Class: Aws::SageMaker::Client
- Inherits:
-
Seahorse::Client::Base
- Object
- Seahorse::Client::Base
- Aws::SageMaker::Client
- Includes:
- ClientStubs
- Defined in:
- gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb
Overview
An API client for SageMaker. To construct a client, you need to configure a :region
and :credentials
.
client = Aws::SageMaker::Client.new(
region: region_name,
credentials: credentials,
# ...
)
For details on configuring region and credentials see the developer guide.
See #initialize for a full list of supported configuration options.
Instance Attribute Summary
Attributes inherited from Seahorse::Client::Base
API Operations collapse
-
#add_association(params = {}) ⇒ Types::AddAssociationResponse
Creates an association between the source and the destination.
-
#add_tags(params = {}) ⇒ Types::AddTagsOutput
Adds or overwrites one or more tags for the specified SageMaker resource.
-
#associate_trial_component(params = {}) ⇒ Types::AssociateTrialComponentResponse
Associates a trial component with a trial.
-
#batch_delete_cluster_nodes(params = {}) ⇒ Types::BatchDeleteClusterNodesResponse
Deletes specific nodes within a SageMaker HyperPod cluster.
-
#batch_describe_model_package(params = {}) ⇒ Types::BatchDescribeModelPackageOutput
This action batch describes a list of versioned model packages.
-
#create_action(params = {}) ⇒ Types::CreateActionResponse
Creates an action.
-
#create_algorithm(params = {}) ⇒ Types::CreateAlgorithmOutput
Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services Marketplace.
-
#create_app(params = {}) ⇒ Types::CreateAppResponse
Creates a running app for the specified UserProfile.
-
#create_app_image_config(params = {}) ⇒ Types::CreateAppImageConfigResponse
Creates a configuration for running a SageMaker AI image as a KernelGateway app.
-
#create_artifact(params = {}) ⇒ Types::CreateArtifactResponse
Creates an artifact.
-
#create_auto_ml_job(params = {}) ⇒ Types::CreateAutoMLJobResponse
Creates an Autopilot job also referred to as Autopilot experiment or AutoML job.
-
#create_auto_ml_job_v2(params = {}) ⇒ Types::CreateAutoMLJobV2Response
Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.
-
#create_cluster(params = {}) ⇒ Types::CreateClusterResponse
Creates a SageMaker HyperPod cluster.
-
#create_cluster_scheduler_config(params = {}) ⇒ Types::CreateClusterSchedulerConfigResponse
Create cluster policy configuration.
-
#create_code_repository(params = {}) ⇒ Types::CreateCodeRepositoryOutput
Creates a Git repository as a resource in your SageMaker AI account.
-
#create_compilation_job(params = {}) ⇒ Types::CreateCompilationJobResponse
Starts a model compilation job.
-
#create_compute_quota(params = {}) ⇒ Types::CreateComputeQuotaResponse
Create compute allocation definition.
-
#create_context(params = {}) ⇒ Types::CreateContextResponse
Creates a context.
-
#create_data_quality_job_definition(params = {}) ⇒ Types::CreateDataQualityJobDefinitionResponse
Creates a definition for a job that monitors data quality and drift.
-
#create_device_fleet(params = {}) ⇒ Struct
Creates a device fleet.
-
#create_domain(params = {}) ⇒ Types::CreateDomainResponse
Creates a
Domain
. -
#create_edge_deployment_plan(params = {}) ⇒ Types::CreateEdgeDeploymentPlanResponse
Creates an edge deployment plan, consisting of multiple stages.
-
#create_edge_deployment_stage(params = {}) ⇒ Struct
Creates a new stage in an existing edge deployment plan.
-
#create_edge_packaging_job(params = {}) ⇒ Struct
Starts a SageMaker Edge Manager model packaging job.
-
#create_endpoint(params = {}) ⇒ Types::CreateEndpointOutput
Creates an endpoint using the endpoint configuration specified in the request.
-
#create_endpoint_config(params = {}) ⇒ Types::CreateEndpointConfigOutput
Creates an endpoint configuration that SageMaker hosting services uses to deploy models.
-
#create_experiment(params = {}) ⇒ Types::CreateExperimentResponse
Creates a SageMaker experiment.
-
#create_feature_group(params = {}) ⇒ Types::CreateFeatureGroupResponse
Create a new
FeatureGroup
. -
#create_flow_definition(params = {}) ⇒ Types::CreateFlowDefinitionResponse
Creates a flow definition.
-
#create_hub(params = {}) ⇒ Types::CreateHubResponse
Create a hub.
-
#create_hub_content_reference(params = {}) ⇒ Types::CreateHubContentReferenceResponse
Create a hub content reference in order to add a model in the JumpStart public hub to a private hub.
-
#create_human_task_ui(params = {}) ⇒ Types::CreateHumanTaskUiResponse
Defines the settings you will use for the human review workflow user interface.
-
#create_hyper_parameter_tuning_job(params = {}) ⇒ Types::CreateHyperParameterTuningJobResponse
Starts a hyperparameter tuning job.
-
#create_image(params = {}) ⇒ Types::CreateImageResponse
Creates a custom SageMaker AI image.
-
#create_image_version(params = {}) ⇒ Types::CreateImageVersionResponse
Creates a version of the SageMaker AI image specified by
ImageName
. -
#create_inference_component(params = {}) ⇒ Types::CreateInferenceComponentOutput
Creates an inference component, which is a SageMaker AI hosting object that you can use to deploy a model to an endpoint.
-
#create_inference_experiment(params = {}) ⇒ Types::CreateInferenceExperimentResponse
Creates an inference experiment using the configurations specified in the request.
-
#create_inference_recommendations_job(params = {}) ⇒ Types::CreateInferenceRecommendationsJobResponse
Starts a recommendation job.
-
#create_labeling_job(params = {}) ⇒ Types::CreateLabelingJobResponse
Creates a job that uses workers to label the data objects in your input dataset.
-
#create_mlflow_tracking_server(params = {}) ⇒ Types::CreateMlflowTrackingServerResponse
Creates an MLflow Tracking Server using a general purpose Amazon S3 bucket as the artifact store.
-
#create_model(params = {}) ⇒ Types::CreateModelOutput
Creates a model in SageMaker.
-
#create_model_bias_job_definition(params = {}) ⇒ Types::CreateModelBiasJobDefinitionResponse
Creates the definition for a model bias job.
-
#create_model_card(params = {}) ⇒ Types::CreateModelCardResponse
Creates an Amazon SageMaker Model Card.
-
#create_model_card_export_job(params = {}) ⇒ Types::CreateModelCardExportJobResponse
Creates an Amazon SageMaker Model Card export job.
-
#create_model_explainability_job_definition(params = {}) ⇒ Types::CreateModelExplainabilityJobDefinitionResponse
Creates the definition for a model explainability job.
-
#create_model_package(params = {}) ⇒ Types::CreateModelPackageOutput
Creates a model package that you can use to create SageMaker models or list on Amazon Web Services Marketplace, or a versioned model that is part of a model group.
-
#create_model_package_group(params = {}) ⇒ Types::CreateModelPackageGroupOutput
Creates a model group.
-
#create_model_quality_job_definition(params = {}) ⇒ Types::CreateModelQualityJobDefinitionResponse
Creates a definition for a job that monitors model quality and drift.
-
#create_monitoring_schedule(params = {}) ⇒ Types::CreateMonitoringScheduleResponse
Creates a schedule that regularly starts Amazon SageMaker AI Processing Jobs to monitor the data captured for an Amazon SageMaker AI Endpoint.
-
#create_notebook_instance(params = {}) ⇒ Types::CreateNotebookInstanceOutput
Creates an SageMaker AI notebook instance.
-
#create_notebook_instance_lifecycle_config(params = {}) ⇒ Types::CreateNotebookInstanceLifecycleConfigOutput
Creates a lifecycle configuration that you can associate with a notebook instance.
-
#create_optimization_job(params = {}) ⇒ Types::CreateOptimizationJobResponse
Creates a job that optimizes a model for inference performance.
-
#create_partner_app(params = {}) ⇒ Types::CreatePartnerAppResponse
Creates an Amazon SageMaker Partner AI App.
-
#create_partner_app_presigned_url(params = {}) ⇒ Types::CreatePartnerAppPresignedUrlResponse
Creates a presigned URL to access an Amazon SageMaker Partner AI App.
-
#create_pipeline(params = {}) ⇒ Types::CreatePipelineResponse
Creates a pipeline using a JSON pipeline definition.
-
#create_presigned_domain_url(params = {}) ⇒ Types::CreatePresignedDomainUrlResponse
Creates a URL for a specified UserProfile in a Domain.
-
#create_presigned_mlflow_tracking_server_url(params = {}) ⇒ Types::CreatePresignedMlflowTrackingServerUrlResponse
Returns a presigned URL that you can use to connect to the MLflow UI attached to your tracking server.
-
#create_presigned_notebook_instance_url(params = {}) ⇒ Types::CreatePresignedNotebookInstanceUrlOutput
Returns a URL that you can use to connect to the Jupyter server from a notebook instance.
-
#create_processing_job(params = {}) ⇒ Types::CreateProcessingJobResponse
Creates a processing job.
-
#create_project(params = {}) ⇒ Types::CreateProjectOutput
Creates a machine learning (ML) project that can contain one or more templates that set up an ML pipeline from training to deploying an approved model.
-
#create_space(params = {}) ⇒ Types::CreateSpaceResponse
Creates a private space or a space used for real time collaboration in a domain.
-
#create_studio_lifecycle_config(params = {}) ⇒ Types::CreateStudioLifecycleConfigResponse
Creates a new Amazon SageMaker AI Studio Lifecycle Configuration.
-
#create_training_job(params = {}) ⇒ Types::CreateTrainingJobResponse
Starts a model training job.
-
#create_training_plan(params = {}) ⇒ Types::CreateTrainingPlanResponse
Creates a new training plan in SageMaker to reserve compute capacity.
-
#create_transform_job(params = {}) ⇒ Types::CreateTransformJobResponse
Starts a transform job.
-
#create_trial(params = {}) ⇒ Types::CreateTrialResponse
Creates an SageMaker trial.
-
#create_trial_component(params = {}) ⇒ Types::CreateTrialComponentResponse
Creates a trial component, which is a stage of a machine learning trial.
-
#create_user_profile(params = {}) ⇒ Types::CreateUserProfileResponse
Creates a user profile.
-
#create_workforce(params = {}) ⇒ Types::CreateWorkforceResponse
Use this operation to create a workforce.
-
#create_workteam(params = {}) ⇒ Types::CreateWorkteamResponse
Creates a new work team for labeling your data.
-
#delete_action(params = {}) ⇒ Types::DeleteActionResponse
Deletes an action.
-
#delete_algorithm(params = {}) ⇒ Struct
Removes the specified algorithm from your account.
-
#delete_app(params = {}) ⇒ Struct
Used to stop and delete an app.
-
#delete_app_image_config(params = {}) ⇒ Struct
Deletes an AppImageConfig.
-
#delete_artifact(params = {}) ⇒ Types::DeleteArtifactResponse
Deletes an artifact.
-
#delete_association(params = {}) ⇒ Types::DeleteAssociationResponse
Deletes an association.
-
#delete_cluster(params = {}) ⇒ Types::DeleteClusterResponse
Delete a SageMaker HyperPod cluster.
-
#delete_cluster_scheduler_config(params = {}) ⇒ Struct
Deletes the cluster policy of the cluster.
-
#delete_code_repository(params = {}) ⇒ Struct
Deletes the specified Git repository from your account.
-
#delete_compilation_job(params = {}) ⇒ Struct
Deletes the specified compilation job.
-
#delete_compute_quota(params = {}) ⇒ Struct
Deletes the compute allocation from the cluster.
-
#delete_context(params = {}) ⇒ Types::DeleteContextResponse
Deletes an context.
-
#delete_data_quality_job_definition(params = {}) ⇒ Struct
Deletes a data quality monitoring job definition.
-
#delete_device_fleet(params = {}) ⇒ Struct
Deletes a fleet.
-
#delete_domain(params = {}) ⇒ Struct
Used to delete a domain.
-
#delete_edge_deployment_plan(params = {}) ⇒ Struct
Deletes an edge deployment plan if (and only if) all the stages in the plan are inactive or there are no stages in the plan.
-
#delete_edge_deployment_stage(params = {}) ⇒ Struct
Delete a stage in an edge deployment plan if (and only if) the stage is inactive.
-
#delete_endpoint(params = {}) ⇒ Struct
Deletes an endpoint.
-
#delete_endpoint_config(params = {}) ⇒ Struct
Deletes an endpoint configuration.
-
#delete_experiment(params = {}) ⇒ Types::DeleteExperimentResponse
Deletes an SageMaker experiment.
-
#delete_feature_group(params = {}) ⇒ Struct
Delete the
FeatureGroup
and any data that was written to theOnlineStore
of theFeatureGroup
. -
#delete_flow_definition(params = {}) ⇒ Struct
Deletes the specified flow definition.
-
#delete_hub(params = {}) ⇒ Struct
Delete a hub.
-
#delete_hub_content(params = {}) ⇒ Struct
Delete the contents of a hub.
-
#delete_hub_content_reference(params = {}) ⇒ Struct
Delete a hub content reference in order to remove a model from a private hub.
-
#delete_human_task_ui(params = {}) ⇒ Struct
Use this operation to delete a human task user interface (worker task template).
-
#delete_hyper_parameter_tuning_job(params = {}) ⇒ Struct
Deletes a hyperparameter tuning job.
-
#delete_image(params = {}) ⇒ Struct
Deletes a SageMaker AI image and all versions of the image.
-
#delete_image_version(params = {}) ⇒ Struct
Deletes a version of a SageMaker AI image.
-
#delete_inference_component(params = {}) ⇒ Struct
Deletes an inference component.
-
#delete_inference_experiment(params = {}) ⇒ Types::DeleteInferenceExperimentResponse
Deletes an inference experiment.
-
#delete_mlflow_tracking_server(params = {}) ⇒ Types::DeleteMlflowTrackingServerResponse
Deletes an MLflow Tracking Server.
-
#delete_model(params = {}) ⇒ Struct
Deletes a model.
-
#delete_model_bias_job_definition(params = {}) ⇒ Struct
Deletes an Amazon SageMaker AI model bias job definition.
-
#delete_model_card(params = {}) ⇒ Struct
Deletes an Amazon SageMaker Model Card.
-
#delete_model_explainability_job_definition(params = {}) ⇒ Struct
Deletes an Amazon SageMaker AI model explainability job definition.
-
#delete_model_package(params = {}) ⇒ Struct
Deletes a model package.
-
#delete_model_package_group(params = {}) ⇒ Struct
Deletes the specified model group.
-
#delete_model_package_group_policy(params = {}) ⇒ Struct
Deletes a model group resource policy.
-
#delete_model_quality_job_definition(params = {}) ⇒ Struct
Deletes the secified model quality monitoring job definition.
-
#delete_monitoring_schedule(params = {}) ⇒ Struct
Deletes a monitoring schedule.
-
#delete_notebook_instance(params = {}) ⇒ Struct
Deletes an SageMaker AI notebook instance.
-
#delete_notebook_instance_lifecycle_config(params = {}) ⇒ Struct
Deletes a notebook instance lifecycle configuration.
-
#delete_optimization_job(params = {}) ⇒ Struct
Deletes an optimization job.
-
#delete_partner_app(params = {}) ⇒ Types::DeletePartnerAppResponse
Deletes a SageMaker Partner AI App.
-
#delete_pipeline(params = {}) ⇒ Types::DeletePipelineResponse
Deletes a pipeline if there are no running instances of the pipeline.
-
#delete_project(params = {}) ⇒ Struct
Delete the specified project.
-
#delete_space(params = {}) ⇒ Struct
Used to delete a space.
-
#delete_studio_lifecycle_config(params = {}) ⇒ Struct
Deletes the Amazon SageMaker AI Studio Lifecycle Configuration.
-
#delete_tags(params = {}) ⇒ Struct
Deletes the specified tags from an SageMaker resource.
-
#delete_trial(params = {}) ⇒ Types::DeleteTrialResponse
Deletes the specified trial.
-
#delete_trial_component(params = {}) ⇒ Types::DeleteTrialComponentResponse
Deletes the specified trial component.
-
#delete_user_profile(params = {}) ⇒ Struct
Deletes a user profile.
-
#delete_workforce(params = {}) ⇒ Struct
Use this operation to delete a workforce.
-
#delete_workteam(params = {}) ⇒ Types::DeleteWorkteamResponse
Deletes an existing work team.
-
#deregister_devices(params = {}) ⇒ Struct
Deregisters the specified devices.
