搜索存储视频中的人脸
您可在集合中搜索与存储视频或流视频中检测到的人脸匹配的人脸。此节介绍搜索存储视频中的人脸。有关搜索流式传输视频中的人脸的信息,请参阅使用流视频事件。
必须先通过使用 IndexFaces 将您搜索的人脸索引到集合中。有关更多信息,请参阅 将人脸添加到集合。
Amazon Rekognition Video 人脸搜索将与其他分析 Amazon S3 存储桶中所存储视频的 Amazon Rekognition Video 操作执行相同的异步工作流程。要开始在存储视频中搜索人脸,请调用 StartFaceSearch 并提供要搜索的集合的 ID。Amazon Rekognition Video 会将视频分析的完成状态发布到 Amazon Simple Notification Service (Amazon SNS) 主题。如果视频分析成功,请调用 GetFaceSearch 来获取搜索结果。有关启动视频分析和获取结果的详细信息,请参阅调用 Amazon Rekognition Video 操作。
以下过程演示如何在集合中搜索与视频中检测到的人脸匹配的人脸。此过程还演示了如何获取视频中匹配人员的跟踪数据。此过程在使用 Java 或 Python 分析存储在 Amazon S3 存储桶中的视频 (SDK)(使用 Amazon Simple Queue Service (Amazon SQS) 队列获取视频分析请求的完成状态)中的代码的基础上进行了扩展。
在视频中搜索匹配的人脸 (SDK)
-
创建集合。
-
将人脸索引到集合中。
-
执行使用 Java 或 Python 分析存储在 Amazon S3 存储桶中的视频 (SDK)。
-
将以下代码添加到您在步骤 3 中创建的类 VideoDetect
。
- Java
-
//Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.)
//Face collection search in video ==================================================================
private static void StartFaceSearchCollection(String bucket, String video, String collection) throws Exception{
NotificationChannel channel= new NotificationChannel()
.withSNSTopicArn(snsTopicArn)
.withRoleArn(roleArn);
StartFaceSearchRequest req = new StartFaceSearchRequest()
.withCollectionId(collection)
.withVideo(new Video()
.withS3Object(new S3Object()
.withBucket(bucket)
.withName(video)))
.withNotificationChannel(channel);
StartFaceSearchResult startPersonCollectionSearchResult = rek.startFaceSearch(req);
startJobId=startPersonCollectionSearchResult.getJobId();
}
//Face collection search in video ==================================================================
private static void GetFaceSearchCollectionResults() throws Exception{
GetFaceSearchResult faceSearchResult=null;
int maxResults=10;
String paginationToken=null;
do {
if (faceSearchResult !=null){
paginationToken = faceSearchResult.getNextToken();
}
faceSearchResult = rek.getFaceSearch(
new GetFaceSearchRequest()
.withJobId(startJobId)
.withMaxResults(maxResults)
.withNextToken(paginationToken)
.withSortBy(FaceSearchSortBy.TIMESTAMP)
);
VideoMetadata videoMetaData=faceSearchResult.getVideoMetadata();
System.out.println("Format: " + videoMetaData.getFormat());
System.out.println("Codec: " + videoMetaData.getCodec());
System.out.println("Duration: " + videoMetaData.getDurationMillis());
System.out.println("FrameRate: " + videoMetaData.getFrameRate());
System.out.println();
//Show search results
List<PersonMatch> matches=
faceSearchResult.getPersons();
for (PersonMatch match: matches) {
long milliSeconds=match.getTimestamp();
System.out.print("Timestamp: " + Long.toString(milliSeconds));
System.out.println(" Person number: " + match.getPerson().getIndex());
List <FaceMatch> faceMatches = match.getFaceMatches();
if (faceMatches != null) {
System.out.println("Matches in collection...");
for (FaceMatch faceMatch: faceMatches){
Face face=faceMatch.getFace();
System.out.println("Face Id: "+ face.getFaceId());
System.out.println("Similarity: " + faceMatch.getSimilarity().toString());
System.out.println();
}
}
System.out.println();
}
System.out.println();
} while (faceSearchResult !=null && faceSearchResult.getNextToken() != null);
}
在函数 main
中,将以下行:
StartLabelDetection(bucket, video);
if (GetSQSMessageSuccess()==true)
GetLabelDetectionResults();
替换为:
String collection="collection";
StartFaceSearchCollection(bucket, video, collection);
if (GetSQSMessageSuccess()==true)
GetFaceSearchCollectionResults();
- Java V2
-
此代码取自 AWS 文档 SDK 示例 GitHub 存储库。请在此处查看完整示例。
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rekognition.RekognitionClient;
import software.amazon.awssdk.services.rekognition.model.*;
import java.util.List;
/**
* Before running this Java V2 code example, set up your development
* environment, including your credentials.
