Menggunakan EFA pada DLAMI - AWS Deep Learning AMIs

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Menggunakan EFA pada DLAMI

Bagian berikut menjelaskan cara menggunakan EFA untuk menjalankan aplikasi multi-node pada. AWS Deep Learning AMIs

Menjalankan Aplikasi Multi-Node dengan EFA

Untuk menjalankan aplikasi di seluruh cluster node konfigurasi berikut diperlukan

Aktifkan Tanpa Kata Sandi SSH

Pilih satu node di cluster Anda sebagai node pemimpin. Node yang tersisa disebut sebagai node anggota.

  1. Pada node pemimpin, buat RSA keypair.

    ssh-keygen -t rsa -N "" -f ~/.ssh/id_rsa
  2. Ubah izin kunci privat pada simpul pemimpin.

    chmod 600 ~/.ssh/id_rsa
  3. Salin kunci publik ~/.ssh/id_rsa.pub ke dan tambahkan ke ~/.ssh/authorized_keys node anggota di cluster.

  4. Anda sekarang harus dapat langsung masuk ke node anggota dari node pemimpin menggunakan ip pribadi.

    ssh <member private ip>
  5. Nonaktifkan strictHostKey Memeriksa dan mengaktifkan penerusan agen pada node pemimpin dengan menambahkan yang berikut ini ke file ~/.ssh/config pada node pemimpin:

    Host * ForwardAgent yes Host * StrictHostKeyChecking no
  6. Pada instans Amazon Linux 2, jalankan perintah berikut pada node pemimpin untuk memberikan izin yang benar ke file konfigurasi:

    chmod 600 ~/.ssh/config

Buat File Host

Pada node pemimpin, buat file host untuk mengidentifikasi node di cluster. File host harus memiliki entri untuk setiap node di cluster. Buat file ~/hosts dan tambahkan setiap node menggunakan ip pribadi sebagai berikut:

localhost slots=8 <private ip of node 1> slots=8 <private ip of node 2> slots=8

NCCLTes

catatan

Tes ini telah dijalankan menggunakan EFA versi 1.30.0 dan OFI NCCL Plugin 1.7.4.

Di bawah ini adalah bagian dari NCCL Pengujian yang disediakan oleh Nvidia untuk menguji fungsionalitas dan kinerja melalui beberapa node komputasi

Instans yang Didukung: P3dn, P4, P5

NCCLTransfer Pesan Tes Multi Node

Nccl_message_transfer adalah tes sederhana untuk memastikan bahwa Plugin berfungsi seperti yang diharapkan. NCCL OFI Tes memvalidasi fungsionalitas pembentukan NCCL koneksi dan transfer APIs data. Pastikan Anda menggunakan path lengkap ke mpirun seperti yang ditunjukkan pada contoh saat menjalankan NCCL aplikasi dengan. EFA Ubah parameter np dan N berdasarkan jumlah instance dan GPUs di cluster Anda. Untuk informasi lebih lanjut, lihat AWS OFINCCLdokumentasi.

Tes nccl_message_transfer berikut adalah untuk versi xx.x generik. CUDA Anda dapat menjalankan perintah untuk CUDA versi apa pun yang tersedia di EC2 instans Amazon Anda dengan mengganti CUDA versi dalam skrip.

$/opt/amazon/openmpi/bin/mpirun -n 2 -N 1 --hostfile hosts \ -x LD_LIBRARY_PATH=/usr/local/cuda-xx.x/efa/lib:/usr/local/cuda-xx.x/lib:/usr/local/cuda-xx.x/lib64:/usr/local/cuda-xx.x:$LD_LIBRARY_PATH \ --mca btl tcp,self --mca btl_tcp_if_exclude lo,docker0 --bind-to none \ opt/aws-ofi-nccl/tests/nccl_message_transfer

Output Anda akan terlihat seperti berikut ini. Anda dapat memeriksa output untuk melihat yang EFA sedang digunakan sebagai OFI penyedia.