-
#describe_action(params = {}) ⇒ Types::DescribeActionResponse
Describes an action.
-
#describe_algorithm(params = {}) ⇒ Types::DescribeAlgorithmOutput
Returns a description of the specified algorithm that is in your account.
-
#describe_app(params = {}) ⇒ Types::DescribeAppResponse
Describes the app.
-
#describe_app_image_config(params = {}) ⇒ Types::DescribeAppImageConfigResponse
Describes an AppImageConfig.
-
#describe_artifact(params = {}) ⇒ Types::DescribeArtifactResponse
Describes an artifact.
-
#describe_auto_ml_job(params = {}) ⇒ Types::DescribeAutoMLJobResponse
Returns information about an AutoML job created by calling [CreateAutoMLJob][1].
-
#describe_auto_ml_job_v2(params = {}) ⇒ Types::DescribeAutoMLJobV2Response
Returns information about an AutoML job created by calling [CreateAutoMLJobV2][1] or [CreateAutoMLJob][2].
-
#describe_cluster(params = {}) ⇒ Types::DescribeClusterResponse
Retrieves information of a SageMaker HyperPod cluster.
-
#describe_cluster_node(params = {}) ⇒ Types::DescribeClusterNodeResponse
Retrieves information of a node (also called a instance interchangeably) of a SageMaker HyperPod cluster.
-
#describe_cluster_scheduler_config(params = {}) ⇒ Types::DescribeClusterSchedulerConfigResponse
Description of the cluster policy.
-
#describe_code_repository(params = {}) ⇒ Types::DescribeCodeRepositoryOutput
Gets details about the specified Git repository.
-
#describe_compilation_job(params = {}) ⇒ Types::DescribeCompilationJobResponse
Returns information about a model compilation job.
-
#describe_compute_quota(params = {}) ⇒ Types::DescribeComputeQuotaResponse
Description of the compute allocation definition.
-
#describe_context(params = {}) ⇒ Types::DescribeContextResponse
Describes a context.
-
#describe_data_quality_job_definition(params = {}) ⇒ Types::DescribeDataQualityJobDefinitionResponse
Gets the details of a data quality monitoring job definition.
-
#describe_device(params = {}) ⇒ Types::DescribeDeviceResponse
Describes the device.
-
#describe_device_fleet(params = {}) ⇒ Types::DescribeDeviceFleetResponse
A description of the fleet the device belongs to.
-
#describe_domain(params = {}) ⇒ Types::DescribeDomainResponse
The description of the domain.
-
#describe_edge_deployment_plan(params = {}) ⇒ Types::DescribeEdgeDeploymentPlanResponse
Describes an edge deployment plan with deployment status per stage.
-
#describe_edge_packaging_job(params = {}) ⇒ Types::DescribeEdgePackagingJobResponse
A description of edge packaging jobs.
-
#describe_endpoint(params = {}) ⇒ Types::DescribeEndpointOutput
Returns the description of an endpoint.
-
#describe_endpoint_config(params = {}) ⇒ Types::DescribeEndpointConfigOutput
Returns the description of an endpoint configuration created using the
CreateEndpointConfig
API. -
#describe_experiment(params = {}) ⇒ Types::DescribeExperimentResponse
Provides a list of an experiment's properties.
-
#describe_feature_group(params = {}) ⇒ Types::DescribeFeatureGroupResponse
Use this operation to describe a
FeatureGroup
. -
#describe_feature_metadata(params = {}) ⇒ Types::DescribeFeatureMetadataResponse
Shows the metadata for a feature within a feature group.
-
#describe_flow_definition(params = {}) ⇒ Types::DescribeFlowDefinitionResponse
Returns information about the specified flow definition.
-
#describe_hub(params = {}) ⇒ Types::DescribeHubResponse
Describes a hub.
-
#describe_hub_content(params = {}) ⇒ Types::DescribeHubContentResponse
Describe the content of a hub.
-
#describe_human_task_ui(params = {}) ⇒ Types::DescribeHumanTaskUiResponse
Returns information about the requested human task user interface (worker task template).
-
#describe_hyper_parameter_tuning_job(params = {}) ⇒ Types::DescribeHyperParameterTuningJobResponse
Returns a description of a hyperparameter tuning job, depending on the fields selected.
-
#describe_image(params = {}) ⇒ Types::DescribeImageResponse
Describes a SageMaker AI image.
-
#describe_image_version(params = {}) ⇒ Types::DescribeImageVersionResponse
Describes a version of a SageMaker AI image.
-
#describe_inference_component(params = {}) ⇒ Types::DescribeInferenceComponentOutput
Returns information about an inference component.
-
#describe_inference_experiment(params = {}) ⇒ Types::DescribeInferenceExperimentResponse
Returns details about an inference experiment.
-
#describe_inference_recommendations_job(params = {}) ⇒ Types::DescribeInferenceRecommendationsJobResponse
Provides the results of the Inference Recommender job.
-
#describe_labeling_job(params = {}) ⇒ Types::DescribeLabelingJobResponse
Gets information about a labeling job.
-
#describe_lineage_group(params = {}) ⇒ Types::DescribeLineageGroupResponse
Provides a list of properties for the requested lineage group.
-
#describe_mlflow_tracking_server(params = {}) ⇒ Types::DescribeMlflowTrackingServerResponse
Returns information about an MLflow Tracking Server.
-
#describe_model(params = {}) ⇒ Types::DescribeModelOutput
Describes a model that you created using the
CreateModel
API. -
#describe_model_bias_job_definition(params = {}) ⇒ Types::DescribeModelBiasJobDefinitionResponse
Returns a description of a model bias job definition.
-
#describe_model_card(params = {}) ⇒ Types::DescribeModelCardResponse
Describes the content, creation time, and security configuration of an Amazon SageMaker Model Card.
-
#describe_model_card_export_job(params = {}) ⇒ Types::DescribeModelCardExportJobResponse
Describes an Amazon SageMaker Model Card export job.
-
#describe_model_explainability_job_definition(params = {}) ⇒ Types::DescribeModelExplainabilityJobDefinitionResponse
Returns a description of a model explainability job definition.
-
#describe_model_package(params = {}) ⇒ Types::DescribeModelPackageOutput
Returns a description of the specified model package, which is used to create SageMaker models or list them on Amazon Web Services Marketplace.
-
#describe_model_package_group(params = {}) ⇒ Types::DescribeModelPackageGroupOutput
Gets a description for the specified model group.
-
#describe_model_quality_job_definition(params = {}) ⇒ Types::DescribeModelQualityJobDefinitionResponse
Returns a description of a model quality job definition.
-
#describe_monitoring_schedule(params = {}) ⇒ Types::DescribeMonitoringScheduleResponse
Describes the schedule for a monitoring job.
-
#describe_notebook_instance(params = {}) ⇒ Types::DescribeNotebookInstanceOutput
Returns information about a notebook instance.
-
#describe_notebook_instance_lifecycle_config(params = {}) ⇒ Types::DescribeNotebookInstanceLifecycleConfigOutput
Returns a description of a notebook instance lifecycle configuration.
-
#describe_optimization_job(params = {}) ⇒ Types::DescribeOptimizationJobResponse
Provides the properties of the specified optimization job.
-
#describe_partner_app(params = {}) ⇒ Types::DescribePartnerAppResponse
Gets information about a SageMaker Partner AI App.
-
#describe_pipeline(params = {}) ⇒ Types::DescribePipelineResponse
Describes the details of a pipeline.
-
#describe_pipeline_definition_for_execution(params = {}) ⇒ Types::DescribePipelineDefinitionForExecutionResponse
Describes the details of an execution's pipeline definition.
-
#describe_pipeline_execution(params = {}) ⇒ Types::DescribePipelineExecutionResponse
Describes the details of a pipeline execution.
-
#describe_processing_job(params = {}) ⇒ Types::DescribeProcessingJobResponse
Returns a description of a processing job.
-
#describe_project(params = {}) ⇒ Types::DescribeProjectOutput
Describes the details of a project.
-
#describe_space(params = {}) ⇒ Types::DescribeSpaceResponse
Describes the space.
-
#describe_studio_lifecycle_config(params = {}) ⇒ Types::DescribeStudioLifecycleConfigResponse
Describes the Amazon SageMaker AI Studio Lifecycle Configuration.
-
#describe_subscribed_workteam(params = {}) ⇒ Types::DescribeSubscribedWorkteamResponse
Gets information about a work team provided by a vendor.
-
#describe_training_job(params = {}) ⇒ Types::DescribeTrainingJobResponse
Returns information about a training job.
-
#describe_training_plan(params = {}) ⇒ Types::DescribeTrainingPlanResponse
Retrieves detailed information about a specific training plan.
-
#describe_transform_job(params = {}) ⇒ Types::DescribeTransformJobResponse
Returns information about a transform job.
-
#describe_trial(params = {}) ⇒ Types::DescribeTrialResponse
Provides a list of a trial's properties.
-
#describe_trial_component(params = {}) ⇒ Types::DescribeTrialComponentResponse
Provides a list of a trials component's properties.
-
#describe_user_profile(params = {}) ⇒ Types::DescribeUserProfileResponse
Describes a user profile.
-
#describe_workforce(params = {}) ⇒ Types::DescribeWorkforceResponse
Lists private workforce information, including workforce name, Amazon Resource Name (ARN), and, if applicable, allowed IP address ranges ([CIDRs][1]).
-
#describe_workteam(params = {}) ⇒ Types::DescribeWorkteamResponse
Gets information about a specific work team.
-
#disable_sagemaker_servicecatalog_portfolio(params = {}) ⇒ Struct
Disables using Service Catalog in SageMaker.
-
#disassociate_trial_component(params = {}) ⇒ Types::DisassociateTrialComponentResponse
Disassociates a trial component from a trial.
-
#enable_sagemaker_servicecatalog_portfolio(params = {}) ⇒ Struct
Enables using Service Catalog in SageMaker.
-
#get_device_fleet_report(params = {}) ⇒ Types::GetDeviceFleetReportResponse
Describes a fleet.
-
#get_lineage_group_policy(params = {}) ⇒ Types::GetLineageGroupPolicyResponse
The resource policy for the lineage group.
-
#get_model_package_group_policy(params = {}) ⇒ Types::GetModelPackageGroupPolicyOutput
Gets a resource policy that manages access for a model group.
-
#get_sagemaker_servicecatalog_portfolio_status(params = {}) ⇒ Types::GetSagemakerServicecatalogPortfolioStatusOutput
Gets the status of Service Catalog in SageMaker.
-
#get_scaling_configuration_recommendation(params = {}) ⇒ Types::GetScalingConfigurationRecommendationResponse
Starts an Amazon SageMaker Inference Recommender autoscaling recommendation job.
-
#get_search_suggestions(params = {}) ⇒ Types::GetSearchSuggestionsResponse
An auto-complete API for the search functionality in the SageMaker console.
-
#import_hub_content(params = {}) ⇒ Types::ImportHubContentResponse
Import hub content.
-
#list_actions(params = {}) ⇒ Types::ListActionsResponse
Lists the actions in your account and their properties.
-
#list_algorithms(params = {}) ⇒ Types::ListAlgorithmsOutput
Lists the machine learning algorithms that have been created.
-
#list_aliases(params = {}) ⇒ Types::ListAliasesResponse
Lists the aliases of a specified image or image version.
-
#list_app_image_configs(params = {}) ⇒ Types::ListAppImageConfigsResponse
Lists the AppImageConfigs in your account and their properties.
-
#list_apps(params = {}) ⇒ Types::ListAppsResponse
Lists apps.
-
#list_artifacts(params = {}) ⇒ Types::ListArtifactsResponse
Lists the artifacts in your account and their properties.
-
#list_associations(params = {}) ⇒ Types::ListAssociationsResponse
Lists the associations in your account and their properties.
-
#list_auto_ml_jobs(params = {}) ⇒ Types::ListAutoMLJobsResponse
Request a list of jobs.
-
#list_candidates_for_auto_ml_job(params = {}) ⇒ Types::ListCandidatesForAutoMLJobResponse
List the candidates created for the job.
-
#list_cluster_nodes(params = {}) ⇒ Types::ListClusterNodesResponse
Retrieves the list of instances (also called nodes interchangeably) in a SageMaker HyperPod cluster.
-
#list_cluster_scheduler_configs(params = {}) ⇒ Types::ListClusterSchedulerConfigsResponse
List the cluster policy configurations.
-
#list_clusters(params = {}) ⇒ Types::ListClustersResponse
Retrieves the list of SageMaker HyperPod clusters.
-
#list_code_repositories(params = {}) ⇒ Types::ListCodeRepositoriesOutput
Gets a list of the Git repositories in your account.
-
#list_compilation_jobs(params = {}) ⇒ Types::ListCompilationJobsResponse
Lists model compilation jobs that satisfy various filters.
-
#list_compute_quotas(params = {}) ⇒ Types::ListComputeQuotasResponse
List the resource allocation definitions.
-
#list_contexts(params = {}) ⇒ Types::ListContextsResponse
Lists the contexts in your account and their properties.
-
#list_data_quality_job_definitions(params = {}) ⇒ Types::ListDataQualityJobDefinitionsResponse
Lists the data quality job definitions in your account.
-
#list_device_fleets(params = {}) ⇒ Types::ListDeviceFleetsResponse
Returns a list of devices in the fleet.
-
#list_devices(params = {}) ⇒ Types::ListDevicesResponse
A list of devices.
-
#list_domains(params = {}) ⇒ Types::ListDomainsResponse
Lists the domains.
-
#list_edge_deployment_plans(params = {}) ⇒ Types::ListEdgeDeploymentPlansResponse
Lists all edge deployment plans.
-
#list_edge_packaging_jobs(params = {}) ⇒ Types::ListEdgePackagingJobsResponse
Returns a list of edge packaging jobs.
-
#list_endpoint_configs(params = {}) ⇒ Types::ListEndpointConfigsOutput
Lists endpoint configurations.
-
#list_endpoints(params = {}) ⇒ Types::ListEndpointsOutput
Lists endpoints.
-
#list_experiments(params = {}) ⇒ Types::ListExperimentsResponse
Lists all the experiments in your account.
-
#list_feature_groups(params = {}) ⇒ Types::ListFeatureGroupsResponse
List
FeatureGroup
s based on given filter and order. -
#list_flow_definitions(params = {}) ⇒ Types::ListFlowDefinitionsResponse
Returns information about the flow definitions in your account.
-
#list_hub_content_versions(params = {}) ⇒ Types::ListHubContentVersionsResponse
List hub content versions.
-
#list_hub_contents(params = {}) ⇒ Types::ListHubContentsResponse
List the contents of a hub.
-
#list_hubs(params = {}) ⇒ Types::ListHubsResponse
List all existing hubs.
-
#list_human_task_uis(params = {}) ⇒ Types::ListHumanTaskUisResponse
Returns information about the human task user interfaces in your account.
-
#list_hyper_parameter_tuning_jobs(params = {}) ⇒ Types::ListHyperParameterTuningJobsResponse
Gets a list of [HyperParameterTuningJobSummary][1] objects that describe the hyperparameter tuning jobs launched in your account.
-
#list_image_versions(params = {}) ⇒ Types::ListImageVersionsResponse
Lists the versions of a specified image and their properties.
-
#list_images(params = {}) ⇒ Types::ListImagesResponse
Lists the images in your account and their properties.
-
#list_inference_components(params = {}) ⇒ Types::ListInferenceComponentsOutput
Lists the inference components in your account and their properties.
-
#list_inference_experiments(params = {}) ⇒ Types::ListInferenceExperimentsResponse
Returns the list of all inference experiments.
-
#list_inference_recommendations_job_steps(params = {}) ⇒ Types::ListInferenceRecommendationsJobStepsResponse
Returns a list of the subtasks for an Inference Recommender job.
-
#list_inference_recommendations_jobs(params = {}) ⇒ Types::ListInferenceRecommendationsJobsResponse
Lists recommendation jobs that satisfy various filters.
-
#list_labeling_jobs(params = {}) ⇒ Types::ListLabelingJobsResponse
Gets a list of labeling jobs.
-
#list_labeling_jobs_for_workteam(params = {}) ⇒ Types::ListLabelingJobsForWorkteamResponse
Gets a list of labeling jobs assigned to a specified work team.
-
#list_lineage_groups(params = {}) ⇒ Types::ListLineageGroupsResponse
A list of lineage groups shared with your Amazon Web Services account.
-
#list_mlflow_tracking_servers(params = {}) ⇒ Types::ListMlflowTrackingServersResponse
Lists all MLflow Tracking Servers.
-
#list_model_bias_job_definitions(params = {}) ⇒ Types::ListModelBiasJobDefinitionsResponse
Lists model bias jobs definitions that satisfy various filters.
