Cookie の設定を選択する

当社は、当社のサイトおよびサービスを提供するために必要な必須 Cookie および類似のツールを使用しています。当社は、パフォーマンス Cookie を使用して匿名の統計情報を収集することで、お客様が当社のサイトをどのように利用しているかを把握し、改善に役立てています。必須 Cookie は無効化できませんが、[カスタマイズ] または [拒否] をクリックしてパフォーマンス Cookie を拒否することはできます。

お客様が同意した場合、AWS および承認された第三者は、Cookie を使用して便利なサイト機能を提供したり、お客様の選択を記憶したり、関連する広告を含む関連コンテンツを表示したりします。すべての必須ではない Cookie を受け入れるか拒否するには、[受け入れる] または [拒否] をクリックしてください。より詳細な選択を行うには、[カスタマイズ] をクリックしてください。

StartImportLabelsTaskRun - AWS Glue
このページはお客様の言語に翻訳されていません。 翻訳のリクエスト

StartImportLabelsTaskRun

Enables you to provide additional labels (examples of truth) to be used to teach the machine learning transform and improve its quality. This API operation is generally used as part of the active learning workflow that starts with the StartMLLabelingSetGenerationTaskRun call and that ultimately results in improving the quality of your machine learning transform.

After the StartMLLabelingSetGenerationTaskRun finishes, AWS Glue machine learning will have generated a series of questions for humans to answer. (Answering these questions is often called 'labeling' in the machine learning workflows). In the case of the FindMatches transform, these questions are of the form, “What is the correct way to group these rows together into groups composed entirely of matching records?” After the labeling process is finished, users upload their answers/labels with a call to StartImportLabelsTaskRun. After StartImportLabelsTaskRun finishes, all future runs of the machine learning transform use the new and improved labels and perform a higher-quality transformation.

By default, StartMLLabelingSetGenerationTaskRun continually learns from and combines all labels that you upload unless you set Replace to true. If you set Replace to true, StartImportLabelsTaskRun deletes and forgets all previously uploaded labels and learns only from the exact set that you upload. Replacing labels can be helpful if you realize that you previously uploaded incorrect labels, and you believe that they are having a negative effect on your transform quality.

You can check on the status of your task run by calling the GetMLTaskRun operation.

Request Syntax

{ "InputS3Path": "string", "ReplaceAllLabels": boolean, "TransformId": "string" }

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

InputS3Path

The Amazon Simple Storage Service (Amazon S3) path from where you import the labels.

Type: String

Required: Yes

ReplaceAllLabels

Indicates whether to overwrite your existing labels.

Type: Boolean

Required: No

TransformId

The unique identifier of the machine learning transform.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: [\u0020-\uD7FF\uE000-\uFFFD\uD800\uDC00-\uDBFF\uDFFF\t]*

Required: Yes

Response Syntax

{ "TaskRunId": "string" }

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

TaskRunId

The unique identifier for the task run.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: [\u0020-\uD7FF\uE000-\uFFFD\uD800\uDC00-\uDBFF\uDFFF\t]*

Errors

For information about the errors that are common to all actions, see Common Errors.

EntityNotFoundException

A specified entity does not exist

HTTP Status Code: 400

InternalServiceException

An internal service error occurred.

HTTP Status Code: 500

InvalidInputException

The input provided was not valid.

HTTP Status Code: 400

OperationTimeoutException

The operation timed out.

HTTP Status Code: 400

ResourceNumberLimitExceededException

A resource numerical limit was exceeded.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

プライバシーサイト規約Cookie の設定
© 2025, Amazon Web Services, Inc. or its affiliates.All rights reserved.