Amazon Lookout for Vision コンソールの開始 - Amazon Lookout for Vision

サポート終了通知: 2025 年 10 月 31 日、 AWS は Amazon Lookout for Vision のサポートを終了します。2025 年 10 月 31 日以降、Lookout for Vision コンソールまたは Lookout for Vision リソースにアクセスできなくなります。詳細については、このブログ記事 を参照してください。

翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛盾がある場合、英語版が優先します。

Amazon Lookout for Vision コンソールの開始

開始の手引きを始める前に、「Amazon Lookout for Vision について」を読むことをお勧めします。

開始の手引きでは、サンプルの画像セグメンテーションモデルの使用と作成の方法を説明します。サンプルの画像分類モデルを作成する場合は、画像分類データセット を参照してください。

サンプルモデルをすぐに試してみたい場合は、サンプルのトレーニング画像とマスク画像を提供します。また、画像セグメンテーションマニフェストファイルを作成する Python スクリプトも提供します。マニフェストファイルを使用してプロジェクトのデータセットを作成すれば、データセット内の画像にラベルを付ける必要はありません。独自の画像を使用してモデルを作成する場合は、データセット内の画像にラベルを付ける必要があります。詳細については、「データセットの作成」を参照してください。

私たちが提供する画像は、通常のクッキーと異常クッキーのものです。異常クッキーは、クッキーの形状全体にひびが入っています。画像を使ってトレーニングしたモデルは、次の例に示すように、分類 (正常または異常) を予測し、異常な Cookie の欠陥の領域 (マスク) を検出します。

Chocolate chip cookie with a visible crack across its surface on a green background.

ステップ1: マニフェストファイルとアップロード画像を作成する

この手続きでは、Amazon Lookout for Vision ドキュメンテーションリポジトリをコンピュータに複製します。次に、Python (バージョン 3.7 以降) スクリプトを使用してマニフェストファイルを作成し、指定した Amazon S3 の場所にトレーニング画像とマスク画像をアップロードします。マニフェストファイルを使用してモデルを作成します。後で、ローカルリポジトリのテスト画像を使用してモデルを試します。

マニフェストファイルを作成して画像をアップロードするには
  1. Amazon Lookout for Vision をセットアップする」の手順に従って Amazon Lookout for Vision をセットアップします。必ず Python 用 AWS SDK をインストールしてください。

  2. Lookout for Vision を使用したい AWS リージョンで、S3 バケットを作成します。

  3. Amazon S3 バケットで、getting-started という名前のフォルダを作成します。

  4. Amazon S3 URI and Amazon リソースネーム (ARN) をメモします。これらを使用して権限をセットアップし、スクリプトを実行します。

  5. スクリプトを呼び出すユーザーに、s3:PutObject オペレーションを呼び出す権限があることを確かめてください。以下のポリシーを使用できます。権限を割り当てるには 権限の割り当て を参照してください。

    { "Version": "2012-10-17", "Statement": [{ "Sid": "Statement1", "Effect": "Allow", "Action": [ "s3:PutObject" ], "Resource": [ "arn:aws:s3::: ARN for S3 folder in step 4/*" ] }] }
  6. lookoutvision-access という名前のローカルプロファイルがあり、そのプロファイルユーザーが前のステップの権限を持っていることを確かめてください。詳細については、「ローカルコンピュータでのプロファイルの使用」を参照してください。

  7. zip ファイル getting-started.zip をダウンロードします。zip ファイルには、開始用データセットとセットアップスクリプトが含まれています。

  8. ファイル getting-started.zip を解凍します。

  9. コマンドプロンプトで、以下を行います:

    1. getting-started フォルダに移動します。

    2. 次のコマンドを実行してマニフェストファイルを作成し、ステップ 4 でメモした Amazon S3 パスにトレーニング画像と画像マスクをアップロードします。

      python getting_started.py S3-URI-from-step-4
    3. スクリプトが完了したら、スクリプトで Create dataset using manifest file: の後に表示される train.manifest ファイルへのパスをメモします。パスは s3://path to getting started folder/manifests/train.manifest に似たものとなるはずです。