INFO: Function: nccl_net_ofi_init Line: 1069: NET/OFI Selected Provider is efa (found 4 nics) INFO: Function: nccl_net_ofi_init Line: 1160: NET/OFI Using transport protocol SENDRECV INFO: Function: configure_ep_inorder Line: 261: NET/OFI Setting FI_OPT_EFA_SENDRECV_IN_ORDER_ALIGNED_128_BYTES not supported. INFO: Function: configure_nccl_proto Line: 227: NET/OFI Setting NCCL_PROTO to "simple" INFO: Function: main Line: 86: NET/OFI Process rank 1 started. NCCLNet device used on ip-172-31-13-179 is AWS Libfabric. INFO: Function: main Line: 91: NET/OFI Received 4 network devices INFO: Function: main Line: 111: NET/OFI Network supports communication using CUDA buffers. Dev: 3 INFO: Function: main Line: 118: NET/OFI Server: Listening on dev 3 INFO: Function: main Line: 131: NET/OFI Send connection request to rank 1 INFO: Function: main Line: 173: NET/OFI Send connection request to rank 0 INFO: Function: main Line: 137: NET/OFI Server: Start accepting requests INFO: Function: main Line: 141: NET/OFI Successfully accepted connection from rank 1 INFO: Function: main Line: 145: NET/OFI Send 8 requests to rank 1 INFO: Function: main Line: 179: NET/OFI Server: Start accepting requests INFO: Function: main Line: 183: NET/OFI Successfully accepted connection from rank 0 INFO: Function: main Line: 187: NET/OFI Rank 1 posting 8 receive buffers INFO: Function: main Line: 161: NET/OFI Successfully sent 8 requests to rank 1 INFO: Function: main Line: 251: NET/OFI Got completions for 8 requests for rank 0 INFO: Function: main Line: 251: NET/OFI Got completions for 8 requests for rank 1
Uji NCCL Kinerja Multi-node pada P4D.24xlarge

Untuk memeriksa NCCL Kinerja denganEFA, jalankan uji NCCL Kinerja standar yang tersedia di Repo NCCL -Tests resmi. DLAMIDilengkapi dengan tes ini yang sudah dibangun untuk CUDA XX.X. Anda juga dapat menjalankan skrip Anda sendiri. EFA

Saat membuat skrip Anda sendiri, lihat panduan berikut:

  • Gunakan jalur lengkap ke mpirun seperti yang ditunjukkan pada contoh saat menjalankan NCCL aplikasi dengan. EFA

  • Ubah params np dan N berdasarkan jumlah instance dan GPUs di cluster Anda.

  • Tambahkan INFO tanda NCCL _ DEBUG = dan pastikan bahwa log menunjukkan EFA penggunaan sebagai “Penyedia Terpilih adalahEFA”.

  • Mengatur Lokasi Log Pelatihan untuk mengurai validasi

    TRAINING_LOG="testEFA_$(date +"%N").log"

Gunakan perintah watch nvidia-smi pada salah satu node anggota untuk memantau GPU penggunaan. watch nvidia-smiPerintah berikut adalah untuk versi CUDA xx.x generik dan bergantung pada Sistem Operasi instance Anda. Anda dapat menjalankan perintah untuk CUDA versi apa pun yang tersedia di EC2 instans Amazon Anda dengan mengganti CUDA versi dalam skrip.

  • Amazon Linux 2:

    $ /opt/amazon/openmpi/bin/mpirun -n 16 -N 8 \ -x NCCL_DEBUG=INFO --mca pml ^cm \ -x LD_LIBRARY_PATH=/usr/local/cuda-xx.x/efa/lib:/usr/local/cuda-xx.x/lib:/usr/local/cuda-xx.x/lib64:/usr/local/cuda-xx.x:/opt/amazon/efa/lib64:/opt/amazon/openmpi/lib64:$LD_LIBRARY_PATH \ --hostfile hosts --mca btl tcp,self --mca btl_tcp_if_exclude lo,docker0 --bind-to none \ /usr/local/cuda-xx.x/efa/test-cuda-xx.x/all_reduce_perf -b 8 -e 1G -f 2 -g 1 -c 1 -n 100 | tee ${TRAINING_LOG}
  • Ubuntu 20.04:

    $ /opt/amazon/openmpi/bin/mpirun -n 16 -N 8 \ -x NCCL_DEBUG=INFO --mca pml ^cm \ -x LD_LIBRARY_PATH=/usr/local/cuda-xx.x/efa/lib:/usr/local/cuda-xx.x/lib:/usr/local/cuda-xx.x/lib64:/usr/local/cuda-xx.x:/opt/amazon/efa/lib:/opt/amazon/openmpi/lib:$LD_LIBRARY_PATH \ --hostfile hosts --mca btl tcp,self --mca btl_tcp_if_exclude lo,docker0 --bind-to none \ /usr/local/cuda-xx.x/efa/test-cuda-xx.x/all_reduce_perf -b 8 -e 1G -f 2 -g 1 -c 1 -n 100 | tee ${TRAINING_LOG}