*
* For more information, see the following documentation topic:
*
* https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html
*/
public class VideoDetectFaces {
private static String startJobId = "";
public static void main(String[] args) {
final String usage = """
Usage: <bucket> <video> <topicArn> <roleArn>
Where:
bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s
video - The name of video (for example, people.mp4).\s
topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s
roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s
""";
if (args.length != 4) {
System.out.println(usage);
System.exit(1);
}
String bucket = args[0];
String video = args[1];
String topicArn = args[2];
String roleArn = args[3];
Region region = Region.US_EAST_1;
RekognitionClient rekClient = RekognitionClient.builder()
.region(region)
.build();
NotificationChannel channel = NotificationChannel.builder()
.snsTopicArn(topicArn)
.roleArn(roleArn)
.build();
startFaceDetection(rekClient, channel, bucket, video);
getFaceResults(rekClient);
System.out.println("This example is done!");
rekClient.close();
}
public static void startFaceDetection(RekognitionClient rekClient,
NotificationChannel channel,
String bucket,
String video) {
try {
S3Object s3Obj = S3Object.builder()
.bucket(bucket)
.name(video)
.build();
Video vidOb = Video.builder()
.s3Object(s3Obj)
.build();
StartFaceDetectionRequest faceDetectionRequest = StartFaceDetectionRequest.builder()
.jobTag("Faces")
.faceAttributes(FaceAttributes.ALL)
.notificationChannel(channel)
.video(vidOb)
.build();
StartFaceDetectionResponse startLabelDetectionResult = rekClient.startFaceDetection(faceDetectionRequest);
startJobId = startLabelDetectionResult.jobId();
} catch (RekognitionException e) {
System.out.println(e.getMessage());
System.exit(1);
}
}
public static void getFaceResults(RekognitionClient rekClient) {
try {
String paginationToken = null;
GetFaceDetectionResponse faceDetectionResponse = null;
boolean finished = false;
String status;
int yy = 0;
do {
if (faceDetectionResponse != null)
paginationToken = faceDetectionResponse.nextToken();
GetFaceDetectionRequest recognitionRequest = GetFaceDetectionRequest.builder()
.jobId(startJobId)
.nextToken(paginationToken)
.maxResults(10)
.build();
// Wait until the job succeeds.
while (!finished) {
faceDetectionResponse = rekClient.getFaceDetection(recognitionRequest);
status = faceDetectionResponse.jobStatusAsString();
if (status.compareTo("SUCCEEDED") == 0)
finished = true;
else {
System.out.println(yy + " status is: " + status);
Thread.sleep(1000);
}
yy++;
}
finished = false;
// Proceed when the job is done - otherwise VideoMetadata is null.
VideoMetadata videoMetaData = faceDetectionResponse.videoMetadata();
System.out.println("Format: " + videoMetaData.format());
System.out.println("Codec: " + videoMetaData.codec());
System.out.println("Duration: " + videoMetaData.durationMillis());
System.out.println("FrameRate: " + videoMetaData.frameRate());
System.out.println("Job");
// Show face information.