ステップ 2: ロールを作成する

この手続きでは、前に Amazon S3 バケットにアップロードした画像とマニフェストファイルを使ってプロジェクトとデータセットを作成します。次に、モデルを作成し、モデルトレーニングの評価結果を表示します。

データセットは開始用マニフェストファイルから作成するため、データセットの画像にラベルを付ける必要はありません。独自の画像を使用してデータセットを作成する場合、画像にラベルを付ける必要があります。詳細については、「画像のラベリング」を参照してください。

重要

課金はモデルのトレーニングが完了するごとに行われます。

モデルを作成するには
  1. https://console.aws.amazon.com/lookoutvision/ で Amazon Lookout for Vision コンソールを開きます。

  2. ステップ1: マニフェストファイルとアップロード画像を作成する で Amazon S3 バケットを作成したリージョンと同じ AWS リージョンに存在することを確かめます。リージョンを変更するには、ナビゲーションバーで、現在表示されているリージョン名を選択します。切り替え先となるリージョンを選択します。

  3. [開始する] を選択します。

    Amazon Lookout for Vision service description and Get started button highlighted.
  4. [プロジェクト] セクションで、[プロジェクトを作成] を選択します。

    Dashboard overview with empty statistics and a "Create project" button highlighted.
  5. プロジェクトを作成」ページで、以下を行います:

    1. [プロジェクト名]getting-started を入力します。

    2. [プロジェクトを作成] を選択します。

    Project creation interface for anomaly detection model with project name input field.
  6. [動作方法] セクションで、[データセットを作成] を選択します。

    Getting-started info page showing steps to prepare dataset and train model.
  7. データセットを作成する」ページで、次の操作を行います。

    1. [シングルデータセットを作成] を選択します。

    2. [画像ソース構成] セクションで、[SageMaker Ground Truth によってラベル付けされた画像をインポート] を選択します。

    3. [.manifest ファイルの場所] には、ステップ1: マニフェストファイルとアップロード画像を作成する のステップ 6.c. でメモしたマニフェストファイルの Amazon S3 の場所を入力します。Amazon S3 の場所は s3://path to getting started folder/manifests/train.manifest のようになっているはずです

    4. [データセットを作成] を選択します。

    Dataset configuration options with single dataset creation selected and image import methods.
  8. プロジェクト詳細ページの [画像] セクションに、データセットの画像が表示されます。各データセット画像の分類と画像セグメンテーション情報 (マスクラベルと異常ラベル) を表示できます。また、画像を検索したり、ラベリングステータス (ラベル付き/ラベルなし) で画像をフィルターしたり、割り当てられた異常ラベルで画像をフィルターしたりすることもできます。

    Image labeling interface showing three chocolate chip cookies with cracks, labeled as anomalies.
  9. プロジェクト詳細ページで、[モデルをトレーニング] を選択します。

    Getting-started page with instructions to prepare datasets and a Train model button.
  10. モデルをトレーニングする」詳細ページで、[モデルをトレーニング] を選択します。

  11. モデルをトレーニングしますか?」ダイアログボックスで、[モデルをトレーニング] を選択します。

  12. プロジェクトの「モデル」ページでは、トレーニングが開始されたことを確認できます。モデルの現在のステータスは、「ステータス」列に表示されます。モデルのトレーニングには 30 分ほどかかります。ステータスが「トレーニング完了」に変わると、トレーニングは正常に終了します。

  13. トレーニングが終了したら、「モデル」ページで [モデル 1] を選択します。

    Models page showing one model named Model 1 with Training complete status.
  14. モデルの詳細ページの「パフォーマンスメトリクス」タブに評価結果が表示されます。次のメトリクスを参照できます:

    • モデルによって行われた分類予測の全体的モデルパフォーマンス指標 (精度再現率F1 スコア)。

      Model performance metrics showing 100% precision, recall, and F1 score for 20 test images.
    • テスト画像に含まれる異常ラベルのパフォーマンス指標 (平均 IoU、F1 スコア)

      Table showing performance metrics for "cracked" label with 10 test images, 86.1% F1 score, and 74.53% Average IoU.
    • テスト画像に対する予測 (分類、セグメンテーションマスク、異常ラベル)

      Three chocolate chip cookies on dark surfaces, two with green anomalies labeled as "cracked".