-
#list_model_card_export_jobs(params = {}) ⇒ Types::ListModelCardExportJobsResponse
List the export jobs for the Amazon SageMaker Model Card.
-
#list_model_card_versions(params = {}) ⇒ Types::ListModelCardVersionsResponse
List existing versions of an Amazon SageMaker Model Card.
-
#list_model_cards(params = {}) ⇒ Types::ListModelCardsResponse
List existing model cards.
-
#list_model_explainability_job_definitions(params = {}) ⇒ Types::ListModelExplainabilityJobDefinitionsResponse
Lists model explainability job definitions that satisfy various filters.
-
#list_model_metadata(params = {}) ⇒ Types::ListModelMetadataResponse
Lists the domain, framework, task, and model name of standard machine learning models found in common model zoos.
-
#list_model_package_groups(params = {}) ⇒ Types::ListModelPackageGroupsOutput
Gets a list of the model groups in your Amazon Web Services account.
-
#list_model_packages(params = {}) ⇒ Types::ListModelPackagesOutput
Lists the model packages that have been created.
-
#list_model_quality_job_definitions(params = {}) ⇒ Types::ListModelQualityJobDefinitionsResponse
Gets a list of model quality monitoring job definitions in your account.
-
#list_models(params = {}) ⇒ Types::ListModelsOutput
Lists models created with the
CreateModel
API. -
#list_monitoring_alert_history(params = {}) ⇒ Types::ListMonitoringAlertHistoryResponse
Gets a list of past alerts in a model monitoring schedule.
-
#list_monitoring_alerts(params = {}) ⇒ Types::ListMonitoringAlertsResponse
Gets the alerts for a single monitoring schedule.
-
#list_monitoring_executions(params = {}) ⇒ Types::ListMonitoringExecutionsResponse
Returns list of all monitoring job executions.
-
#list_monitoring_schedules(params = {}) ⇒ Types::ListMonitoringSchedulesResponse
Returns list of all monitoring schedules.
-
#list_notebook_instance_lifecycle_configs(params = {}) ⇒ Types::ListNotebookInstanceLifecycleConfigsOutput
Lists notebook instance lifestyle configurations created with the [CreateNotebookInstanceLifecycleConfig][1] API.
-
#list_notebook_instances(params = {}) ⇒ Types::ListNotebookInstancesOutput
Returns a list of the SageMaker AI notebook instances in the requester's account in an Amazon Web Services Region.
-
#list_optimization_jobs(params = {}) ⇒ Types::ListOptimizationJobsResponse
Lists the optimization jobs in your account and their properties.
-
#list_partner_apps(params = {}) ⇒ Types::ListPartnerAppsResponse
Lists all of the SageMaker Partner AI Apps in an account.
-
#list_pipeline_execution_steps(params = {}) ⇒ Types::ListPipelineExecutionStepsResponse
Gets a list of
PipeLineExecutionStep
objects. -
#list_pipeline_executions(params = {}) ⇒ Types::ListPipelineExecutionsResponse
Gets a list of the pipeline executions.
-
#list_pipeline_parameters_for_execution(params = {}) ⇒ Types::ListPipelineParametersForExecutionResponse
Gets a list of parameters for a pipeline execution.
-
#list_pipelines(params = {}) ⇒ Types::ListPipelinesResponse
Gets a list of pipelines.
-
#list_processing_jobs(params = {}) ⇒ Types::ListProcessingJobsResponse
Lists processing jobs that satisfy various filters.
-
#list_projects(params = {}) ⇒ Types::ListProjectsOutput
Gets a list of the projects in an Amazon Web Services account.
-
#list_resource_catalogs(params = {}) ⇒ Types::ListResourceCatalogsResponse
Lists Amazon SageMaker Catalogs based on given filters and orders.
-
#list_spaces(params = {}) ⇒ Types::ListSpacesResponse
Lists spaces.
-
#list_stage_devices(params = {}) ⇒ Types::ListStageDevicesResponse
Lists devices allocated to the stage, containing detailed device information and deployment status.
-
#list_studio_lifecycle_configs(params = {}) ⇒ Types::ListStudioLifecycleConfigsResponse
Lists the Amazon SageMaker AI Studio Lifecycle Configurations in your Amazon Web Services Account.
-
#list_subscribed_workteams(params = {}) ⇒ Types::ListSubscribedWorkteamsResponse
Gets a list of the work teams that you are subscribed to in the Amazon Web Services Marketplace.
-
#list_tags(params = {}) ⇒ Types::ListTagsOutput
Returns the tags for the specified SageMaker resource.
-
#list_training_jobs(params = {}) ⇒ Types::ListTrainingJobsResponse
Lists training jobs.
-
#list_training_jobs_for_hyper_parameter_tuning_job(params = {}) ⇒ Types::ListTrainingJobsForHyperParameterTuningJobResponse
Gets a list of [TrainingJobSummary][1] objects that describe the training jobs that a hyperparameter tuning job launched.
-
#list_training_plans(params = {}) ⇒ Types::ListTrainingPlansResponse
Retrieves a list of training plans for the current account.
-
#list_transform_jobs(params = {}) ⇒ Types::ListTransformJobsResponse
Lists transform jobs.
-
#list_trial_components(params = {}) ⇒ Types::ListTrialComponentsResponse
Lists the trial components in your account.
-
#list_trials(params = {}) ⇒ Types::ListTrialsResponse
Lists the trials in your account.
-
#list_user_profiles(params = {}) ⇒ Types::ListUserProfilesResponse
Lists user profiles.
-
#list_workforces(params = {}) ⇒ Types::ListWorkforcesResponse
Use this operation to list all private and vendor workforces in an Amazon Web Services Region.
-
#list_workteams(params = {}) ⇒ Types::ListWorkteamsResponse
Gets a list of private work teams that you have defined in a region.
-
#put_model_package_group_policy(params = {}) ⇒ Types::PutModelPackageGroupPolicyOutput
Adds a resouce policy to control access to a model group.
-
#query_lineage(params = {}) ⇒ Types::QueryLineageResponse
Use this action to inspect your lineage and discover relationships between entities.
-
#register_devices(params = {}) ⇒ Struct
Register devices.
-
#render_ui_template(params = {}) ⇒ Types::RenderUiTemplateResponse
Renders the UI template so that you can preview the worker's experience.
-
#retry_pipeline_execution(params = {}) ⇒ Types::RetryPipelineExecutionResponse
Retry the execution of the pipeline.
-
#search(params = {}) ⇒ Types::SearchResponse
Finds SageMaker resources that match a search query.
-
#search_training_plan_offerings(params = {}) ⇒ Types::SearchTrainingPlanOfferingsResponse
Searches for available training plan offerings based on specified criteria.
-
#send_pipeline_execution_step_failure(params = {}) ⇒ Types::SendPipelineExecutionStepFailureResponse
Notifies the pipeline that the execution of a callback step failed, along with a message describing why.
-
#send_pipeline_execution_step_success(params = {}) ⇒ Types::SendPipelineExecutionStepSuccessResponse
Notifies the pipeline that the execution of a callback step succeeded and provides a list of the step's output parameters.
-
#start_edge_deployment_stage(params = {}) ⇒ Struct
Starts a stage in an edge deployment plan.
-
#start_inference_experiment(params = {}) ⇒ Types::StartInferenceExperimentResponse
Starts an inference experiment.
-
#start_mlflow_tracking_server(params = {}) ⇒ Types::StartMlflowTrackingServerResponse
Programmatically start an MLflow Tracking Server.
-
#start_monitoring_schedule(params = {}) ⇒ Struct
Starts a previously stopped monitoring schedule.
-
#start_notebook_instance(params = {}) ⇒ Struct
Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume.
-
#start_pipeline_execution(params = {}) ⇒ Types::StartPipelineExecutionResponse
Starts a pipeline execution.
-
#stop_auto_ml_job(params = {}) ⇒ Struct
A method for forcing a running job to shut down.
-
#stop_compilation_job(params = {}) ⇒ Struct
Stops a model compilation job.
-
#stop_edge_deployment_stage(params = {}) ⇒ Struct
Stops a stage in an edge deployment plan.
-
#stop_edge_packaging_job(params = {}) ⇒ Struct
Request to stop an edge packaging job.
-
#stop_hyper_parameter_tuning_job(params = {}) ⇒ Struct
Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched.
-
#stop_inference_experiment(params = {}) ⇒ Types::StopInferenceExperimentResponse
Stops an inference experiment.
-
#stop_inference_recommendations_job(params = {}) ⇒ Struct
Stops an Inference Recommender job.
-
#stop_labeling_job(params = {}) ⇒ Struct
Stops a running labeling job.
-
#stop_mlflow_tracking_server(params = {}) ⇒ Types::StopMlflowTrackingServerResponse
Programmatically stop an MLflow Tracking Server.
-
#stop_monitoring_schedule(params = {}) ⇒ Struct
Stops a previously started monitoring schedule.
-
#stop_notebook_instance(params = {}) ⇒ Struct
Terminates the ML compute instance.
-
#stop_optimization_job(params = {}) ⇒ Struct
Ends a running inference optimization job.
-
#stop_pipeline_execution(params = {}) ⇒ Types::StopPipelineExecutionResponse
Stops a pipeline execution.
-
#stop_processing_job(params = {}) ⇒ Struct
Stops a processing job.
-
#stop_training_job(params = {}) ⇒ Struct
Stops a training job.
-
#stop_transform_job(params = {}) ⇒ Struct
Stops a batch transform job.
-
#update_action(params = {}) ⇒ Types::UpdateActionResponse
Updates an action.
-
#update_app_image_config(params = {}) ⇒ Types::UpdateAppImageConfigResponse
Updates the properties of an AppImageConfig.
-
#update_artifact(params = {}) ⇒ Types::UpdateArtifactResponse
Updates an artifact.
-
#update_cluster(params = {}) ⇒ Types::UpdateClusterResponse
Updates a SageMaker HyperPod cluster.
-
#update_cluster_scheduler_config(params = {}) ⇒ Types::UpdateClusterSchedulerConfigResponse
Update the cluster policy configuration.
-
#update_cluster_software(params = {}) ⇒ Types::UpdateClusterSoftwareResponse
Updates the platform software of a SageMaker HyperPod cluster for security patching.
-
#update_code_repository(params = {}) ⇒ Types::UpdateCodeRepositoryOutput
Updates the specified Git repository with the specified values.
-
#update_compute_quota(params = {}) ⇒ Types::UpdateComputeQuotaResponse
Update the compute allocation definition.
-
#update_context(params = {}) ⇒ Types::UpdateContextResponse
Updates a context.
-
#update_device_fleet(params = {}) ⇒ Struct
Updates a fleet of devices.
-
#update_devices(params = {}) ⇒ Struct
Updates one or more devices in a fleet.
-
#update_domain(params = {}) ⇒ Types::UpdateDomainResponse
Updates the default settings for new user profiles in the domain.
-
#update_endpoint(params = {}) ⇒ Types::UpdateEndpointOutput
Deploys the
EndpointConfig
specified in the request to a new fleet of instances. -
#update_endpoint_weights_and_capacities(params = {}) ⇒ Types::UpdateEndpointWeightsAndCapacitiesOutput
Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint.
-
#update_experiment(params = {}) ⇒ Types::UpdateExperimentResponse
Adds, updates, or removes the description of an experiment.
-
#update_feature_group(params = {}) ⇒ Types::UpdateFeatureGroupResponse
Updates the feature group by either adding features or updating the online store configuration.
-
#update_feature_metadata(params = {}) ⇒ Struct
Updates the description and parameters of the feature group.
-
#update_hub(params = {}) ⇒ Types::UpdateHubResponse
Update a hub.
-
#update_image(params = {}) ⇒ Types::UpdateImageResponse
Updates the properties of a SageMaker AI image.
-
#update_image_version(params = {}) ⇒ Types::UpdateImageVersionResponse
Updates the properties of a SageMaker AI image version.
-
#update_inference_component(params = {}) ⇒ Types::UpdateInferenceComponentOutput
Updates an inference component.
-
#update_inference_component_runtime_config(params = {}) ⇒ Types::UpdateInferenceComponentRuntimeConfigOutput
Runtime settings for a model that is deployed with an inference component.
-
#update_inference_experiment(params = {}) ⇒ Types::UpdateInferenceExperimentResponse
Updates an inference experiment that you created.
-
#update_mlflow_tracking_server(params = {}) ⇒ Types::UpdateMlflowTrackingServerResponse
Updates properties of an existing MLflow Tracking Server.
-
#update_model_card(params = {}) ⇒ Types::UpdateModelCardResponse
Update an Amazon SageMaker Model Card.
-
#update_model_package(params = {}) ⇒ Types::UpdateModelPackageOutput
Updates a versioned model.
-
#update_monitoring_alert(params = {}) ⇒ Types::UpdateMonitoringAlertResponse
Update the parameters of a model monitor alert.
-
#update_monitoring_schedule(params = {}) ⇒ Types::UpdateMonitoringScheduleResponse
Updates a previously created schedule.
-
#update_notebook_instance(params = {}) ⇒ Struct
Updates a notebook instance.
-
#update_notebook_instance_lifecycle_config(params = {}) ⇒ Struct
Updates a notebook instance lifecycle configuration created with the [CreateNotebookInstanceLifecycleConfig][1] API.
-
#update_partner_app(params = {}) ⇒ Types::UpdatePartnerAppResponse
Updates all of the SageMaker Partner AI Apps in an account.
-
#update_pipeline(params = {}) ⇒ Types::UpdatePipelineResponse
Updates a pipeline.
-
#update_pipeline_execution(params = {}) ⇒ Types::UpdatePipelineExecutionResponse
Updates a pipeline execution.
-
#update_project(params = {}) ⇒ Types::UpdateProjectOutput
Updates a machine learning (ML) project that is created from a template that sets up an ML pipeline from training to deploying an approved model.
-
#update_space(params = {}) ⇒ Types::UpdateSpaceResponse
Updates the settings of a space.
-
#update_training_job(params = {}) ⇒ Types::UpdateTrainingJobResponse
Update a model training job to request a new Debugger profiling configuration or to change warm pool retention length.
-
#update_trial(params = {}) ⇒ Types::UpdateTrialResponse
Updates the display name of a trial.
-
#update_trial_component(params = {}) ⇒ Types::UpdateTrialComponentResponse
Updates one or more properties of a trial component.
-
#update_user_profile(params = {}) ⇒ Types::UpdateUserProfileResponse
Updates a user profile.
-
#update_workforce(params = {}) ⇒ Types::UpdateWorkforceResponse
Use this operation to update your workforce.
-
#update_workteam(params = {}) ⇒ Types::UpdateWorkteamResponse
Updates an existing work team with new member definitions or description.
Instance Method Summary collapse
-
#initialize(options) ⇒ Client
constructor
A new instance of Client.
-
#wait_until(waiter_name, params = {}, options = {}) {|w.waiter| ... } ⇒ Boolean
Polls an API operation until a resource enters a desired state.
Methods included from ClientStubs
#api_requests, #stub_data, #stub_responses
Methods inherited from Seahorse::Client::Base
add_plugin, api, clear_plugins, define, new, #operation_names, plugins, remove_plugin, set_api, set_plugins
Methods included from Seahorse::Client::HandlerBuilder
#handle, #handle_request, #handle_response
Constructor Details
#initialize(options) ⇒ Client
Returns a new instance of Client.
451 452 453 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 451 def initialize(*args) super end |
Instance Method Details
#add_association(params = {}) ⇒ Types::AddAssociationResponse
Creates an association between the source and the destination. A source can be associated with multiple destinations, and a destination can be associated with multiple sources. An association is a lineage tracking entity. For more information, see Amazon SageMaker ML Lineage Tracking.
513 514 515 516 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 513 def add_association(params = {}, = {}) req = build_request(:add_association, params) req.send_request() end |
#add_tags(params = {}) ⇒ Types::AddTagsOutput
Adds or overwrites one or more tags for the specified SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints.
Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see Amazon Web Services Tagging Strategies.
Tags
parameter of
CreateHyperParameterTuningJob
Tags
parameter of CreateDomain or CreateUserProfile.
596 597 598 599 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 596 def (params = {}, = {}) req = build_request(:add_tags, params) req.send_request() end |
#associate_trial_component(params = {}) ⇒ Types::AssociateTrialComponentResponse
Associates a trial component with a trial. A trial component can be associated with multiple trials. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.
636 637 638 639 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 636 def associate_trial_component(params = {}, = {}) req = build_request(:associate_trial_component, params) req.send_request() end |
#batch_delete_cluster_nodes(params = {}) ⇒ Types::BatchDeleteClusterNodesResponse
Deletes specific nodes within a SageMaker HyperPod cluster.
BatchDeleteClusterNodes
accepts a cluster name and a list of node
IDs.
