Pilih preferensi cookie Anda

Kami menggunakan cookie penting serta alat serupa yang diperlukan untuk menyediakan situs dan layanan. Kami menggunakan cookie performa untuk mengumpulkan statistik anonim sehingga kami dapat memahami cara pelanggan menggunakan situs dan melakukan perbaikan. Cookie penting tidak dapat dinonaktifkan, tetapi Anda dapat mengklik “Kustom” atau “Tolak” untuk menolak cookie performa.

Jika Anda setuju, AWS dan pihak ketiga yang disetujui juga akan menggunakan cookie untuk menyediakan fitur situs yang berguna, mengingat preferensi Anda, dan menampilkan konten yang relevan, termasuk iklan yang relevan. Untuk menerima atau menolak semua cookie yang tidak penting, klik “Terima” atau “Tolak”. Untuk membuat pilihan yang lebih detail, klik “Kustomisasi”.

Creating a user script

Mode fokus
Creating a user script - AWS Clean Rooms
Halaman ini belum diterjemahkan ke dalam bahasa Anda. Minta terjemahan

The user script must be named user_script.py and must contain an entrypoint function (in other words, a handler).

The following procedure describes how to create a user script to define the core functionality of your PySpark analysis.

Prerequisites

  • PySpark 1.0 (corresponds to Python 3.9 and Spark 3.5.2)

  • Datasets in Amazon S3 can only be read as configured table associations in the Spark session you define.

  • Your code can't directly call Amazon S3 and AWS Glue

  • Your code can’t make network calls

To create a user script
  1. Open a text editor or Integrated Development Environment (IDE) of your choice.

    You can use any text editor or IDE (such as Visual Studio Code, PyCharm, or Notepad++) that supports Python files.

  2. Create a new file named user_script.py.

  3. Define an entrypoint function that accepts a context object parameter.

    def entrypoint(context)

    The context object parameter is a dictionary that provides access to essential Spark components and referenced tables. It contains Spark session access for running Spark operations and the referenced tables:

    Spark session access is available via context['sparkSession']

    Referenced tables are available via context['referencedTables']

  4. Define the results of the entrypoint function:

    return results

    The results must return an object containing a results dictionary of filenames to an output DataFrame.

    Note

    AWS Clean Rooms automatically writes the DataFrame objects to the S3 bucket of the result receiver.

  5. You are now ready to:

    1. Store this user script in S3. For more information, see Storing a user script and virtual environment in S3.

    2. Create the optional virtual environment to support any additional libraries required by your user script. For more information, see Creating a virtual environment (optional).

Example 1
The following example demonstrates a generic user script for a PySpark analysis template.
# File name: user_script.py def entrypoint(context): try: # Access Spark session spark = context['sparkSession'] # Access input tables input_table1 = context['referencedTables']['table1_name'] input_table2 = context['referencedTables']['table2_name'] # Example data processing operations output_df1 = input_table1.select("column1", "column2") output_df2 = input_table2.join(input_table1, "join_key") output_df3 = input_table1.groupBy("category").count() # Return results - each key creates a separate output folder return { "results": { "output1": output_df1, # Creates output1/ folder "output2": output_df2, # Creates output2/ folder "analysis_summary": output_df3 # Creates analysis_summary/ folder } } except Exception as e: print(f"Error in main function: {str(e)}") raise e

The folder structure of this example is as follows:

analysis_results/ │ ├── output1/ # Basic selected columns │ ├── part-00000.parquet │ └── _SUCCESS │ ├── output2/ # Joined data │ ├── part-00000.parquet │ └── _SUCCESS │ └── analysis_summary/ # Aggregated results ├── part-00000.parquet └── _SUCCESS
Example 2
The following example demonstrates a more complex user script for a PySpark analysis template.
def entrypoint(context): try: # Get DataFrames from context emp_df = context['referencedTables']['employees'] dept_df = context['referencedTables']['departments'] # Apply Transformations emp_dept_df = emp_df.join( dept_df, on="dept_id", how="left" ).select( "emp_id", "name", "salary", "dept_name" ) # Return Dataframes return { "results": { "outputTable": emp_dept_df } } except Exception as e: print(f"Error in entrypoint function: {str(e)}") raise e
PrivasiSyarat situsPreferensi cookie
© 2025, Amazon Web Services, Inc. atau afiliasinya. Semua hak dilindungi undang-undang.