Output Anda akan terlihat seperti berikut:

# nThread 1 nGpus 1 minBytes 8 maxBytes 1073741824 step: 2(factor) warmup iters: 5 iters: 100 agg iters: 1 validation: 1 graph: 0 # # Using devices # Rank 0 Group 0 Pid 9591 on ip-172-31-4-37 device 0 [0x10] NVIDIA A100-SXM4-40GB # Rank 1 Group 0 Pid 9592 on ip-172-31-4-37 device 1 [0x10] NVIDIA A100-SXM4-40GB # Rank 2 Group 0 Pid 9593 on ip-172-31-4-37 device 2 [0x20] NVIDIA A100-SXM4-40GB # Rank 3 Group 0 Pid 9594 on ip-172-31-4-37 device 3 [0x20] NVIDIA A100-SXM4-40GB # Rank 4 Group 0 Pid 9595 on ip-172-31-4-37 device 4 [0x90] NVIDIA A100-SXM4-40GB # Rank 5 Group 0 Pid 9596 on ip-172-31-4-37 device 5 [0x90] NVIDIA A100-SXM4-40GB # Rank 6 Group 0 Pid 9597 on ip-172-31-4-37 device 6 [0xa0] NVIDIA A100-SXM4-40GB # Rank 7 Group 0 Pid 9598 on ip-172-31-4-37 device 7 [0xa0] NVIDIA A100-SXM4-40GB # Rank 8 Group 0 Pid 10216 on ip-172-31-13-179 device 0 [0x10] NVIDIA A100-SXM4-40GB # Rank 9 Group 0 Pid 10217 on ip-172-31-13-179 device 1 [0x10] NVIDIA A100-SXM4-40GB # Rank 10 Group 0 Pid 10218 on ip-172-31-13-179 device 2 [0x20] NVIDIA A100-SXM4-40GB # Rank 11 Group 0 Pid 10219 on ip-172-31-13-179 device 3 [0x20] NVIDIA A100-SXM4-40GB # Rank 12 Group 0 Pid 10220 on ip-172-31-13-179 device 4 [0x90] NVIDIA A100-SXM4-40GB # Rank 13 Group 0 Pid 10221 on ip-172-31-13-179 device 5 [0x90] NVIDIA A100-SXM4-40GB # Rank 14 Group 0 Pid 10222 on ip-172-31-13-179 device 6 [0xa0] NVIDIA A100-SXM4-40GB # Rank 15 Group 0 Pid 10223 on ip-172-31-13-179 device 7 [0xa0] NVIDIA A100-SXM4-40GB ip-172-31-4-37:9591:9591 [0] NCCL INFO Bootstrap : Using ens32:172.31.4.37 ip-172-31-4-37:9591:9591 [0] NCCL INFO NET/Plugin: Failed to find ncclCollNetPlugin_v6 symbol. ip-172-31-4-37:9591:9591 [0] NCCL INFO NET/Plugin: Failed to find ncclCollNetPlugin symbol (v4 or v5). ip-172-31-4-37:9591:9591 [0] NCCL INFO cudaDriverVersion 12020 NCCL version 2.18.5+cuda12.2 ... ip-172-31-4-37:9024:9062 [6] NCCL INFO NET/OFI Initializing aws-ofi-nccl 1.7.4-aws ip-172-31-4-37:9020:9063 [2] NCCL INFO NET/OFI Using CUDA runtime version 11070 ip-172-31-4-37:9020:9063 [2] NCCL INFO NET/OFI Configuring AWS-specific options ip-172-31-4-37:9024:9062 [6] NCCL INFO NET/OFI Using CUDA runtime version 11070 ip-172-31-4-37:9024:9062 [6] NCCL INFO NET/OFI Configuring AWS-specific options ip-172-31-4-37:9024:9062 [6] NCCL INFO NET/OFI Setting provider_filter to efa ip-172-31-4-37:9024:9062 [6] NCCL INFO NET/OFI Setting FI_EFA_FORK_SAFE environment variable to 1 ip-172-31-4-37:9024:9062 [6] NCCL INFO NET/OFI Disabling NVLS