To safeguard your work, back up your data to Amazon S3 or an FSx for Lustre file system before invoking the API on a worker node group. This will help prevent any potential data loss from the instance root volume. For more information about backup, see Use the backup script provided by SageMaker HyperPod.
If you want to invoke this API on an existing cluster, you'll first need to patch the cluster by running the UpdateClusterSoftware API. For more information about patching a cluster, see Update the SageMaker HyperPod platform software of a cluster.
699 700 701 702 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 699 def batch_delete_cluster_nodes(params = {}, = {}) req = build_request(:batch_delete_cluster_nodes, params) req.send_request() end |
#batch_describe_model_package(params = {}) ⇒ Types::BatchDescribeModelPackageOutput
This action batch describes a list of versioned model packages
771 772 773 774 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 771 def batch_describe_model_package(params = {}, = {}) req = build_request(:batch_describe_model_package, params) req.send_request() end |
#create_action(params = {}) ⇒ Types::CreateActionResponse
Creates an action. An action is a lineage tracking entity that represents an action or activity. For example, a model deployment or an HPO job. Generally, an action involves at least one input or output artifact. For more information, see Amazon SageMaker ML Lineage Tracking.
852 853 854 855 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 852 def create_action(params = {}, = {}) req = build_request(:create_action, params) req.send_request() end |
#create_algorithm(params = {}) ⇒ Types::CreateAlgorithmOutput
Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services Marketplace.
1147 1148 1149 1150 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 1147 def create_algorithm(params = {}, = {}) req = build_request(:create_algorithm, params) req.send_request() end |
#create_app(params = {}) ⇒ Types::CreateAppResponse
Creates a running app for the specified UserProfile. This operation is automatically invoked by Amazon SageMaker AI upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.
1226 1227 1228 1229 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 1226 def create_app(params = {}, = {}) req = build_request(:create_app, params) req.send_request() end |
#create_app_image_config(params = {}) ⇒ Types::CreateAppImageConfigResponse
Creates a configuration for running a SageMaker AI image as a KernelGateway app. The configuration specifies the Amazon Elastic File System storage volume on the image, and a list of the kernels in the image.
1325 1326 1327 1328 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 1325 def create_app_image_config(params = {}, = {}) req = build_request(:create_app_image_config, params) req.send_request() end |
#create_artifact(params = {}) ⇒ Types::CreateArtifactResponse
Creates an artifact. An artifact is a lineage tracking entity that represents a URI addressable object or data. Some examples are the S3 URI of a dataset and the ECR registry path of an image. For more information, see Amazon SageMaker ML Lineage Tracking.
1401 1402 1403 1404 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 1401 def create_artifact(params = {}, = {}) req = build_request(:create_artifact, params) req.send_request() end |
#create_auto_ml_job(params = {}) ⇒ Types::CreateAutoMLJobResponse
Creates an Autopilot job also referred to as Autopilot experiment or AutoML job.
An AutoML job in SageMaker AI is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker AI then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AI AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment.
For more information about AutoML jobs, see https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html in the SageMaker AI developer guide.
CreateAutoMLJobV2
can manage tabular problem types identical to
those of its previous version CreateAutoMLJob
, as well as
time-series forecasting, non-tabular problem types such as image or
text classification, and text generation (LLMs fine-tuning).
Find guidelines about how to migrate a CreateAutoMLJob
to
CreateAutoMLJobV2
in Migrate a CreateAutoMLJob to
CreateAutoMLJobV2.
You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.
1600 1601 1602 1603 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 1600 def create_auto_ml_job(params = {}, = {}) req = build_request(:create_auto_ml_job, params) req.send_request() end |
#create_auto_ml_job_v2(params = {}) ⇒ Types::CreateAutoMLJobV2Response
Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.
An AutoML job in SageMaker AI is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker AI then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AI AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment.
For more information about AutoML jobs, see https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html in the SageMaker AI developer guide.
AutoML jobs V2 support various problem types such as regression, binary, and multiclass classification with tabular data, text and image classification, time-series forecasting, and fine-tuning of large language models (LLMs) for text generation.
CreateAutoMLJobV2
can manage tabular problem types identical to
those of its previous version CreateAutoMLJob
, as well as
time-series forecasting, non-tabular problem types such as image or
text classification, and text generation (LLMs fine-tuning).
Find guidelines about how to migrate a CreateAutoMLJob
to
CreateAutoMLJobV2
in Migrate a CreateAutoMLJob to
CreateAutoMLJobV2.
For the list of available problem types supported by
CreateAutoMLJobV2
, see AutoMLProblemTypeConfig.
You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
1918 1919 1920 1921 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 1918 def create_auto_ml_job_v2(params = {}, = {}) req = build_request(:create_auto_ml_job_v2, params) req.send_request() end |
#create_cluster(params = {}) ⇒ Types::CreateClusterResponse
Creates a SageMaker HyperPod cluster. SageMaker HyperPod is a capability of SageMaker for creating and managing persistent clusters for developing large machine learning models, such as large language models (LLMs) and diffusion models. To learn more, see Amazon SageMaker HyperPod in the Amazon SageMaker Developer Guide.
2033 2034 2035 2036 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 2033 def create_cluster(params = {}, = {}) req = build_request(:create_cluster, params) req.send_request() end |
#create_cluster_scheduler_config(params = {}) ⇒ Types::CreateClusterSchedulerConfigResponse
Create cluster policy configuration. This policy is used for task prioritization and fair-share allocation of idle compute. This helps prioritize critical workloads and distributes idle compute across entities.
2095 2096 2097 2098 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 2095 def create_cluster_scheduler_config(params = {}, = {}) req = build_request(:create_cluster_scheduler_config, params) req.send_request() end |
#create_code_repository(params = {}) ⇒ Types::CreateCodeRepositoryOutput
Creates a Git repository as a resource in your SageMaker AI account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your SageMaker AI account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with.
The repository can be hosted either in Amazon Web Services CodeCommit or in any other Git repository.
2163 2164 2165 2166 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 2163 def create_code_repository(params = {}, = {}) req = build_request(:create_code_repository, params) req.send_request() end |
#create_compilation_job(params = {}) ⇒ Types::CreateCompilationJobResponse
Starts a model compilation job. After the model has been compiled, Amazon SageMaker AI saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify.
If you choose to host your model using Amazon SageMaker AI hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with Amazon Web Services IoT Greengrass. In that case, deploy them as an ML resource.
In the request body, you provide the following:
A name for the compilation job
Information about the input model artifacts
The output location for the compiled model and the device (target) that the model runs on
The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker AI assumes to perform the model compilation job.
You can also provide a Tag
to track the model compilation job's
resource use and costs. The response body contains the
CompilationJobArn
for the compiled job.
To stop a model compilation job, use StopCompilationJob. To get information about a particular model compilation job, use DescribeCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
2326 2327 2328 2329 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 2326 def create_compilation_job(params = {}, = {}) req = build_request(:create_compilation_job, params) req.send_request() end |
#create_compute_quota(params = {}) ⇒ Types::CreateComputeQuotaResponse
Create compute allocation definition. This defines how compute is allocated, shared, and borrowed for specified entities. Specifically, how to lend and borrow idle compute and assign a fair-share weight to the specified entities.
2408 2409 2410 2411 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 2408 def create_compute_quota(params = {}, = {}) req = build_request(:create_compute_quota, params) req.send_request() end |
#create_context(params = {}) ⇒ Types::CreateContextResponse
Creates a context. A context is a lineage tracking entity that represents a logical grouping of other tracking or experiment entities. Some examples are an endpoint and a model package. For more information, see Amazon SageMaker ML Lineage Tracking.
2475 2476 2477 2478 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 2475 def create_context(params = {}, = {}) req = build_request(:create_context, params) req.send_request() end |
#create_data_quality_job_definition(params = {}) ⇒ Types::CreateDataQualityJobDefinitionResponse
Creates a definition for a job that monitors data quality and drift. For information about model monitor, see Amazon SageMaker AI Model Monitor.
2640 2641 2642 2643 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 2640 def create_data_quality_job_definition(params = {}, = {}) req = build_request(:create_data_quality_job_definition, params) req.send_request() end |
#create_device_fleet(params = {}) ⇒ Struct
Creates a device fleet.
2699 2700 2701 2702 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 2699 def create_device_fleet(params = {}, = {}) req = build_request(:create_device_fleet, params) req.send_request() end |
#create_domain(params = {}) ⇒ Types::CreateDomainResponse
Creates a Domain
. A domain consists of an associated Amazon Elastic
File System volume, a list of authorized users, and a variety of
security, application, policy, and Amazon Virtual Private Cloud (VPC)
configurations. Users within a domain can share notebook files and
other artifacts with each other.
EFS storage
When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files.
SageMaker AI uses the Amazon Web Services Key Management Service (Amazon Web Services KMS) to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key by default. For more control, you can specify a customer managed key. For more information, see Protect Data at Rest Using Encryption.
VPC configuration
All traffic between the domain and the Amazon EFS volume is through
the specified VPC and subnets. For other traffic, you can specify the
AppNetworkAccessType
parameter. AppNetworkAccessType
corresponds
to the network access type that you choose when you onboard to the
domain. The following options are available:
PublicInternetOnly
- Non-EFS traffic goes through a VPC managed by Amazon SageMaker AI, which allows internet access. This is the default value.VpcOnly
- All traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway.When internet access is disabled, you won't be able to run a Amazon SageMaker AI Studio notebook or to train or host models unless your VPC has an interface endpoint to the SageMaker AI API and runtime or a NAT gateway and your security groups allow outbound connections.
NFS traffic over TCP on port 2049 needs to be allowed in both inbound and outbound rules in order to launch a Amazon SageMaker AI Studio app successfully.
For more information, see Connect Amazon SageMaker AI Studio Notebooks to Resources in a VPC.
3175 3176 3177 3178 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 3175 def create_domain(params = {}, = {}) req = build_request(:create_domain, params) req.send_request() end |
#create_edge_deployment_plan(params = {}) ⇒ Types::CreateEdgeDeploymentPlanResponse
Creates an edge deployment plan, consisting of multiple stages. Each stage may have a different deployment configuration and devices.
3244 3245 3246 3247 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 3244 def create_edge_deployment_plan(params = {}, = {}) req = build_request(:create_edge_deployment_plan, params) req.send_request() end |
#create_edge_deployment_stage(params = {}) ⇒ Struct
Creates a new stage in an existing edge deployment plan.
3283 3284 3285 3286 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 3283 def create_edge_deployment_stage(params = {}, = {}) req = build_request(:create_edge_deployment_stage, params) req.send_request() end |
#create_edge_packaging_job(params = {}) ⇒ Struct
Starts a SageMaker Edge Manager model packaging job. Edge Manager will use the model artifacts from the Amazon Simple Storage Service bucket that you specify. After the model has been packaged, Amazon SageMaker saves the resulting artifacts to an S3 bucket that you specify.
3350 3351 3352 3353 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 3350 def create_edge_packaging_job(params = {}, = {}) req = build_request(:create_edge_packaging_job, params) req.send_request() end |
#create_endpoint(params = {}) ⇒ Types::CreateEndpointOutput
Creates an endpoint using the endpoint configuration specified in the request. SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the CreateEndpointConfig API.
Use this API to deploy models using SageMaker hosting services.
EndpointConfig
that is in use by an endpoint
that is live or while the UpdateEndpoint
or CreateEndpoint
operations are being performed on the endpoint. To update an endpoint,
you must create a new EndpointConfig
.
The endpoint name must be unique within an Amazon Web Services Region in your Amazon Web Services account.
When it receives the request, SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them.
Eventually Consistent Reads
,
the response might not reflect the results of a recently completed
write operation. The response might include some stale data. If the
dependent entities are not yet in DynamoDB, this causes a validation
error. If you repeat your read request after a short time, the
response should return the latest data. So retry logic is recommended
to handle these possible issues. We also recommend that customers call
DescribeEndpointConfig before calling CreateEndpoint to
minimize the potential impact of a DynamoDB eventually consistent
read.
When SageMaker receives the request, it sets the endpoint status to
Creating
. After it creates the endpoint, it sets the status to
InService
. SageMaker can then process incoming requests for
inferences. To check the status of an endpoint, use the
DescribeEndpoint API.
If any of the models hosted at this endpoint get model data from an Amazon S3 location, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provided. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region in the Amazon Web Services Identity and Access Management User Guide.
Option 1: For a full SageMaker access, search and attach the
AmazonSageMakerFullAccess
policy.Option 2: For granting a limited access to an IAM role, paste the following Action elements manually into the JSON file of the IAM role:
"Action": ["sagemaker:CreateEndpoint", "sagemaker:CreateEndpointConfig"]
"Resource": [
"arn:aws:sagemaker:region:account-id:endpoint/endpointName"
"arn:aws:sagemaker:region:account-id:endpoint-config/endpointConfigName"
]
For more information, see SageMaker API Permissions: Actions, Permissions, and Resources Reference.
3541 3542 3543 3544 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 3541 def create_endpoint(params = {}, = {}) req = build_request(:create_endpoint, params) req.send_request() end |
#create_endpoint_config(params = {}) ⇒ Types::CreateEndpointConfigOutput
Creates an endpoint configuration that SageMaker hosting services uses
to deploy models. In the configuration, you identify one or more
models, created using the CreateModel
API, to deploy and the
resources that you want SageMaker to provision. Then you call the
CreateEndpoint API.
In the request, you define a ProductionVariant
, for each model that
you want to deploy. Each ProductionVariant
parameter also describes
the resources that you want SageMaker to provision. This includes the
number and type of ML compute instances to deploy.
If you are hosting multiple models, you also assign a VariantWeight
to specify how much traffic you want to allocate to each model. For
example, suppose that you want to host two models, A and B, and you
assign traffic weight 2 for model A and 1 for model B. SageMaker
distributes two-thirds of the traffic to Model A, and one-third to
model B.
Eventually Consistent Reads
,
the response might not reflect the results of a recently completed
write operation. The response might include some stale data. If the
dependent entities are not yet in DynamoDB, this causes a validation
error. If you repeat your read request after a short time, the
response should return the latest data. So retry logic is recommended
to handle these possible issues. We also recommend that customers call
DescribeEndpointConfig before calling CreateEndpoint to
minimize the potential impact of a DynamoDB eventually consistent
read.
3867 3868 3869 3870 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 3867 def create_endpoint_config(params = {}, = {}) req = build_request(:create_endpoint_config, params) req.send_request() end |
#create_experiment(params = {}) ⇒ Types::CreateExperimentResponse
Creates a SageMaker experiment. An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called trial components, that produce a machine learning model.
The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant.
When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK.
You can add tags to experiments, trials, trial components and then use the Search API to search for the tags.
To add a description to an experiment, specify the optional
Description
parameter. To add a description later, or to change the
description, call the UpdateExperiment API.
To get a list of all your experiments, call the ListExperiments API. To view an experiment's properties, call the DescribeExperiment API. To get a list of all the trials associated with an experiment, call the ListTrials API. To create a trial call the CreateTrial API.
3960 3961 3962 3963 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 3960 def create_experiment(params = {}, = {}) req = build_request(:create_experiment, params) req.send_request() end |
#create_feature_group(params = {}) ⇒ Types::CreateFeatureGroupResponse
Create a new FeatureGroup
. A FeatureGroup
is a group of Features
defined in the FeatureStore
to describe a Record
.
The FeatureGroup
defines the schema and features contained in the
FeatureGroup
. A FeatureGroup
definition is composed of a list of
Features
, a RecordIdentifierFeatureName
, an EventTimeFeatureName
and configurations for its OnlineStore
and OfflineStore
. Check
Amazon Web Services service quotas to see the FeatureGroup
s
quota for your Amazon Web Services account.
Note that it can take approximately 10-15 minutes to provision an
OnlineStore
FeatureGroup
with the InMemory
StorageType
.
You must include at least one of OnlineStoreConfig
and
OfflineStoreConfig
to create a FeatureGroup
.
4185 4186 4187 4188 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 4185 def create_feature_group(params = {}, = {}) req = build_request(:create_feature_group, params) req.send_request() end |
#create_flow_definition(params = {}) ⇒ Types::CreateFlowDefinitionResponse
Creates a flow definition.
4276 4277 4278 4279 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 4276 def create_flow_definition(params = {}, = {}) req = build_request(:create_flow_definition, params) req.send_request() end |
#create_hub(params = {}) ⇒ Types::CreateHubResponse
Create a hub.
4331 4332 4333 4334 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 4331 def create_hub(params = {}, = {}) req = build_request(:create_hub, params) req.send_request() end |
#create_hub_content_reference(params = {}) ⇒ Types::CreateHubContentReferenceResponse
Create a hub content reference in order to add a model in the JumpStart public hub to a private hub.
