쿠키 기본 설정 선택

당사는 사이트와 서비스를 제공하는 데 필요한 필수 쿠키 및 유사한 도구를 사용합니다. 고객이 사이트를 어떻게 사용하는지 파악하고 개선할 수 있도록 성능 쿠키를 사용해 익명의 통계를 수집합니다. 필수 쿠키는 비활성화할 수 없지만 '사용자 지정' 또는 ‘거부’를 클릭하여 성능 쿠키를 거부할 수 있습니다.

사용자가 동의하는 경우 AWS와 승인된 제3자도 쿠키를 사용하여 유용한 사이트 기능을 제공하고, 사용자의 기본 설정을 기억하고, 관련 광고를 비롯한 관련 콘텐츠를 표시합니다. 필수가 아닌 모든 쿠키를 수락하거나 거부하려면 ‘수락’ 또는 ‘거부’를 클릭하세요. 더 자세한 내용을 선택하려면 ‘사용자 정의’를 클릭하세요.

Autotune - Amazon SageMaker
이 페이지는 귀하의 언어로 번역되지 않았습니다. 번역 요청

Autotune

A flag to indicate if you want to use Autotune to automatically find optimal values for the following fields:

  • ParameterRanges: The names and ranges of parameters that a hyperparameter tuning job can optimize.

  • ResourceLimits: The maximum resources that can be used for a training job. These resources include the maximum number of training jobs, the maximum runtime of a tuning job, and the maximum number of training jobs to run at the same time.

  • TrainingJobEarlyStoppingType: A flag that specifies whether or not to use early stopping for training jobs launched by a hyperparameter tuning job.

  • RetryStrategy: The number of times to retry a training job.

  • Strategy: Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training jobs that it launches.

  • ConvergenceDetected: A flag to indicate that Automatic model tuning (AMT) has detected model convergence.

Contents

Mode

Set Mode to Enabled if you want to use Autotune.

Type: String

Valid Values: Enabled

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

프라이버시사이트 이용 약관쿠키 기본 설정
© 2025, Amazon Web Services, Inc. 또는 계열사. All rights reserved.