    モデルトレーニングは非決定的であるため、評価結果がこのページに表示されている結果と異なる場合があります。詳細については、「Amazon Lookout for Vision モデルの改善」を参照してください。

ステップ 3: モデルを開始する

このステップでは、モデルのホスティングを開始して、画像を分析できる状態にします。詳細については、「トレーニング済みの Amazon Lookout for Vision モデルの実行」を参照してください。

注記

モデルの稼働時間に応じて課金されます。ステップ 5: モデルを停止する でモデルを停止します。

モデルを開始します。
  1. モデルの詳細ページで [モデルを使用] を選択し、[API をクラウドに統合] を選択します。

    Model 1 page with "Use model" button and dropdown option "Integrate API to the cloud".
  2. [AWS CLI コマンド] セクションで、start-model AWS CLI コマンドをコピーします。

    AWS CLI command to start a Lookout for Vision model with project and version details.
  3. AWS CLI が Amazon Lookout for Vision コンソールを使用しているのと同じ AWS リージョンで実行するように構成されていることを確かめてください。AWS CLI が使用する AWS リージョンを変更するには、  のインストール AWS SDKS を参照してください。

  4. コマンドプロンプトで、start-model コマンドの入力によりモデルを開始します。lookoutvision プロファイルを使用して認証情報を取得する場合は、--profile lookoutvision-access パラメーターを追加します。例:

    aws lookoutvision start-model \ --project-name getting-started \ --model-version 1 \ --min-inference-units 1 \ --profile lookoutvision-access

    クラスターが作成されると、次の出力が表示されます:

    { "Status": "STARTING_HOSTING" }
  5. コンソールに戻り、ナビゲーションペインの [モデル] を選択します。

    AWSLookout for Vision console showing CLI commands to start model and detect anomalies.
  6. [ステータス] 列でモデル (Model 1) のステータスが「ホスト済み」と表示されるまで待ってください。以前にプロジェクトでモデルをトレーニングしたことがある場合は、最新のモデルバージョンが完了するまでお待ちください。

    Model 1 with Hosted status, 100% precision and recall, created on September 21st, 2022.

ステップ 4: 画像を分析する

このステップでは、4 つのモデルで画像を分析します。お使いの PC 上の Lookout for Vision ドキュメンテーションリポジトリ内の開始用 test-images フォルダーで使えるサンプル画像を提供しています。詳細については、「画像内の異常を検出する」を参照してください。

クエリを分析するには
  1. モデル」ページで、[モデル 1] を選択します。

    Models table showing Model 1 with Hosted status, creation date, and 100% precision and recall.
  2. モデルの詳細ページで [モデルを使用] を選択してから [API をクラウドに統合] を選択します。

    Model 1 page with "Use model" button and dropdown option "Integrate API to the cloud".
  3. [AWS CLI コマンド] セクションで、detect-anomalies AWS CLI コマンドをコピーします。

    AWS CLI command for detect-anomalies with parameters for project, model version, and image file.
  4. コマンドプロンプトで、前のステップの detect-anomalies コマンドを入力して異常画像を分析します。--body パラメータには、PC の開始用 test-images フォルダーにある異常画像を指定します。lookoutvision プロファイルを使用して認証情報を取得する場合は、--profile lookoutvision-access パラメータを追加します。例:

    aws lookoutvision detect-anomalies \ --project-name getting-started \ --model-version 1 \ --content-type image/jpeg \ --body /path/to/test-images/test-anomaly-1.jpg \ --profile lookoutvision-access

    出力は次の例に類似したものになります:

    { "DetectAnomalyResult": { "Source": { "Type": "direct" }, "IsAnomalous": true, "Confidence": 0.983975887298584, "Anomalies": [ { "Name": "background", "PixelAnomaly": { "TotalPercentageArea": 0.9818974137306213, "Color": "#FFFFFF" } }, { "Name": "cracked", "PixelAnomaly": { "TotalPercentageArea": 0.018102575093507767, "Color": "#23A436" } } ], "AnomalyMask": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAMACA......" } }
  5. 出力について、以下の点に注意してください:

    • IsAnomalous は予測分類のブール値です。画像が異常な場合 true で、そうでない場合 false となります。

    • Confidence は、予測での Amazon Lookout for Vision の信頼度を表す浮動小数点値であり、0 が最低、1 が最高となります。

    • Anomalies は、画像内で見つかった異常のリストです。 Name は異常ラベルです。 PixelAnomaly は異常の領域の合計パーセンテージ (TotalPercentageArea) と異常ラベルの色 (Color) を含んでいます。リストには、画像で見つかった異常以外の領域に及ぶ「バックグラウンド」異常も含まれています。

    • AnomalyMask は、分析された画像上の異常の位置を示すマスク画像です。

    次の例のように、レスポンス内の情報を使って、分析された画像と異常マスクを融合させたものを表示できます。サンプルコードについては、「分類とセグメンテーションの情報の表示」を参照してください。

    Chocolate chip cookie with green segmentation highlighting cracked areas, labeled as anomalous.
  6. コマンドプロンプトで、開始用 test-images フォルダーにある正常の画像を分析します。lookoutvision プロファイルを使用して認証情報を取得する場合は、--profile lookoutvision-access パラメータを追加します。例:

    aws lookoutvision detect-anomalies \ --project-name getting-started \ --model-version 1 \ --content-type image/jpeg \ --body /path/to/test-images/test-normal-1.jpg \ --profile lookoutvision-access

    出力は次の例に類似したものになります:

    { "DetectAnomalyResult": { "Source": { "Type": "direct" }, "IsAnomalous": false, "Confidence": 0.9916400909423828, "Anomalies": [ { "Name": "background", "PixelAnomaly": { "TotalPercentageArea": 1.0, "Color": "#FFFFFF" } } ], "AnomalyMask": "iVBORw0KGgoAAAANSUhEUgAAAkAAAA....." } }
  7. 出力では、IsAnomalous に対する false 値によって画像を異常なしと分類することに注意してください。Confidence を分類の信頼度を判断するのに役立ててください。また、Anomalies 配列には background 異常ラベルしか付いていません。

ステップ 5: モデルを停止する

このステップでは、モデルのホスティングを作成します。モデルの実行時間に応じて課金されます。モデルを使用していない場合は、停止できます。モデルは次に必要な時に再開できます。詳細については、「Amazon Lookout for Vision モデルの開始」を参照してください。

モデルを停止するには
  1. ナビゲーションペインで、[モデル] を選択します。

    AWSLookout for Vision console showing CLI commands to start model and detect anomalies.
  2. モデル」ページで、[モデル 1] を選択します。

    Models table showing Model 1 with Hosted status, creation date, and 100% precision and recall.
  3. モデルの詳細ページで [モデルを使用] を選択してから [API をクラウドに統合] を選択します。

    Model 1 page with "Use model" button and dropdown option "Integrate API to the cloud".
  4. [AWS CLI コマンド] セクションで、stop-model AWS CLI コマンドをコピーします。

    Copy button icon next to AWS CLI command for stopping a Lookout for Vision model.
  5. コマンドプロンプトで、前のステップから stop-model AWS CLI コマンドを入力してモデルを停止します。lookoutvision プロファイルを使用して認証情報を取得する場合は、--profile lookoutvision-access パラメーターを追加します。例:

    aws lookoutvision stop-model \ --project-name getting-started \ --model-version 1 \ --profile lookoutvision-access

    呼び出しが完了すると、次の出力が表示されます:

    { "Status": "STOPPING_HOSTING" }
  6. コンソールで戻り、左ナビゲーションページで [モデル] を選択します。

  7. ステータス」列のモデルのステータスが「トレーニング完了」の場合、このモデルは停止しています。

次のステップ

独自の画像によりモデルを作成する準備ができたら、プロジェクトを作成します の手引きに従って開始します。手引きには、Amazon Lookout for Vision コンソールと AWS SDK によりモデルを作成するステップが含まれています。

他のサンプルデータセットを試してみたい場合は、サンプルのコードおよびデータセット を参照してください。