List<FaceDetection> faces = faceDetectionResponse.faces();
for (FaceDetection face : faces) {
String age = face.face().ageRange().toString();
String smile = face.face().smile().toString();
System.out.println("The detected face is estimated to be"
+ age + " years old.");
System.out.println("There is a smile : " + smile);
}
} while (faceDetectionResponse != null && faceDetectionResponse.nextToken() != null);
} catch (RekognitionException | InterruptedException e) {
System.out.println(e.getMessage());
System.exit(1);
}
}
}
- Python
-
#Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.)
# ============== Face Search ===============
def StartFaceSearchCollection(self,collection):
response = self.rek.start_face_search(Video={'S3Object':{'Bucket':self.bucket,'Name':self.video}},
CollectionId=collection,
NotificationChannel={'RoleArn':self.roleArn, 'SNSTopicArn':self.snsTopicArn})
self.startJobId=response['JobId']
print('Start Job Id: ' + self.startJobId)
def GetFaceSearchCollectionResults(self):
maxResults = 10
paginationToken = ''
finished = False
while finished == False:
response = self.rek.get_face_search(JobId=self.startJobId,
MaxResults=maxResults,
NextToken=paginationToken)
print(response['VideoMetadata']['Codec'])
print(str(response['VideoMetadata']['DurationMillis']))
print(response['VideoMetadata']['Format'])
print(response['VideoMetadata']['FrameRate'])
for personMatch in response['Persons']:
print('Person Index: ' + str(personMatch['Person']['Index']))
print('Timestamp: ' + str(personMatch['Timestamp']))
if ('FaceMatches' in personMatch):
for faceMatch in personMatch['FaceMatches']:
print('Face ID: ' + faceMatch['Face']['FaceId'])
print('Similarity: ' + str(faceMatch['Similarity']))
print()
if 'NextToken' in response:
paginationToken = response['NextToken']
else:
finished = True
print()
在函数 main
中,将以下行:
analyzer.StartLabelDetection()
if analyzer.GetSQSMessageSuccess()==True:
analyzer.GetLabelDetectionResults()
替换为:
collection='tests'
analyzer.StartFaceSearchCollection(collection)
if analyzer.GetSQSMessageSuccess()==True:
analyzer.GetFaceSearchCollectionResults()
如果您已经运行了除 使用 Java 或 Python 分析存储在 Amazon S3 存储桶中的视频 (SDK) 之外的视频示例,则要替换的代码可能会有所不同。
-
将 collection
的值更改为您在步骤 1 中创建的集合的名称。
-
运行该代码。将显示视频中人脸与输入集合中的人脸匹配的人员的列表。还将显示每个匹配人员的跟踪数据。
GetFaceSearch 操作响应
以下是来自 GetFaceSearch
的示例 JSON 响应。
该响应包括在视频中检测到的其人脸与输入集合中的人脸匹配的一组人员 (Persons
)。每当在视频中匹配到该人员时,都会存在一个 PersonMatch 对象。每个 PersonMatch
都包含输入集合中的人脸匹配的数组 FaceMatch、有关匹配人员的信息 PersonDetail 以及在视频中匹配到人员的时间。
{
"JobStatus": "SUCCEEDED",
"NextToken": "IJdbzkZfvBRqj8GPV82BPiZKkLOGCqDIsNZG/gQsEE5faTVK9JHOz/xxxxxxxxxxxxxxx",
"Persons": [
{
"FaceMatches": [
{
"Face": {
"BoundingBox": {
"Height": 0.527472972869873,
"Left": 0.33530598878860474,
"Top": 0.2161169946193695,
"Width": 0.35503000020980835
},
"Confidence": 99.90239715576172,
"ExternalImageId": "image.PNG",
"FaceId": "a2f2e224-bfaa-456c-b360-7c00241e5e2d",
"ImageId": "eb57ed44-8d8d-5ec5-90b8-6d190daff4c3"
},