4383 4384 4385 4386 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 4383 def create_hub_content_reference(params = {}, = {}) req = build_request(:create_hub_content_reference, params) req.send_request() end |
#create_human_task_ui(params = {}) ⇒ Types::CreateHumanTaskUiResponse
Defines the settings you will use for the human review workflow user interface. Reviewers will see a three-panel interface with an instruction area, the item to review, and an input area.
4430 4431 4432 4433 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 4430 def create_human_task_ui(params = {}, = {}) req = build_request(:create_human_task_ui, params) req.send_request() end |
#create_hyper_parameter_tuning_job(params = {}) ⇒ Types::CreateHyperParameterTuningJobResponse
Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.
A hyperparameter tuning job automatically creates Amazon SageMaker experiments, trials, and trial components for each training job that it runs. You can view these entities in Amazon SageMaker Studio. For more information, see View Experiments, Trials, and Trial Components.
Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.
4929 4930 4931 4932 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 4929 def create_hyper_parameter_tuning_job(params = {}, = {}) req = build_request(:create_hyper_parameter_tuning_job, params) req.send_request() end |
#create_image(params = {}) ⇒ Types::CreateImageResponse
Creates a custom SageMaker AI image. A SageMaker AI image is a set of image versions. Each image version represents a container image stored in Amazon ECR. For more information, see Bring your own SageMaker AI image.
4987 4988 4989 4990 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 4987 def create_image(params = {}, = {}) req = build_request(:create_image, params) req.send_request() end |
#create_image_version(params = {}) ⇒ Types::CreateImageVersionResponse
Creates a version of the SageMaker AI image specified by ImageName
.
The version represents the Amazon ECR container image specified by
BaseImage
.
5092 5093 5094 5095 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 5092 def create_image_version(params = {}, = {}) req = build_request(:create_image_version, params) req.send_request() end |
#create_inference_component(params = {}) ⇒ Types::CreateInferenceComponentOutput
Creates an inference component, which is a SageMaker AI hosting object that you can use to deploy a model to an endpoint. In the inference component settings, you specify the model, the endpoint, and how the model utilizes the resources that the endpoint hosts. You can optimize resource utilization by tailoring how the required CPU cores, accelerators, and memory are allocated. You can deploy multiple inference components to an endpoint, where each inference component contains one model and the resource utilization needs for that individual model. After you deploy an inference component, you can directly invoke the associated model when you use the InvokeEndpoint API action.
5187 5188 5189 5190 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 5187 def create_inference_component(params = {}, = {}) req = build_request(:create_inference_component, params) req.send_request() end |
#create_inference_experiment(params = {}) ⇒ Types::CreateInferenceExperimentResponse
Creates an inference experiment using the configurations specified in the request.
Use this API to setup and schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For more information about inference experiments, see Shadow tests.
Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based on your specified configuration.
While the experiment is in progress or after it has concluded, you can view metrics that compare your model variants. For more information, see View, monitor, and edit shadow tests.
5386 5387 5388 5389 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 5386 def create_inference_experiment(params = {}, = {}) req = build_request(:create_inference_experiment, params) req.send_request() end |
#create_inference_recommendations_job(params = {}) ⇒ Types::CreateInferenceRecommendationsJobResponse
Starts a recommendation job. You can create either an instance recommendation or load test job.
5549 5550 5551 5552 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 5549 def create_inference_recommendations_job(params = {}, = {}) req = build_request(:create_inference_recommendations_job, params) req.send_request() end |
#create_labeling_job(params = {}) ⇒ Types::CreateLabelingJobResponse
Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models.
You can select your workforce from one of three providers:
A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.
One or more vendors that you select from the Amazon Web Services Marketplace. Vendors provide expertise in specific areas.
The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.
You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling.
The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data.
The output can be used as the manifest file for another labeling job or as training data for your machine learning models.
You can use this operation to create a static labeling job or a
streaming labeling job. A static labeling job stops if all data
objects in the input manifest file identified in ManifestS3Uri
have
been labeled. A streaming labeling job runs perpetually until it is
manually stopped, or remains idle for 10 days. You can send new data
objects to an active (InProgress
) streaming labeling job in real
time. To learn how to create a static labeling job, see Create a
Labeling Job (API) in the Amazon SageMaker Developer Guide. To
learn how to create a streaming labeling job, see Create a Streaming
Labeling Job.
5858 5859 5860 5861 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 5858 def create_labeling_job(params = {}, = {}) req = build_request(:create_labeling_job, params) req.send_request() end |
#create_mlflow_tracking_server(params = {}) ⇒ Types::CreateMlflowTrackingServerResponse
Creates an MLflow Tracking Server using a general purpose Amazon S3 bucket as the artifact store. For more information, see Create an MLflow Tracking Server.
5955 5956 5957 5958 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 5955 def create_mlflow_tracking_server(params = {}, = {}) req = build_request(:create_mlflow_tracking_server, params) req.send_request() end |
#create_model(params = {}) ⇒ Types::CreateModelOutput
Creates a model in SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions.
Use this API to create a model if you want to use SageMaker hosting services or run a batch transform job.
To host your model, you create an endpoint configuration with the
CreateEndpointConfig
API, and then create an endpoint with the
CreateEndpoint
API. SageMaker then deploys all of the containers
that you defined for the model in the hosting environment.
To run a batch transform using your model, you start a job with the
CreateTransformJob
API. SageMaker uses your model and your dataset
to get inferences which are then saved to a specified S3 location.
In the request, you also provide an IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other Amazon Web Services resources, you grant necessary permissions via this role.
6189 6190 6191 6192 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 6189 def create_model(params = {}, = {}) req = build_request(:create_model, params) req.send_request() end |
#create_model_bias_job_definition(params = {}) ⇒ Types::CreateModelBiasJobDefinitionResponse
Creates the definition for a model bias job.
6346 6347 6348 6349 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 6346 def create_model_bias_job_definition(params = {}, = {}) req = build_request(:create_model_bias_job_definition, params) req.send_request() end |
#create_model_card(params = {}) ⇒ Types::CreateModelCardResponse
Creates an Amazon SageMaker Model Card.
For information about how to use model cards, see Amazon SageMaker Model Card.
6422 6423 6424 6425 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 6422 def create_model_card(params = {}, = {}) req = build_request(:create_model_card, params) req.send_request() end |
#create_model_card_export_job(params = {}) ⇒ Types::CreateModelCardExportJobResponse
Creates an Amazon SageMaker Model Card export job.
6466 6467 6468 6469 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 6466 def create_model_card_export_job(params = {}, = {}) req = build_request(:create_model_card_export_job, params) req.send_request() end |
#create_model_explainability_job_definition(params = {}) ⇒ Types::CreateModelExplainabilityJobDefinitionResponse
Creates the definition for a model explainability job.
6621 6622 6623 6624 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 6621 def create_model_explainability_job_definition(params = {}, = {}) req = build_request(:create_model_explainability_job_definition, params) req.send_request() end |
#create_model_package(params = {}) ⇒ Types::CreateModelPackageOutput
Creates a model package that you can use to create SageMaker models or list on Amazon Web Services Marketplace, or a versioned model that is part of a model group. Buyers can subscribe to model packages listed on Amazon Web Services Marketplace to create models in SageMaker.
To create a model package by specifying a Docker container that
contains your inference code and the Amazon S3 location of your model
artifacts, provide values for InferenceSpecification
. To create a
model from an algorithm resource that you created or subscribed to in
Amazon Web Services Marketplace, provide a value for
SourceAlgorithmSpecification
.
Versioned - a model that is part of a model group in the model registry.
Unversioned - a model package that is not part of a model group.
7125 7126 7127 7128 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 7125 def create_model_package(params = {}, = {}) req = build_request(:create_model_package, params) req.send_request() end |
#create_model_package_group(params = {}) ⇒ Types::CreateModelPackageGroupOutput
Creates a model group. A model group contains a group of model versions.
7173 7174 7175 7176 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 7173 def create_model_package_group(params = {}, = {}) req = build_request(:create_model_package_group, params) req.send_request() end |
#create_model_quality_job_definition(params = {}) ⇒ Types::CreateModelQualityJobDefinitionResponse
Creates a definition for a job that monitors model quality and drift. For information about model monitor, see Amazon SageMaker AI Model Monitor.
7339 7340 7341 7342 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 7339 def create_model_quality_job_definition(params = {}, = {}) req = build_request(:create_model_quality_job_definition, params) req.send_request() end |
#create_monitoring_schedule(params = {}) ⇒ Types::CreateMonitoringScheduleResponse
Creates a schedule that regularly starts Amazon SageMaker AI Processing Jobs to monitor the data captured for an Amazon SageMaker AI Endpoint.
7488 7489 7490 7491 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 7488 def create_monitoring_schedule(params = {}, = {}) req = build_request(:create_monitoring_schedule, params) req.send_request() end |
#create_notebook_instance(params = {}) ⇒ Types::CreateNotebookInstanceOutput
Creates an SageMaker AI notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook.
In a CreateNotebookInstance
request, specify the type of ML compute
instance that you want to run. SageMaker AI launches the instance,
installs common libraries that you can use to explore datasets for
model training, and attaches an ML storage volume to the notebook
instance.
SageMaker AI also provides a set of example notebooks. Each notebook demonstrates how to use SageMaker AI with a specific algorithm or with a machine learning framework.
After receiving the request, SageMaker AI does the following:
Creates a network interface in the SageMaker AI VPC.
(Option) If you specified
SubnetId
, SageMaker AI creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, SageMaker AI attaches the security group that you specified in the request to the network interface that it creates in your VPC.Launches an EC2 instance of the type specified in the request in the SageMaker AI VPC. If you specified
SubnetId
of your VPC, SageMaker AI specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.
After creating the notebook instance, SageMaker AI returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it.
After SageMaker AI creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating SageMaker AI endpoints, and validate hosted models.
For more information, see How It Works.
7714 7715 7716 7717 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 7714 def create_notebook_instance(params = {}, = {}) req = build_request(:create_notebook_instance, params) req.send_request() end |
#create_notebook_instance_lifecycle_config(params = {}) ⇒ Types::CreateNotebookInstanceLifecycleConfigOutput
Creates a lifecycle configuration that you can associate with a notebook instance. A lifecycle configuration is a collection of shell scripts that run when you create or start a notebook instance.
Each lifecycle configuration script has a limit of 16384 characters.
The value of the $PATH
environment variable that is available to
both scripts is /sbin:bin:/usr/sbin:/usr/bin
.
View Amazon CloudWatch Logs for notebook instance lifecycle
configurations in log group /aws/sagemaker/NotebookInstances
in log
stream [notebook-instance-name]/[LifecycleConfigHook]
.
Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.
For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
7783 7784 7785 7786 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 7783 def create_notebook_instance_lifecycle_config(params = {}, = {}) req = build_request(:create_notebook_instance_lifecycle_config, params) req.send_request() end |
#create_optimization_job(params = {}) ⇒ Types::CreateOptimizationJobResponse
Creates a job that optimizes a model for inference performance. To create the job, you provide the location of a source model, and you provide the settings for the optimization techniques that you want the job to apply. When the job completes successfully, SageMaker uploads the new optimized model to the output destination that you specify.
For more information about how to use this action, and about the supported optimization techniques, see Optimize model inference with Amazon SageMaker.
7953 7954 7955 7956 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 7953 def create_optimization_job(params = {}, = {}) req = build_request(:create_optimization_job, params) req.send_request() end |
#create_partner_app(params = {}) ⇒ Types::CreatePartnerAppResponse
Creates an Amazon SageMaker Partner AI App.
8040 8041 8042 8043 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 8040 def create_partner_app(params = {}, = {}) req = build_request(:create_partner_app, params) req.send_request() end |
#create_partner_app_presigned_url(params = {}) ⇒ Types::CreatePartnerAppPresignedUrlResponse
Creates a presigned URL to access an Amazon SageMaker Partner AI App.
8078 8079 8080 8081 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 8078 def create_partner_app_presigned_url(params = {}, = {}) req = build_request(:create_partner_app_presigned_url, params) req.send_request() end |
#create_pipeline(params = {}) ⇒ Types::CreatePipelineResponse
Creates a pipeline using a JSON pipeline definition.
8163 8164 8165 8166 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 8163 def create_pipeline(params = {}, = {}) req = build_request(:create_pipeline, params) req.send_request() end |
#create_presigned_domain_url(params = {}) ⇒ Types::CreatePresignedDomainUrlResponse
Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to the domain, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System volume. This operation can only be called when the authentication mode equals IAM.
The IAM role or user passed to this API defines the permissions to access the app. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the app.
You can restrict access to this API and to the URL that it returns to a list of IP addresses, Amazon VPCs or Amazon VPC Endpoints that you specify. For more information, see Connect to Amazon SageMaker AI Studio Through an Interface VPC Endpoint .
CreatePresignedDomainUrl
has a
default timeout of 5 minutes. You can configure this value using
ExpiresInSeconds
. If you try to use the URL after the timeout
limit expires, you are directed to the Amazon Web Services console
sign-in page.
- The JupyterLab session default expiration time is 12 hours. You can configure this value using SessionExpirationDurationInSeconds.
8265 8266 8267 8268 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 8265 def create_presigned_domain_url(params = {}, = {}) req = build_request(:create_presigned_domain_url, params) req.send_request() end |
#create_presigned_mlflow_tracking_server_url(params = {}) ⇒ Types::CreatePresignedMlflowTrackingServerUrlResponse
Returns a presigned URL that you can use to connect to the MLflow UI attached to your tracking server. For more information, see Launch the MLflow UI using a presigned URL.
8308 8309 8310 8311 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 8308 def create_presigned_mlflow_tracking_server_url(params = {}, = {}) req = build_request(:create_presigned_mlflow_tracking_server_url, params) req.send_request() end |
#create_presigned_notebook_instance_url(params = {}) ⇒ Types::CreatePresignedNotebookInstanceUrlOutput
Returns a URL that you can use to connect to the Jupyter server from a
notebook instance. In the SageMaker AI console, when you choose Open
next to a notebook instance, SageMaker AI opens a new tab showing the
Jupyter server home page from the notebook instance. The console uses
this API to get the URL and show the page.
The IAM role or user used to call this API defines the permissions to access the notebook instance. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance.
You can restrict access to this API and to the URL that it returns to
a list of IP addresses that you specify. Use the NotIpAddress
condition operator and the aws:SourceIP
condition context key to
specify the list of IP addresses that you want to have access to the
notebook instance. For more information, see Limit Access to a
Notebook Instance by IP Address.
8370 8371 8372 8373 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 8370 def create_presigned_notebook_instance_url(params = {}, = {}) req = build_request(:create_presigned_notebook_instance_url, params) req.send_request() end |
#create_processing_job(params = {}) ⇒ Types::CreateProcessingJobResponse
Creates a processing job.
8554 8555 8556 8557 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 8554 def create_processing_job(params = {}, = {}) req = build_request(:create_processing_job, params) req.send_request() end |
#create_project(params = {}) ⇒ Types::CreateProjectOutput
Creates a machine learning (ML) project that can contain one or more templates that set up an ML pipeline from training to deploying an approved model.
8628 8629 8630 8631 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 8628 def create_project(params = {}, = {}) req = build_request(:create_project, params) req.send_request() end |
#create_space(params = {}) ⇒ Types::CreateSpaceResponse
Creates a private space or a space used for real time collaboration in a domain.
8774 8775 8776 8777 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 8774 def create_space(params = {}, = {}) req = build_request(:create_space, params) req.send_request() end |
#create_studio_lifecycle_config(params = {}) ⇒ Types::CreateStudioLifecycleConfigResponse
Creates a new Amazon SageMaker AI Studio Lifecycle Configuration.
8823 8824 8825 8826 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 8823 def create_studio_lifecycle_config(params = {}, = {}) req = build_request(:create_studio_lifecycle_config, params) req.send_request() end |
#create_training_job(params = {}) ⇒ Types::CreateTrainingJobResponse
Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify.
If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference.
In the request body, you provide the following:
AlgorithmSpecification
- Identifies the training algorithm to use.HyperParameters
- Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms.Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.
InputDataConfig
- Describes the input required by the training job and the Amazon S3, EFS, or FSx location where it is stored.OutputDataConfig
- Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training.ResourceConfig
- Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance.EnableManagedSpotTraining
- Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training.RoleArn
- The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training.StoppingCondition
- To help cap training costs, useMaxRuntimeInSeconds
to set a time limit for training. UseMaxWaitTimeInSeconds
to specify how long a managed spot training job has to complete.Environment
- The environment variables to set in the Docker container.RetryStrategy
- The number of times to retry the job when the job fails due to anInternalServerError
.