support due to NCCL version 21602 ip-172-31-4-37:9020:9063 [2] NCCL INFO NET/OFI Setting provider_filter to efa ip-172-31-4-37:9020:9063 [2] NCCL INFO NET/OFI Setting FI_EFA_FORK_SAFE environment variable to 1 ip-172-31-4-37:9020:9063 [2] NCCL INFO NET/OFI Disabling NVLS support due to NCCL version 21602 ip-172-31-4-37:9020:9063 [2] NCCL INFO NET/OFI Running on p4d.24xlarge platform, Setting NCCL_TOPO_FILE environment variable to /opt/aws-ofi-nccl/share/aws-ofi-nccl/xml/p4d-24xl-topo.xml ... -----------------------------some output truncated----------------------------------- # out-of-place in-place # size count type redop root time algbw busbw #wrong time algbw busbw #wrong # (B) (elements) (us) (GB/s) (GB/s) (us) (GB/s) (GB/s) 0 0 float sum -1 11.02 0.00 0.00 0 11.04 0.00 0.00 0 0 0 float sum -1 11.01 0.00 0.00 0 11.00 0.00 0.00 0 0 0 float sum -1 11.02 0.00 0.00 0 11.02 0.00 0.00 0 0 0 float sum -1 11.01 0.00 0.00 0 11.00 0.00 0.00 0 0 0 float sum -1 11.02 0.00 0.00 0 11.02 0.00 0.00 0 256 4 float sum -1 632.7 0.00 0.00 0 628.2 0.00 0.00 0 512 8 float sum -1 627.4 0.00 0.00 0 629.6 0.00 0.00 0 1024 16 float sum -1 632.2 0.00 0.00 0 631.7 0.00 0.00 0 2048 32 float sum -1 631.0 0.00 0.00 0 634.2 0.00 0.00 0 4096 64 float sum -1 623.3 0.01 0.01 0 633.6 0.01 0.01 0 8192 128 float sum -1 635.1 0.01 0.01 0 633.5 0.01 0.01 0 16384 256 float sum -1 634.8 0.03 0.02 0 637.0 0.03 0.02 0 32768 512 float sum -1 647.9 0.05 0.05 0 636.8 0.05 0.05 0 65536 1024 float sum -1 658.9 0.10 0.09 0 667.0 0.10 0.09 0 131072 2048 float sum -1 671.9 0.20 0.18 0 662.9 0.20 0.19 0 262144 4096 float sum -1 692.1 0.38 0.36 0 685.1 0.38 0.36 0 524288 8192 float sum -1 715.3 0.73 0.69 0 696.6 0.75 0.71 0 1048576 16384 float sum -1 734.6 1.43 1.34 0 729.2 1.44 1.35 0 2097152 32768 float sum -1 785.9 2.67 2.50 0 794.5 2.64 2.47 0 4194304 65536 float sum -1 837.2 5.01 4.70 0 837.6 5.01 4.69 0 8388608 131072 float sum -1 929.2 9.03 8.46 0 931.4 9.01 8.44 0 16777216 262144 float sum -1 1773.6 9.46 8.87 0 1772.8 9.46 8.87 0 33554432 524288 float sum -1 2110.2 15.90 14.91 0 2116.1 15.86 14.87 0 67108864 1048576 float sum -1 2650.9 25.32 23.73 0 2658.1 25.25 23.67 0 134217728 2097152 float sum -1 3943.1 34.04 31.91 0 3945.9 34.01 31.89 0 268435456 4194304 float sum -1 7216.5 37.20 34.87 0 7178.6 37.39 35.06 0 536870912 8388608 float sum -1 13680 39.24 36.79 0 13676 39.26 36.80 0 [ 1073741824 16777216 float sum -1 25645 41.87 39.25 0 25497 42.11 39.48 0 ] <- Used For Benchmark ... # Out of bounds values : 0 OK # Avg bus bandwidth : 7.46044