"Similarity": 98.40909576416016
}
],
"Person": {
"BoundingBox": {
"Height": 0.8694444298744202,
"Left": 0.2473958283662796,
"Top": 0.10092592239379883,
"Width": 0.49427083134651184
},
"Face": {
"BoundingBox": {
"Height": 0.23000000417232513,
"Left": 0.42500001192092896,
"Top": 0.16333332657814026,
"Width": 0.12937499582767487
},
"Confidence": 99.97504425048828,
"Landmarks": [
{
"Type": "eyeLeft",
"X": 0.46415066719055176,
"Y": 0.2572723925113678
},
{
"Type": "eyeRight",
"X": 0.5068183541297913,
"Y": 0.23705792427062988
},
{
"Type": "nose",
"X": 0.49765899777412415,
"Y": 0.28383663296699524
},
{
"Type": "mouthLeft",
"X": 0.487221896648407,
"Y": 0.3452930748462677
},
{
"Type": "mouthRight",
"X": 0.5142884850502014,
"Y": 0.33167609572410583
}
],
"Pose": {
"Pitch": 15.966927528381348,
"Roll": -15.547388076782227,
"Yaw": 11.34195613861084
},
"Quality": {
"Brightness": 44.80223083496094,
"Sharpness": 99.95819854736328
}
},
"Index": 0
},
"Timestamp": 0
},
{
"Person": {
"BoundingBox": {
"Height": 0.2177777737379074,
"Left": 0.7593749761581421,
"Top": 0.13333334028720856,
"Width": 0.12250000238418579
},
"Face": {
"BoundingBox": {
"Height": 0.2177777737379074,
"Left": 0.7593749761581421,
"Top": 0.13333334028720856,
"Width": 0.12250000238418579
},
"Confidence": 99.63436889648438,
"Landmarks": [
{
"Type": "eyeLeft",
"X": 0.8005779385566711,
"Y": 0.20915353298187256
},
{
"Type": "eyeRight",
"X": 0.8391435146331787,
"Y": 0.21049551665782928
},
{
"Type": "nose",
"X": 0.8191410899162292,
"Y": 0.2523227035999298
},
{
"Type": "mouthLeft",
"X": 0.8093273043632507,
"Y": 0.29053622484207153
},
{
"Type": "mouthRight",
"X": 0.8366993069648743,
"Y": 0.29101791977882385
}
],
"Pose": {
"Pitch": 3.165884017944336,
"Roll": 1.4182015657424927,
"Yaw": -11.151537895202637
},
"Quality": {
"Brightness": 28.910892486572266,
"Sharpness": 97.61507415771484
}
},
"Index": 1
},
"Timestamp": 0
},
{
"Person": {
"BoundingBox": {
"Height": 0.8388888835906982,
"Left": 0,
"Top": 0.15833333134651184,
"Width": 0.2369791716337204
},
"Face": {
"BoundingBox": {
"Height": 0.20000000298023224,
"Left": 0.029999999329447746,
"Top": 0.2199999988079071,
"Width": 0.11249999701976776
},
"Confidence": 99.85971069335938,
"Landmarks": [
{
"Type": "eyeLeft",
"X": 0.06842322647571564,
"Y": 0.3010137975215912
},
{
"Type": "eyeRight",
"X": 0.10543643683195114,
"Y": 0.29697132110595703
},
{
"Type": "nose",
"X": 0.09569807350635529,
"Y": 0.33701086044311523
},
{
"Type": "mouthLeft",
"X": 0.0732642263174057,
"Y": 0.3757539987564087
},
{
"Type": "mouthRight",
"X": 0.10589495301246643,
"Y": 0.3722417950630188
}
],
"Pose": {
"Pitch": -0.5589138865470886,
"Roll": -5.1093974113464355,
"Yaw": 18.69594955444336
},
"Quality": {
"Brightness": 43.052337646484375,
"Sharpness": 99.68138885498047
}
},
"Index": 2
},
"Timestamp": 0
}......
],
"VideoMetadata": {
"Codec": "h264",
"DurationMillis": 67301,
"Format": "QuickTime / MOV",
"FrameHeight": 1080,
"FrameRate": 29.970029830932617,
"FrameWidth": 1920
}
}