For more information about SageMaker, see How It Works.
9305 9306 9307 9308 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 9305 def create_training_job(params = {}, = {}) req = build_request(:create_training_job, params) req.send_request() end |
#create_training_plan(params = {}) ⇒ Types::CreateTrainingPlanResponse
Creates a new training plan in SageMaker to reserve compute capacity.
Amazon SageMaker Training Plan is a capability within SageMaker that allows customers to reserve and manage GPU capacity for large-scale AI model training. It provides a way to secure predictable access to computational resources within specific timelines and budgets, without the need to manage underlying infrastructure.
How it works
Plans can be created for specific resources such as SageMaker Training Jobs or SageMaker HyperPod clusters, automatically provisioning resources, setting up infrastructure, executing workloads, and handling infrastructure failures.
Plan creation workflow
Users search for available plan offerings based on their requirements (e.g., instance type, count, start time, duration) using the
SearchTrainingPlanOfferings
API operation.They create a plan that best matches their needs using the ID of the plan offering they want to use.
After successful upfront payment, the plan's status becomes
Scheduled
.The plan can be used to:
Queue training jobs.
Allocate to an instance group of a SageMaker HyperPod cluster.
When the plan start date arrives, it becomes
Active
. Based on available reserved capacity:Training jobs are launched.
Instance groups are provisioned.
Plan composition
A plan can consist of one or more Reserved Capacities, each defined by
a specific instance type, quantity, Availability Zone, duration, and
start and end times. For more information about Reserved Capacity, see
ReservedCapacitySummary
.
9391 9392 9393 9394 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 9391 def create_training_plan(params = {}, = {}) req = build_request(:create_training_plan, params) req.send_request() end |
#create_transform_job(params = {}) ⇒ Types::CreateTransformJobResponse
Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify.
To perform batch transformations, you create a transform job and use the data that you have readily available.
In the request body, you provide the following:
TransformJobName
- Identifies the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.ModelName
- Identifies the model to use.ModelName
must be the name of an existing Amazon SageMaker model in the same Amazon Web Services Region and Amazon Web Services account. For information on creating a model, see CreateModel.TransformInput
- Describes the dataset to be transformed and the Amazon S3 location where it is stored.TransformOutput
- Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.TransformResources
- Identifies the ML compute instances for the transform job.
For more information about how batch transformation works, see Batch Transform.
9625 9626 9627 9628 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 9625 def create_transform_job(params = {}, = {}) req = build_request(:create_transform_job, params) req.send_request() end |
#create_trial(params = {}) ⇒ Types::CreateTrialResponse
Creates an SageMaker trial. A trial is a set of steps called trial components that produce a machine learning model. A trial is part of a single SageMaker experiment.
When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK.
You can add tags to a trial and then use the Search API to search for the tags.
To get a list of all your trials, call the ListTrials API. To view a trial's properties, call the DescribeTrial API. To create a trial component, call the CreateTrialComponent API.
9707 9708 9709 9710 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 9707 def create_trial(params = {}, = {}) req = build_request(:create_trial, params) req.send_request() end |
#create_trial_component(params = {}) ⇒ Types::CreateTrialComponentResponse
Creates a trial component, which is a stage of a machine learning trial. A trial is composed of one or more trial components. A trial component can be used in multiple trials.
Trial components include pre-processing jobs, training jobs, and batch transform jobs.
When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK.
You can add tags to a trial component and then use the Search API to search for the tags.
9833 9834 9835 9836 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 9833 def create_trial_component(params = {}, = {}) req = build_request(:create_trial_component, params) req.send_request() end |
#create_user_profile(params = {}) ⇒ Types::CreateUserProfileResponse
Creates a user profile. A user profile represents a single user within a domain, and is the main way to reference a "person" for the purposes of sharing, reporting, and other user-oriented features. This entity is created when a user onboards to a domain. If an administrator invites a person by email or imports them from IAM Identity Center, a user profile is automatically created. A user profile is the primary holder of settings for an individual user and has a reference to the user's private Amazon Elastic File System home directory.
10106 10107 10108 10109 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10106 def create_user_profile(params = {}, = {}) req = build_request(:create_user_profile, params) req.send_request() end |
#create_workforce(params = {}) ⇒ Types::CreateWorkforceResponse
Use this operation to create a workforce. This operation will return an error if a workforce already exists in the Amazon Web Services Region that you specify. You can only create one workforce in each Amazon Web Services Region per Amazon Web Services account.
If you want to create a new workforce in an Amazon Web Services Region
where a workforce already exists, use the DeleteWorkforce API
operation to delete the existing workforce and then use
CreateWorkforce
to create a new workforce.
To create a private workforce using Amazon Cognito, you must specify a
Cognito user pool in CognitoConfig
. You can also create an Amazon
Cognito workforce using the Amazon SageMaker console. For more
information, see Create a Private Workforce (Amazon Cognito).
To create a private workforce using your own OIDC Identity Provider
(IdP), specify your IdP configuration in OidcConfig
. Your OIDC IdP
must support groups because groups are used by Ground Truth and
Amazon A2I to create work teams. For more information, see Create a
Private Workforce (OIDC IdP).
10226 10227 10228 10229 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10226 def create_workforce(params = {}, = {}) req = build_request(:create_workforce, params) req.send_request() end |
#create_workteam(params = {}) ⇒ Types::CreateWorkteamResponse
Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team.
You cannot create more than 25 work teams in an account and region.
10343 10344 10345 10346 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10343 def create_workteam(params = {}, = {}) req = build_request(:create_workteam, params) req.send_request() end |
#delete_action(params = {}) ⇒ Types::DeleteActionResponse
Deletes an action.
10371 10372 10373 10374 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10371 def delete_action(params = {}, = {}) req = build_request(:delete_action, params) req.send_request() end |
#delete_algorithm(params = {}) ⇒ Struct
Removes the specified algorithm from your account.
10393 10394 10395 10396 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10393 def delete_algorithm(params = {}, = {}) req = build_request(:delete_algorithm, params) req.send_request() end |
#delete_app(params = {}) ⇒ Struct
Used to stop and delete an app.
10433 10434 10435 10436 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10433 def delete_app(params = {}, = {}) req = build_request(:delete_app, params) req.send_request() end |
#delete_app_image_config(params = {}) ⇒ Struct
Deletes an AppImageConfig.
10455 10456 10457 10458 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10455 def delete_app_image_config(params = {}, = {}) req = build_request(:delete_app_image_config, params) req.send_request() end |
#delete_artifact(params = {}) ⇒ Types::DeleteArtifactResponse
Deletes an artifact. Either ArtifactArn
or Source
must be
specified.
10496 10497 10498 10499 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10496 def delete_artifact(params = {}, = {}) req = build_request(:delete_artifact, params) req.send_request() end |
#delete_association(params = {}) ⇒ Types::DeleteAssociationResponse
Deletes an association.
10530 10531 10532 10533 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10530 def delete_association(params = {}, = {}) req = build_request(:delete_association, params) req.send_request() end |
#delete_cluster(params = {}) ⇒ Types::DeleteClusterResponse
Delete a SageMaker HyperPod cluster.
10559 10560 10561 10562 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10559 def delete_cluster(params = {}, = {}) req = build_request(:delete_cluster, params) req.send_request() end |
#delete_cluster_scheduler_config(params = {}) ⇒ Struct
Deletes the cluster policy of the cluster.
10581 10582 10583 10584 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10581 def delete_cluster_scheduler_config(params = {}, = {}) req = build_request(:delete_cluster_scheduler_config, params) req.send_request() end |
#delete_code_repository(params = {}) ⇒ Struct
Deletes the specified Git repository from your account.
10603 10604 10605 10606 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10603 def delete_code_repository(params = {}, = {}) req = build_request(:delete_code_repository, params) req.send_request() end |
#delete_compilation_job(params = {}) ⇒ Struct
Deletes the specified compilation job. This action deletes only the compilation job resource in Amazon SageMaker AI. It doesn't delete other resources that are related to that job, such as the model artifacts that the job creates, the compilation logs in CloudWatch, the compiled model, or the IAM role.
You can delete a compilation job only if its current status is
COMPLETED
, FAILED
, or STOPPED
. If the job status is STARTING
or INPROGRESS
, stop the job, and then delete it after its status
becomes STOPPED
.
10634 10635 10636 10637 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10634 def delete_compilation_job(params = {}, = {}) req = build_request(:delete_compilation_job, params) req.send_request() end |
#delete_compute_quota(params = {}) ⇒ Struct
Deletes the compute allocation from the cluster.
10656 10657 10658 10659 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10656 def delete_compute_quota(params = {}, = {}) req = build_request(:delete_compute_quota, params) req.send_request() end |
#delete_context(params = {}) ⇒ Types::DeleteContextResponse
Deletes an context.
10684 10685 10686 10687 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10684 def delete_context(params = {}, = {}) req = build_request(:delete_context, params) req.send_request() end |
#delete_data_quality_job_definition(params = {}) ⇒ Struct
Deletes a data quality monitoring job definition.
10706 10707 10708 10709 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10706 def delete_data_quality_job_definition(params = {}, = {}) req = build_request(:delete_data_quality_job_definition, params) req.send_request() end |
#delete_device_fleet(params = {}) ⇒ Struct
Deletes a fleet.
10728 10729 10730 10731 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10728 def delete_device_fleet(params = {}, = {}) req = build_request(:delete_device_fleet, params) req.send_request() end |
#delete_domain(params = {}) ⇒ Struct
Used to delete a domain. If you onboarded with IAM mode, you will need to delete your domain to onboard again using IAM Identity Center. Use with caution. All of the members of the domain will lose access to their EFS volume, including data, notebooks, and other artifacts.
10761 10762 10763 10764 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10761 def delete_domain(params = {}, = {}) req = build_request(:delete_domain, params) req.send_request() end |
#delete_edge_deployment_plan(params = {}) ⇒ Struct
Deletes an edge deployment plan if (and only if) all the stages in the plan are inactive or there are no stages in the plan.
10784 10785 10786 10787 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10784 def delete_edge_deployment_plan(params = {}, = {}) req = build_request(:delete_edge_deployment_plan, params) req.send_request() end |
#delete_edge_deployment_stage(params = {}) ⇒ Struct
Delete a stage in an edge deployment plan if (and only if) the stage is inactive.
10812 10813 10814 10815 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10812 def delete_edge_deployment_stage(params = {}, = {}) req = build_request(:delete_edge_deployment_stage, params) req.send_request() end |
#delete_endpoint(params = {}) ⇒ Struct
Deletes an endpoint. SageMaker frees up all of the resources that were deployed when the endpoint was created.
SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the RevokeGrant API call.
When you delete your endpoint, SageMaker asynchronously deletes
associated endpoint resources such as KMS key grants. You might still
see these resources in your account for a few minutes after deleting
your endpoint. Do not delete or revoke the permissions for your
ExecutionRoleArn
, otherwise SageMaker cannot delete these resources.
10849 10850 10851 10852 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10849 def delete_endpoint(params = {}, = {}) req = build_request(:delete_endpoint, params) req.send_request() end |
#delete_endpoint_config(params = {}) ⇒ Struct
Deletes an endpoint configuration. The DeleteEndpointConfig
API
deletes only the specified configuration. It does not delete endpoints
created using the configuration.
You must not delete an EndpointConfig
in use by an endpoint that is
live or while the UpdateEndpoint
or CreateEndpoint
operations are
being performed on the endpoint. If you delete the EndpointConfig
of
an endpoint that is active or being created or updated you may lose
visibility into the instance type the endpoint is using. The endpoint
must be deleted in order to stop incurring charges.
10880 10881 10882 10883 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10880 def delete_endpoint_config(params = {}, = {}) req = build_request(:delete_endpoint_config, params) req.send_request() end |
#delete_experiment(params = {}) ⇒ Types::DeleteExperimentResponse
Deletes an SageMaker experiment. All trials associated with the experiment must be deleted first. Use the ListTrials API to get a list of the trials associated with the experiment.
10914 10915 10916 10917 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10914 def delete_experiment(params = {}, = {}) req = build_request(:delete_experiment, params) req.send_request() end |
#delete_feature_group(params = {}) ⇒ Struct
Delete the FeatureGroup
and any data that was written to the
OnlineStore
of the FeatureGroup
. Data cannot be accessed from the
OnlineStore
immediately after DeleteFeatureGroup
is called.
Data written into the OfflineStore
will not be deleted. The Amazon
Web Services Glue database and tables that are automatically created
for your OfflineStore
are not deleted.
Note that it can take approximately 10-15 minutes to delete an
OnlineStore
FeatureGroup
with the InMemory
StorageType
.
10947 10948 10949 10950 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10947 def delete_feature_group(params = {}, = {}) req = build_request(:delete_feature_group, params) req.send_request() end |
#delete_flow_definition(params = {}) ⇒ Struct
Deletes the specified flow definition.
10969 10970 10971 10972 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10969 def delete_flow_definition(params = {}, = {}) req = build_request(:delete_flow_definition, params) req.send_request() end |
#delete_hub(params = {}) ⇒ Struct
Delete a hub.
10991 10992 10993 10994 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 10991 def delete_hub(params = {}, = {}) req = build_request(:delete_hub, params) req.send_request() end |
#delete_hub_content(params = {}) ⇒ Struct
Delete the contents of a hub.
11025 11026 11027 11028 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11025 def delete_hub_content(params = {}, = {}) req = build_request(:delete_hub_content, params) req.send_request() end |
#delete_hub_content_reference(params = {}) ⇒ Struct
Delete a hub content reference in order to remove a model from a private hub.
11057 11058 11059 11060 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11057 def delete_hub_content_reference(params = {}, = {}) req = build_request(:delete_hub_content_reference, params) req.send_request() end |
#delete_human_task_ui(params = {}) ⇒ Struct
Use this operation to delete a human task user interface (worker task template).
To see a list of human task user interfaces (work task templates) in
your account, use ListHumanTaskUis. When you delete a worker task
template, it no longer appears when you call ListHumanTaskUis
.
11089 11090 11091 11092 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11089 def delete_human_task_ui(params = {}, = {}) req = build_request(:delete_human_task_ui, params) req.send_request() end |
#delete_hyper_parameter_tuning_job(params = {}) ⇒ Struct
Deletes a hyperparameter tuning job. The
DeleteHyperParameterTuningJob
API deletes only the tuning job entry
that was created in SageMaker when you called the
CreateHyperParameterTuningJob
API. It does not delete training jobs,
artifacts, or the IAM role that you specified when creating the model.
11115 11116 11117 11118 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11115 def delete_hyper_parameter_tuning_job(params = {}, = {}) req = build_request(:delete_hyper_parameter_tuning_job, params) req.send_request() end |
#delete_image(params = {}) ⇒ Struct
Deletes a SageMaker AI image and all versions of the image. The container images aren't deleted.
11138 11139 11140 11141 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11138 def delete_image(params = {}, = {}) req = build_request(:delete_image, params) req.send_request() end |
#delete_image_version(params = {}) ⇒ Struct
Deletes a version of a SageMaker AI image. The container image the version represents isn't deleted.
11169 11170 11171 11172 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11169 def delete_image_version(params = {}, = {}) req = build_request(:delete_image_version, params) req.send_request() end |
#delete_inference_component(params = {}) ⇒ Struct
Deletes an inference component.
11191 11192 11193 11194 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11191 def delete_inference_component(params = {}, = {}) req = build_request(:delete_inference_component, params) req.send_request() end |
#delete_inference_experiment(params = {}) ⇒ Types::DeleteInferenceExperimentResponse
Deletes an inference experiment.
11225 11226 11227 11228 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11225 def delete_inference_experiment(params = {}, = {}) req = build_request(:delete_inference_experiment, params) req.send_request() end |
#delete_mlflow_tracking_server(params = {}) ⇒ Types::DeleteMlflowTrackingServerResponse
Deletes an MLflow Tracking Server. For more information, see Clean up MLflow resources.
11258 11259 11260 11261 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11258 def delete_mlflow_tracking_server(params = {}, = {}) req = build_request(:delete_mlflow_tracking_server, params) req.send_request() end |
#delete_model(params = {}) ⇒ Struct
Deletes a model. The DeleteModel
API deletes only the model entry
that was created in SageMaker when you called the CreateModel
API.
It does not delete model artifacts, inference code, or the IAM role
that you specified when creating the model.
11283 11284 11285 11286 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11283 def delete_model(params = {}, = {}) req = build_request(:delete_model, params) req.send_request() end |
#delete_model_bias_job_definition(params = {}) ⇒ Struct
Deletes an Amazon SageMaker AI model bias job definition.