Untuk memvalidasi bahwa EFA tes mengembalikan hasil yang valid, silakan gunakan tes berikut untuk mengonfirmasi:

  • Dapatkan jenis instance menggunakan EC2 Metadata Instance:

    TOKEN=$(curl -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 21600") INSTANCE_TYPE=$(curl -H "X-aws-ec2-metadata-token: $TOKEN" -v http://169.254.169.254/latest/meta-data/instance-type)
  • Jalankan Tes Kinerja

  • Mengatur Parameter Berikut

    CUDA_VERSION CUDA_RUNTIME_VERSION NCCL_VERSION
  • Validasi Hasil seperti yang ditunjukkan:

    RETURN_VAL=`echo $?` if [ ${RETURN_VAL} -eq 0 ]; then # Information on how the version come from logs # # ip-172-31-27-205:6427:6427 [0] NCCL INFO cudaDriverVersion 12020 # NCCL version 2.16.2+cuda11.8 # ip-172-31-27-205:6427:6820 [0] NCCL INFO NET/OFI Initializing aws-ofi-nccl 1.7.1-aws # ip-172-31-27-205:6427:6820 [0] NCCL INFO NET/OFI Using CUDA runtime version 11060 # cudaDriverVersion 12020 --> This is max supported cuda version by nvidia driver # NCCL version 2.16.2+cuda11.8 --> This is NCCL version compiled with cuda version # Using CUDA runtime version 11060 --> This is selected cuda version # Validation of logs grep "NET/OFI Using CUDA runtime version ${CUDA_RUNTIME_VERSION}" ${TRAINING_LOG} || { echo "Runtime cuda text not found"; exit 1; } grep "NET/OFI Initializing aws-ofi-nccl" ${TRAINING_LOG} || { echo "aws-ofi-nccl is not working, please check if it is installed correctly"; exit 1; } grep "NET/OFI Configuring AWS-specific options" ${TRAINING_LOG} || { echo "AWS-specific options text not found"; exit 1; } grep "Using network AWS Libfabric" ${TRAINING_LOG} || { echo "AWS Libfabric text not found"; exit 1; } grep "busbw" ${TRAINING_LOG} || { echo "busbw text not found"; exit 1; } grep "Avg bus bandwidth " ${TRAINING_LOG} || { echo "Avg bus bandwidth text not found"; exit 1; } grep "NCCL version $NCCL_VERSION" ${TRAINING_LOG} || { echo "Text not found: NCCL version $NCCL_VERSION"; exit 1; } if [[ ${INSTANCE_TYPE} == "p4d.24xlarge" ]]; then grep "NET/AWS Libfabric/0/GDRDMA" ${TRAINING_LOG} || { echo "Text not found: NET/AWS Libfabric/0/GDRDMA"; exit 1; } grep "NET/OFI Selected Provider is efa (found 4 nics)" ${TRAINING_LOG} || { echo "Selected Provider is efa text not found"; exit 1; } grep "aws-ofi-nccl/xml/p4d-24xl-topo.xml" ${TRAINING_LOG} || { echo "Topology file not found"; exit 1; } elif [[ ${INSTANCE_TYPE} == "p4de.24xlarge" ]]; then grep "NET/AWS Libfabric/0/GDRDMA" ${TRAINING_LOG} || { echo "Avg bus bandwidth text not found"; exit 1; } grep "NET/OFI Selected Provider is efa (found 4 nics)" ${TRAINING_LOG} || { echo "Avg bus bandwidth text not found"; exit 1; } grep "aws-ofi-nccl/xml/p4de-24xl-topo.xml" ${TRAINING_LOG} || { echo "Topology file not found"; exit 1; } elif [[ ${INSTANCE_TYPE} == "p5.48xlarge" ]]; then grep "NET/AWS Libfabric/0/GDRDMA" ${TRAINING_LOG} || { echo "Avg bus bandwidth text not found"; exit 1; } grep "NET/OFI Selected Provider is efa (found 32 nics)" ${TRAINING_LOG} || { echo "Avg bus bandwidth text not found"; exit 1; } grep "aws-ofi-nccl/xml/p5.48xl-topo.xml" ${TRAINING_LOG} || { echo "Topology file not found"; exit 1; } elif [[ ${INSTANCE_TYPE} == "p3dn.24xlarge" ]]; then grep "NET/OFI Selected Provider is efa (found 4 nics)" ${TRAINING_LOG} || { echo "Selected Provider is efa text not found"; exit 1; } fi echo "***************************** check_efa_nccl_all_reduce passed for cuda version ${CUDA_VERSION} *****************************" else echo "***************************** check_efa_nccl_all_reduce failed for cuda version ${CUDA_VERSION} *****************************" fi
  • Untuk mengakses data benchmark, kita dapat mengurai baris terakhir dari output tabel dari tes Multi Node all_reduce:

    benchmark=$(sudo cat ${TRAINING_LOG} | grep '1073741824' | tail -n1 | awk -F " " '{{print $12}}' | sed 's/ //' | sed 's/ 5e-07//') if [[ -z "${benchmark}" ]]; then echo "benchmark variable is empty" exit 1 fi echo "Benchmark throughput: ${benchmark}"