Amazon Forecast 不再向新买家开放。Amazon Forecast 的现有客户可以继续照常使用该服务。了解更多
本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
预定义数据集域和数据集类型
要训练预测器,请创建一个或多个数据集,将其添加到一个数据集组,然后提供该数据集组以进行训练。
对于您创建的每个数据集,您将一个数据集域和一个数据集类型相关联。数据集域 为常见使用场景指定预定义的数据集架构,不影响模型算法或超参数。
Amazon Forecast 支持以下数据集域:
-
RETAIL 域 – 用于零售需求预测
-
INVENTORY_PLANNING 域 – 用于供应链和库存规划
-
EC2 容量域— 用于预测亚马逊弹性计算云 (Amazon EC2) 的容量
-
WORK_FORCE 域 – 用于劳动力规划
-
WEB_TRAFFIC 域 – 用于估计未来的 Web 流量
-
METRICS 域 – 用于预测指标,如收入和现金流
-
CUSTOM 域 – 用于所有其他类型的时间序列预测
每个域都可以有一到三个数据集类型。您为域创建的数据集类型基于您拥有的数据的类型和要包含在训练中的内容。
每个域都需要一个目标时间序列数据集,并且可选支持相关时间序列和项目元数据数据集类型。
数据集类型为:
-
目标时间序列 – 唯一必需的数据集类型。此类型定义您要为其生成预测的目标字段。例如,如果要预测一组产品的销售额,您必须为要预测的每个产品创建历史时间序列数据的数据集。同样,您可以为可能想要预测的指标(例如收入、现金流和销售额)创建目标时间序列数据集。
-
相关时间序列 – 与目标时间序列数据相关的时间序列数据。例如,价格与产品销售数据相关,因此您可以将其作为相关时间序列提供。
-
项目元数据 – 适用于目标时间序列数据的元数据。例如,如果您预测特定产品的销售额,则该产品的属性(例如品牌、颜色和流派)将成为项目元数据的一部分。在预测 EC2 实例 EC2 容量时,元数据可能包括实例类型的 CPU 和内存。
对于每个数据集类型,您的输入数据必须包含某些必填字段。您还可以包含 Amazon Forecast 建议您包含的可选字段。
以下示例演示如何选择数据集域和相应的数据集类型。
例 示例 1:RETAIL 域中的数据集类型
如果您是对预测商品需求感兴趣的零售商,则可以在 RETAIL 域中创建以下数据集:
-
目标时间序列是每个商品(零售商出售的每个产品)的历史时间序列需求(销售)的必需数据集。在 RETAIL 域中,此数据集类型要求数据集包含
item_id
、timestamp
和demand
字段。demand
字段是预测目标,并且通常是零售商在某个特定周或日内出售的商品的数量。 -
(可选)相关时间序列类型的数据集。在 RETAIL 域中,此类型可包含可选但建议的时间序列信息,例如
price
、inventory_onhand
和webpage_hits
。 -
(可选)项目元数据类型的数据集。在 RETAIL 域中,Amazon Forecast 建议提供与您在目标时间序列中提供的商品相关的元数据信息,如
brand
、color
、category
和genre
。
例 示例 2:METRICS 域中的数据集类型
如果您想预测组织的关键指标(例如收入、销售额和现金流),可以向 Amazon Forecast 提供以下数据集:
-
为要预测的指标提供历史时间序列数据的目标时间序列数据集。如果您的兴趣是预测您组织中所有业务部门的收入,您可以使用
metric
、business unit
和metric_value
字段创建target time series
数据集。 -
如果您有针对不需要的每个指标的任何元数据(如
category
或location
),则可以提供相关时间序列和项目元数据类型的数据集。
您至少必须提供一个目标时间序列数据集,以便 Forecast 为您的目标指标生成预测。
例 示例 3:CUSTOM 域中的数据集类型
您的预测应用程序的训练数据可能不适合任何 Amazon Forecast 域。在这种情况下,请选择 CUSTOM 域。您必须提供目标时间序列数据集,但可以添加您自己的自定义字段。
入门练习预测了某个客户端的用电量。用电量训练数据不适合任何数据集域,因此我们使用了 CUSTOM 域。在该练习中,我们仅使用一个数据集类型 - 目标时间序列类型。我们将数据字段映射到数据集类型所需的最少数量的字段。