11305 11306 11307 11308 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11305 def delete_model_bias_job_definition(params = {}, = {}) req = build_request(:delete_model_bias_job_definition, params) req.send_request() end |
#delete_model_card(params = {}) ⇒ Struct
Deletes an Amazon SageMaker Model Card.
11327 11328 11329 11330 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11327 def delete_model_card(params = {}, = {}) req = build_request(:delete_model_card, params) req.send_request() end |
#delete_model_explainability_job_definition(params = {}) ⇒ Struct
Deletes an Amazon SageMaker AI model explainability job definition.
11349 11350 11351 11352 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11349 def delete_model_explainability_job_definition(params = {}, = {}) req = build_request(:delete_model_explainability_job_definition, params) req.send_request() end |
#delete_model_package(params = {}) ⇒ Struct
Deletes a model package.
A model package is used to create SageMaker models or list on Amazon Web Services Marketplace. Buyers can subscribe to model packages listed on Amazon Web Services Marketplace to create models in SageMaker.
11379 11380 11381 11382 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11379 def delete_model_package(params = {}, = {}) req = build_request(:delete_model_package, params) req.send_request() end |
#delete_model_package_group(params = {}) ⇒ Struct
Deletes the specified model group.
11401 11402 11403 11404 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11401 def delete_model_package_group(params = {}, = {}) req = build_request(:delete_model_package_group, params) req.send_request() end |
#delete_model_package_group_policy(params = {}) ⇒ Struct
Deletes a model group resource policy.
11423 11424 11425 11426 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11423 def delete_model_package_group_policy(params = {}, = {}) req = build_request(:delete_model_package_group_policy, params) req.send_request() end |
#delete_model_quality_job_definition(params = {}) ⇒ Struct
Deletes the secified model quality monitoring job definition.
11445 11446 11447 11448 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11445 def delete_model_quality_job_definition(params = {}, = {}) req = build_request(:delete_model_quality_job_definition, params) req.send_request() end |
#delete_monitoring_schedule(params = {}) ⇒ Struct
Deletes a monitoring schedule. Also stops the schedule had not already been stopped. This does not delete the job execution history of the monitoring schedule.
11469 11470 11471 11472 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11469 def delete_monitoring_schedule(params = {}, = {}) req = build_request(:delete_monitoring_schedule, params) req.send_request() end |
#delete_notebook_instance(params = {}) ⇒ Struct
Deletes an SageMaker AI notebook instance. Before you can delete a
notebook instance, you must call the StopNotebookInstance
API.
When you delete a notebook instance, you lose all of your data. SageMaker AI removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance.
11497 11498 11499 11500 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11497 def delete_notebook_instance(params = {}, = {}) req = build_request(:delete_notebook_instance, params) req.send_request() end |
#delete_notebook_instance_lifecycle_config(params = {}) ⇒ Struct
Deletes a notebook instance lifecycle configuration.
11519 11520 11521 11522 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11519 def delete_notebook_instance_lifecycle_config(params = {}, = {}) req = build_request(:delete_notebook_instance_lifecycle_config, params) req.send_request() end |
#delete_optimization_job(params = {}) ⇒ Struct
Deletes an optimization job.
11541 11542 11543 11544 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11541 def delete_optimization_job(params = {}, = {}) req = build_request(:delete_optimization_job, params) req.send_request() end |
#delete_partner_app(params = {}) ⇒ Types::DeletePartnerAppResponse
Deletes a SageMaker Partner AI App.
11577 11578 11579 11580 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11577 def delete_partner_app(params = {}, = {}) req = build_request(:delete_partner_app, params) req.send_request() end |
#delete_pipeline(params = {}) ⇒ Types::DeletePipelineResponse
Deletes a pipeline if there are no running instances of the pipeline.
To delete a pipeline, you must stop all running instances of the
pipeline using the StopPipelineExecution
API. When you delete a
pipeline, all instances of the pipeline are deleted.
11617 11618 11619 11620 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11617 def delete_pipeline(params = {}, = {}) req = build_request(:delete_pipeline, params) req.send_request() end |
#delete_project(params = {}) ⇒ Struct
Delete the specified project.
11639 11640 11641 11642 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11639 def delete_project(params = {}, = {}) req = build_request(:delete_project, params) req.send_request() end |
#delete_space(params = {}) ⇒ Struct
Used to delete a space.
11665 11666 11667 11668 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11665 def delete_space(params = {}, = {}) req = build_request(:delete_space, params) req.send_request() end |
#delete_studio_lifecycle_config(params = {}) ⇒ Struct
Deletes the Amazon SageMaker AI Studio Lifecycle Configuration. In order to delete the Lifecycle Configuration, there must be no running apps using the Lifecycle Configuration. You must also remove the Lifecycle Configuration from UserSettings in all Domains and UserProfiles.
11692 11693 11694 11695 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11692 def delete_studio_lifecycle_config(params = {}, = {}) req = build_request(:delete_studio_lifecycle_config, params) req.send_request() end |
#delete_tags(params = {}) ⇒ Struct
Deletes the specified tags from an SageMaker resource.
To list a resource's tags, use the ListTags
API.
11733 11734 11735 11736 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11733 def (params = {}, = {}) req = build_request(:delete_tags, params) req.send_request() end |
#delete_trial(params = {}) ⇒ Types::DeleteTrialResponse
Deletes the specified trial. All trial components that make up the trial must be deleted first. Use the DescribeTrialComponent API to get the list of trial components.
11767 11768 11769 11770 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11767 def delete_trial(params = {}, = {}) req = build_request(:delete_trial, params) req.send_request() end |
#delete_trial_component(params = {}) ⇒ Types::DeleteTrialComponentResponse
Deletes the specified trial component. A trial component must be disassociated from all trials before the trial component can be deleted. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.
11802 11803 11804 11805 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11802 def delete_trial_component(params = {}, = {}) req = build_request(:delete_trial_component, params) req.send_request() end |
#delete_user_profile(params = {}) ⇒ Struct
Deletes a user profile. When a user profile is deleted, the user loses access to their EFS volume, including data, notebooks, and other artifacts.
11830 11831 11832 11833 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11830 def delete_user_profile(params = {}, = {}) req = build_request(:delete_user_profile, params) req.send_request() end |
#delete_workforce(params = {}) ⇒ Struct
Use this operation to delete a workforce.
If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use this operation to delete the existing workforce and then use CreateWorkforce to create a new workforce.
If a private workforce contains one or more work teams, you must use
the DeleteWorkteam operation to delete all work teams before you
delete the workforce. If you try to delete a workforce that contains
one or more work teams, you will receive a ResourceInUse
error.
11867 11868 11869 11870 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11867 def delete_workforce(params = {}, = {}) req = build_request(:delete_workforce, params) req.send_request() end |
#delete_workteam(params = {}) ⇒ Types::DeleteWorkteamResponse
Deletes an existing work team. This operation can't be undone.
11895 11896 11897 11898 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11895 def delete_workteam(params = {}, = {}) req = build_request(:delete_workteam, params) req.send_request() end |
#deregister_devices(params = {}) ⇒ Struct
Deregisters the specified devices. After you deregister a device, you will need to re-register the devices.
11922 11923 11924 11925 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11922 def deregister_devices(params = {}, = {}) req = build_request(:deregister_devices, params) req.send_request() end |
#describe_action(params = {}) ⇒ Types::DescribeActionResponse
Describes an action.
11990 11991 11992 11993 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 11990 def describe_action(params = {}, = {}) req = build_request(:describe_action, params) req.send_request() end |
#describe_algorithm(params = {}) ⇒ Types::DescribeAlgorithmOutput
Returns a description of the specified algorithm that is in your account.
12171 12172 12173 12174 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 12171 def describe_algorithm(params = {}, = {}) req = build_request(:describe_algorithm, params) req.send_request() end |
#describe_app(params = {}) ⇒ Types::DescribeAppResponse
Describes the app.
12244 12245 12246 12247 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 12244 def describe_app(params = {}, = {}) req = build_request(:describe_app, params) req.send_request() end |
#describe_app_image_config(params = {}) ⇒ Types::DescribeAppImageConfigResponse
Describes an AppImageConfig.
12305 12306 12307 12308 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 12305 def describe_app_image_config(params = {}, = {}) req = build_request(:describe_app_image_config, params) req.send_request() end |
#describe_artifact(params = {}) ⇒ Types::DescribeArtifactResponse
Describes an artifact.
12370 12371 12372 12373 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 12370 def describe_artifact(params = {}, = {}) req = build_request(:describe_artifact, params) req.send_request() end |
#describe_auto_ml_job(params = {}) ⇒ Types::DescribeAutoMLJobResponse
Returns information about an AutoML job created by calling CreateAutoMLJob.
DescribeAutoMLJob
.
12511 12512 12513 12514 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 12511 def describe_auto_ml_job(params = {}, = {}) req = build_request(:describe_auto_ml_job, params) req.send_request() end |
#describe_auto_ml_job_v2(params = {}) ⇒ Types::DescribeAutoMLJobV2Response
Returns information about an AutoML job created by calling CreateAutoMLJobV2 or CreateAutoMLJob.
12690 12691 12692 12693 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 12690 def describe_auto_ml_job_v2(params = {}, = {}) req = build_request(:describe_auto_ml_job_v2, params) req.send_request() end |
#describe_cluster(params = {}) ⇒ Types::DescribeClusterResponse
Retrieves information of a SageMaker HyperPod cluster.
12757 12758 12759 12760 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 12757 def describe_cluster(params = {}, = {}) req = build_request(:describe_cluster, params) req.send_request() end |
#describe_cluster_node(params = {}) ⇒ Types::DescribeClusterNodeResponse
Retrieves information of a node (also called a instance interchangeably) of a SageMaker HyperPod cluster.
12809 12810 12811 12812 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 12809 def describe_cluster_node(params = {}, = {}) req = build_request(:describe_cluster_node, params) req.send_request() end |
#describe_cluster_scheduler_config(params = {}) ⇒ Types::DescribeClusterSchedulerConfigResponse
Description of the cluster policy. This policy is used for task prioritization and fair-share allocation. This helps prioritize critical workloads and distributes idle compute across entities.
12880 12881 12882 12883 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 12880 def describe_cluster_scheduler_config(params = {}, = {}) req = build_request(:describe_cluster_scheduler_config, params) req.send_request() end |
#describe_code_repository(params = {}) ⇒ Types::DescribeCodeRepositoryOutput
Gets details about the specified Git repository.
12918 12919 12920 12921 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 12918 def describe_code_repository(params = {}, = {}) req = build_request(:describe_code_repository, params) req.send_request() end |
#describe_compilation_job(params = {}) ⇒ Types::DescribeCompilationJobResponse
Returns information about a model compilation job.
To create a model compilation job, use CreateCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
13003 13004 13005 13006 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 13003 def describe_compilation_job(params = {}, = {}) req = build_request(:describe_compilation_job, params) req.send_request() end |
#describe_compute_quota(params = {}) ⇒ Types::DescribeComputeQuotaResponse
Description of the compute allocation definition.
13079 13080 13081 13082 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 13079 def describe_compute_quota(params = {}, = {}) req = build_request(:describe_compute_quota, params) req.send_request() end |
#describe_context(params = {}) ⇒ Types::DescribeContextResponse
Describes a context.
13140 13141 13142 13143 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 13140 def describe_context(params = {}, = {}) req = build_request(:describe_context, params) req.send_request() end |
#describe_data_quality_job_definition(params = {}) ⇒ Types::DescribeDataQualityJobDefinitionResponse
Gets the details of a data quality monitoring job definition.
13233 13234 13235 13236 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 13233 def describe_data_quality_job_definition(params = {}, = {}) req = build_request(:describe_data_quality_job_definition, params) req.send_request() end |
#describe_device(params = {}) ⇒ Types::DescribeDeviceResponse
Describes the device.
13293 13294 13295 13296 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 13293 def describe_device(params = {}, = {}) req = build_request(:describe_device, params) req.send_request() end |
#describe_device_fleet(params = {}) ⇒ Types::DescribeDeviceFleetResponse
A description of the fleet the device belongs to.
13338 13339 13340 13341 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 13338 def describe_device_fleet(params = {}, = {}) req = build_request(:describe_device_fleet, params) req.send_request() end |
#describe_domain(params = {}) ⇒ Types::DescribeDomainResponse
The description of the domain.
13595 13596 13597 13598 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 13595 def describe_domain(params = {}, = {}) req = build_request(:describe_domain, params) req.send_request() end |
#describe_edge_deployment_plan(params = {}) ⇒ Types::DescribeEdgeDeploymentPlanResponse
Describes an edge deployment plan with deployment status per stage.
13667 13668 13669 13670 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 13667 def describe_edge_deployment_plan(params = {}, = {}) req = build_request(:describe_edge_deployment_plan, params) req.send_request() end |
#describe_edge_packaging_job(params = {}) ⇒ Types::DescribeEdgePackagingJobResponse
A description of edge packaging jobs.
13729 13730 13731 13732 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 13729 def describe_edge_packaging_job(params = {}, = {}) req = build_request(:describe_edge_packaging_job, params) req.send_request() end |
#describe_endpoint(params = {}) ⇒ Types::DescribeEndpointOutput
Returns the description of an endpoint.
The following waiters are defined for this operation (see #wait_until for detailed usage):
- endpoint_deleted
- endpoint_in_service
13936 13937 13938 13939 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 13936 def describe_endpoint(params = {}, = {}) req = build_request(:describe_endpoint, params) req.send_request() end |
#describe_endpoint_config(params = {}) ⇒ Types::DescribeEndpointConfigOutput
Returns the description of an endpoint configuration created using the
CreateEndpointConfig
API.
14068 14069 14070 14071 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 14068 def describe_endpoint_config(params = {}, = {}) req = build_request(:describe_endpoint_config, params) req.send_request() end |
#describe_experiment(params = {}) ⇒ Types::DescribeExperimentResponse
Provides a list of an experiment's properties.
14123 14124 14125 14126 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 14123 def describe_experiment(params = {}, = {}) req = build_request(:describe_experiment, params) req.send_request() end |
#describe_feature_group(params = {}) ⇒ Types::DescribeFeatureGroupResponse
Use this operation to describe a FeatureGroup
. The response includes
information on the creation time, FeatureGroup
name, the unique
identifier for each FeatureGroup
, and more.
14212 14213 14214 14215 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 14212 def describe_feature_group(params = {}, = {}) req = build_request(:describe_feature_group, params) req.send_request() end |
#describe_feature_metadata(params = {}) ⇒ Types::DescribeFeatureMetadataResponse
Shows the metadata for a feature within a feature group.
14261 14262 14263 14264 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 14261 def (params = {}, = {}) req = build_request(:describe_feature_metadata, params) req.send_request() end |
#describe_flow_definition(params = {}) ⇒ Types::DescribeFlowDefinitionResponse
Returns information about the specified flow definition.
14319 14320 14321 14322 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 14319 def describe_flow_definition(params = {}, = {}) req = build_request(:describe_flow_definition, params) req.send_request() end |
#describe_hub(params = {}) ⇒ Types::DescribeHubResponse
Describes a hub.
14366 14367 14368 14369 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 14366 def describe_hub(params = {}, = {}) req = build_request(:describe_hub, params) req.send_request() end |
#describe_hub_content(params = {}) ⇒ Types::DescribeHubContentResponse
Describe the content of a hub.
14445 14446 14447 14448 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 14445 def describe_hub_content(params = {}, = {}) req = build_request(:describe_hub_content, params) req.send_request() end |
#describe_human_task_ui(params = {}) ⇒ Types::DescribeHumanTaskUiResponse
Returns information about the requested human task user interface (worker task template).
14484 14485 14486 14487 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 14484 def describe_human_task_ui(params = {}, = {}) req = build_request(:describe_human_task_ui, params) req.send_request() end |
#describe_hyper_parameter_tuning_job(params = {}) ⇒ Types::DescribeHyperParameterTuningJobResponse
Returns a description of a hyperparameter tuning job, depending on the fields selected. These fields can include the name, Amazon Resource Name (ARN), job status of your tuning job and more.
14781 14782 14783 14784 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 14781 def describe_hyper_parameter_tuning_job(params = {}, = {}) req = build_request(:describe_hyper_parameter_tuning_job, params) req.send_request() end |
#describe_image(params = {}) ⇒ Types::DescribeImageResponse
Describes a SageMaker AI image.
The following waiters are defined for this operation (see #wait_until for detailed usage):
- image_created
- image_deleted
- image_updated
14832 14833 14834 14835 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 14832 def describe_image(params = {}, = {}) req = build_request(:describe_image, params) req.send_request() end |
#describe_image_version(params = {}) ⇒ Types::DescribeImageVersionResponse
Describes a version of a SageMaker AI image.
