon S3 bucket.aws rekognition start-label-detection \ --video
"S3Object={Bucket=MyVideoS3Bucket,Name=MyVideoFile.mpg}"
Output:
{ "JobId": "1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef" }
For more information, see Detecting Labels in a Video in the Amazon Rekognition Developer Guide.
-
For API details, see StartLabelDetection
in AWS CLI Command Reference.
-
The following code example shows how to use start-person-tracking
.
- AWS CLI
-
To start the pathing of people in a stored video
The following
start-person-tracking
command starts a job to track the paths that people take in the specified video fiel stored in an Amazon S3 bucket.:aws rekognition start-person-tracking \ --video
"S3Object={Bucket=MyVideoS3Bucket,Name=MyVideoFile.mpg}"
Output:
{ "JobId": "1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef" }
For more information, see People Pathing in the Amazon Rekognition Developer Guide.
-
For API details, see StartPersonTracking
in AWS CLI Command Reference.
-
The following code example shows how to use start-stream-processor
.
- AWS CLI
-
To start a stream processor
The following
start-stream-processor
command starts the specified video stream processor.aws rekognition start-stream-processor \ --name
my-stream-processor
This command produces no output.
For more information, see Working with Streaming Videos in the Amazon Rekognition Developer Guide.
-
For API details, see StartStreamProcessor
in AWS CLI Command Reference.
-
The following code example shows how to use stop-stream-processor
.
- AWS CLI
-
To stop a running stream processor
The following
stop-stream-processor
command stops the specified running stream processor.aws rekognition stop-stream-processor \ --name
my-stream-processor
This command produces no output.
For more information, see Working with Streaming Videos in the Amazon Rekognition Developer Guide.
-
For API details, see StopStreamProcessor
in AWS CLI Command Reference.
-