The following waiters are defined for this operation (see #wait_until for detailed usage):
- image_version_created
- image_version_deleted
14905 14906 14907 14908 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 14905 def describe_image_version(params = {}, = {}) req = build_request(:describe_image_version, params) req.send_request() end |
#describe_inference_component(params = {}) ⇒ Types::DescribeInferenceComponentOutput
Returns information about an inference component.
14967 14968 14969 14970 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 14967 def describe_inference_component(params = {}, = {}) req = build_request(:describe_inference_component, params) req.send_request() end |
#describe_inference_experiment(params = {}) ⇒ Types::DescribeInferenceExperimentResponse
Returns details about an inference experiment.
15043 15044 15045 15046 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 15043 def describe_inference_experiment(params = {}, = {}) req = build_request(:describe_inference_experiment, params) req.send_request() end |
#describe_inference_recommendations_job(params = {}) ⇒ Types::DescribeInferenceRecommendationsJobResponse
Provides the results of the Inference Recommender job. One or more recommendation jobs are returned.
15172 15173 15174 15175 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 15172 def describe_inference_recommendations_job(params = {}, = {}) req = build_request(:describe_inference_recommendations_job, params) req.send_request() end |
#describe_labeling_job(params = {}) ⇒ Types::DescribeLabelingJobResponse
Gets information about a labeling job.
15268 15269 15270 15271 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 15268 def describe_labeling_job(params = {}, = {}) req = build_request(:describe_labeling_job, params) req.send_request() end |
#describe_lineage_group(params = {}) ⇒ Types::DescribeLineageGroupResponse
Provides a list of properties for the requested lineage group. For more information, see Cross-Account Lineage Tracking in the Amazon SageMaker Developer Guide.
15326 15327 15328 15329 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 15326 def describe_lineage_group(params = {}, = {}) req = build_request(:describe_lineage_group, params) req.send_request() end |
#describe_mlflow_tracking_server(params = {}) ⇒ Types::DescribeMlflowTrackingServerResponse
Returns information about an MLflow Tracking Server.
15392 15393 15394 15395 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 15392 def describe_mlflow_tracking_server(params = {}, = {}) req = build_request(:describe_mlflow_tracking_server, params) req.send_request() end |
#describe_model(params = {}) ⇒ Types::DescribeModelOutput
Describes a model that you created using the CreateModel
API.
15503 15504 15505 15506 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 15503 def describe_model(params = {}, = {}) req = build_request(:describe_model, params) req.send_request() end |
#describe_model_bias_job_definition(params = {}) ⇒ Types::DescribeModelBiasJobDefinitionResponse
Returns a description of a model bias job definition.
15593 15594 15595 15596 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 15593 def describe_model_bias_job_definition(params = {}, = {}) req = build_request(:describe_model_bias_job_definition, params) req.send_request() end |
#describe_model_card(params = {}) ⇒ Types::DescribeModelCardResponse
Describes the content, creation time, and security configuration of an Amazon SageMaker Model Card.
15657 15658 15659 15660 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 15657 def describe_model_card(params = {}, = {}) req = build_request(:describe_model_card, params) req.send_request() end |
#describe_model_card_export_job(params = {}) ⇒ Types::DescribeModelCardExportJobResponse
Describes an Amazon SageMaker Model Card export job.
15704 15705 15706 15707 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 15704 def describe_model_card_export_job(params = {}, = {}) req = build_request(:describe_model_card_export_job, params) req.send_request() end |
#describe_model_explainability_job_definition(params = {}) ⇒ Types::DescribeModelExplainabilityJobDefinitionResponse
Returns a description of a model explainability job definition.
15793 15794 15795 15796 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 15793 def describe_model_explainability_job_definition(params = {}, = {}) req = build_request(:describe_model_explainability_job_definition, params) req.send_request() end |
#describe_model_package(params = {}) ⇒ Types::DescribeModelPackageOutput
Returns a description of the specified model package, which is used to create SageMaker models or list them on Amazon Web Services Marketplace.
If you provided a KMS Key ID when you created your model package, you will see the KMS Decrypt API call in your CloudTrail logs when you use this API.
To create models in SageMaker, buyers can subscribe to model packages listed on Amazon Web Services Marketplace.
16066 16067 16068 16069 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 16066 def describe_model_package(params = {}, = {}) req = build_request(:describe_model_package, params) req.send_request() end |
#describe_model_package_group(params = {}) ⇒ Types::DescribeModelPackageGroupOutput
Gets a description for the specified model group.
16109 16110 16111 16112 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 16109 def describe_model_package_group(params = {}, = {}) req = build_request(:describe_model_package_group, params) req.send_request() end |
#describe_model_quality_job_definition(params = {}) ⇒ Types::DescribeModelQualityJobDefinitionResponse
Returns a description of a model quality job definition.
16204 16205 16206 16207 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 16204 def describe_model_quality_job_definition(params = {}, = {}) req = build_request(:describe_model_quality_job_definition, params) req.send_request() end |
#describe_monitoring_schedule(params = {}) ⇒ Types::DescribeMonitoringScheduleResponse
Describes the schedule for a monitoring job.
16317 16318 16319 16320 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 16317 def describe_monitoring_schedule(params = {}, = {}) req = build_request(:describe_monitoring_schedule, params) req.send_request() end |
#describe_notebook_instance(params = {}) ⇒ Types::DescribeNotebookInstanceOutput
Returns information about a notebook instance.
The following waiters are defined for this operation (see #wait_until for detailed usage):
- notebook_instance_deleted
- notebook_instance_in_service
- notebook_instance_stopped
16397 16398 16399 16400 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 16397 def describe_notebook_instance(params = {}, = {}) req = build_request(:describe_notebook_instance, params) req.send_request() end |
#describe_notebook_instance_lifecycle_config(params = {}) ⇒ Types::DescribeNotebookInstanceLifecycleConfigOutput
Returns a description of a notebook instance lifecycle configuration.
For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
16444 16445 16446 16447 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 16444 def describe_notebook_instance_lifecycle_config(params = {}, = {}) req = build_request(:describe_notebook_instance_lifecycle_config, params) req.send_request() end |
#describe_optimization_job(params = {}) ⇒ Types::DescribeOptimizationJobResponse
Provides the properties of the specified optimization job.
16521 16522 16523 16524 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 16521 def describe_optimization_job(params = {}, = {}) req = build_request(:describe_optimization_job, params) req.send_request() end |
#describe_partner_app(params = {}) ⇒ Types::DescribePartnerAppResponse
Gets information about a SageMaker Partner AI App.
16579 16580 16581 16582 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 16579 def describe_partner_app(params = {}, = {}) req = build_request(:describe_partner_app, params) req.send_request() end |
#describe_pipeline(params = {}) ⇒ Types::DescribePipelineResponse
Describes the details of a pipeline.
16641 16642 16643 16644 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 16641 def describe_pipeline(params = {}, = {}) req = build_request(:describe_pipeline, params) req.send_request() end |
#describe_pipeline_definition_for_execution(params = {}) ⇒ Types::DescribePipelineDefinitionForExecutionResponse
Describes the details of an execution's pipeline definition.
16671 16672 16673 16674 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 16671 def describe_pipeline_definition_for_execution(params = {}, = {}) req = build_request(:describe_pipeline_definition_for_execution, params) req.send_request() end |
#describe_pipeline_execution(params = {}) ⇒ Types::DescribePipelineExecutionResponse
Describes the details of a pipeline execution.
16736 16737 16738 16739 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 16736 def describe_pipeline_execution(params = {}, = {}) req = build_request(:describe_pipeline_execution, params) req.send_request() end |
#describe_processing_job(params = {}) ⇒ Types::DescribeProcessingJobResponse
Returns a description of a processing job.
The following waiters are defined for this operation (see #wait_until for detailed usage):
- processing_job_completed_or_stopped
16861 16862 16863 16864 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 16861 def describe_processing_job(params = {}, = {}) req = build_request(:describe_processing_job, params) req.send_request() end |
#describe_project(params = {}) ⇒ Types::DescribeProjectOutput
Describes the details of a project.
16925 16926 16927 16928 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 16925 def describe_project(params = {}, = {}) req = build_request(:describe_project, params) req.send_request() end |
#describe_space(params = {}) ⇒ Types::DescribeSpaceResponse
Describes the space.
17019 17020 17021 17022 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 17019 def describe_space(params = {}, = {}) req = build_request(:describe_space, params) req.send_request() end |
#describe_studio_lifecycle_config(params = {}) ⇒ Types::DescribeStudioLifecycleConfigResponse
Describes the Amazon SageMaker AI Studio Lifecycle Configuration.
17058 17059 17060 17061 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 17058 def describe_studio_lifecycle_config(params = {}, = {}) req = build_request(:describe_studio_lifecycle_config, params) req.send_request() end |
#describe_subscribed_workteam(params = {}) ⇒ Types::DescribeSubscribedWorkteamResponse
Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the Amazon Web Services Marketplace.
17093 17094 17095 17096 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 17093 def describe_subscribed_workteam(params = {}, = {}) req = build_request(:describe_subscribed_workteam, params) req.send_request() end |
#describe_training_job(params = {}) ⇒ Types::DescribeTrainingJobResponse
Returns information about a training job.
Some of the attributes below only appear if the training job
successfully starts. If the training job fails, TrainingJobStatus
is
Failed
and, depending on the FailureReason
, attributes like
TrainingStartTime
, TrainingTimeInSeconds
, TrainingEndTime
, and
BillableTimeInSeconds
may not be present in the response.
The following waiters are defined for this operation (see #wait_until for detailed usage):
- training_job_completed_or_stopped
17314 17315 17316 17317 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 17314 def describe_training_job(params = {}, = {}) req = build_request(:describe_training_job, params) req.send_request() end |
#describe_training_plan(params = {}) ⇒ Types::DescribeTrainingPlanResponse
Retrieves detailed information about a specific training plan.
17380 17381 17382 17383 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 17380 def describe_training_plan(params = {}, = {}) req = build_request(:describe_training_plan, params) req.send_request() end |
#describe_transform_job(params = {}) ⇒ Types::DescribeTransformJobResponse
Returns information about a transform job.
The following waiters are defined for this operation (see #wait_until for detailed usage):
- transform_job_completed_or_stopped
17471 17472 17473 17474 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 17471 def describe_transform_job(params = {}, = {}) req = build_request(:describe_transform_job, params) req.send_request() end |
#describe_trial(params = {}) ⇒ Types::DescribeTrialResponse
Provides a list of a trial's properties.
17531 17532 17533 17534 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 17531 def describe_trial(params = {}, = {}) req = build_request(:describe_trial, params) req.send_request() end |
#describe_trial_component(params = {}) ⇒ Types::DescribeTrialComponentResponse
Provides a list of a trials component's properties.
17625 17626 17627 17628 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 17625 def describe_trial_component(params = {}, = {}) req = build_request(:describe_trial_component, params) req.send_request() end |
#describe_user_profile(params = {}) ⇒ Types::DescribeUserProfileResponse
Describes a user profile. For more information, see
CreateUserProfile
.
17794 17795 17796 17797 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 17794 def describe_user_profile(params = {}, = {}) req = build_request(:describe_user_profile, params) req.send_request() end |
#describe_workforce(params = {}) ⇒ Types::DescribeWorkforceResponse
Lists private workforce information, including workforce name, Amazon Resource Name (ARN), and, if applicable, allowed IP address ranges (CIDRs). Allowable IP address ranges are the IP addresses that workers can use to access tasks.
This operation applies only to private workforces.
17859 17860 17861 17862 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 17859 def describe_workforce(params = {}, = {}) req = build_request(:describe_workforce, params) req.send_request() end |
#describe_workteam(params = {}) ⇒ Types::DescribeWorkteamResponse
Gets information about a specific work team. You can see information such as the creation date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).
17906 17907 17908 17909 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 17906 def describe_workteam(params = {}, = {}) req = build_request(:describe_workteam, params) req.send_request() end |
#disable_sagemaker_servicecatalog_portfolio(params = {}) ⇒ Struct
Disables using Service Catalog in SageMaker. Service Catalog is used to create SageMaker projects.
17920 17921 17922 17923 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 17920 def disable_sagemaker_servicecatalog_portfolio(params = {}, = {}) req = build_request(:disable_sagemaker_servicecatalog_portfolio, params) req.send_request() end |
#disassociate_trial_component(params = {}) ⇒ Types::DisassociateTrialComponentResponse
Disassociates a trial component from a trial. This doesn't effect other trials the component is associated with. Before you can delete a component, you must disassociate the component from all trials it is associated with. To associate a trial component with a trial, call the AssociateTrialComponent API.
To get a list of the trials a component is associated with, use the
Search API. Specify ExperimentTrialComponent
for the Resource
parameter. The list appears in the response under
Results.TrialComponent.Parents
.
17968 17969 17970 17971 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 17968 def disassociate_trial_component(params = {}, = {}) req = build_request(:disassociate_trial_component, params) req.send_request() end |
#enable_sagemaker_servicecatalog_portfolio(params = {}) ⇒ Struct
Enables using Service Catalog in SageMaker. Service Catalog is used to create SageMaker projects.
17982 17983 17984 17985 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 17982 def enable_sagemaker_servicecatalog_portfolio(params = {}, = {}) req = build_request(:enable_sagemaker_servicecatalog_portfolio, params) req.send_request() end |
#get_device_fleet_report(params = {}) ⇒ Types::GetDeviceFleetReportResponse
Describes a fleet.
18036 18037 18038 18039 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 18036 def get_device_fleet_report(params = {}, = {}) req = build_request(:get_device_fleet_report, params) req.send_request() end |
#get_lineage_group_policy(params = {}) ⇒ Types::GetLineageGroupPolicyResponse
The resource policy for the lineage group.
18066 18067 18068 18069 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 18066 def get_lineage_group_policy(params = {}, = {}) req = build_request(:get_lineage_group_policy, params) req.send_request() end |
#get_model_package_group_policy(params = {}) ⇒ Types::GetModelPackageGroupPolicyOutput
Gets a resource policy that manages access for a model group. For information about resource policies, see Identity-based policies and resource-based policies in the Amazon Web Services Identity and Access Management User Guide..
18101 18102 18103 18104 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 18101 def get_model_package_group_policy(params = {}, = {}) req = build_request(:get_model_package_group_policy, params) req.send_request() end |
#get_sagemaker_servicecatalog_portfolio_status(params = {}) ⇒ Types::GetSagemakerServicecatalogPortfolioStatusOutput
Gets the status of Service Catalog in SageMaker. Service Catalog is used to create SageMaker projects.
18121 18122 18123 18124 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 18121 def get_sagemaker_servicecatalog_portfolio_status(params = {}, = {}) req = build_request(:get_sagemaker_servicecatalog_portfolio_status, params) req.send_request() end |
#get_scaling_configuration_recommendation(params = {}) ⇒ Types::GetScalingConfigurationRecommendationResponse
Starts an Amazon SageMaker Inference Recommender autoscaling recommendation job. Returns recommendations for autoscaling policies that you can apply to your SageMaker endpoint.
18205 18206 18207 18208 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 18205 def get_scaling_configuration_recommendation(params = {}, = {}) req = build_request(:get_scaling_configuration_recommendation, params) req.send_request() end |
#get_search_suggestions(params = {}) ⇒ Types::GetSearchSuggestionsResponse
An auto-complete API for the search functionality in the SageMaker
console. It returns suggestions of possible matches for the property
name to use in Search
queries. Provides suggestions for
HyperParameters
, Tags
, and Metrics
.
18245 18246 18247 18248 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 18245 def get_search_suggestions(params = {}, = {}) req = build_request(:get_search_suggestions, params) req.send_request() end |
#import_hub_content(params = {}) ⇒ Types::ImportHubContentResponse
Import hub content.
18322 18323 18324 18325 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 18322 def import_hub_content(params = {}, = {}) req = build_request(:import_hub_content, params) req.send_request() end |
#list_actions(params = {}) ⇒ Types::ListActionsResponse
Lists the actions in your account and their properties.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
18396 18397 18398 18399 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 18396 def list_actions(params = {}, = {}) req = build_request(:list_actions, params) req.send_request() end |
#list_algorithms(params = {}) ⇒ Types::ListAlgorithmsOutput
Lists the machine learning algorithms that have been created.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
18463 18464 18465 18466 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 18463 def list_algorithms(params = {}, = {}) req = build_request(:list_algorithms, params) req.send_request() end |
#list_aliases(params = {}) ⇒ Types::ListAliasesResponse
Lists the aliases of a specified image or image version.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
18515 18516 18517 18518 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 18515 def list_aliases(params = {}, = {}) req = build_request(:list_aliases, params) req.send_request() end |
#list_app_image_configs(params = {}) ⇒ Types::ListAppImageConfigsResponse
Lists the AppImageConfigs in your account and their properties. The list can be filtered by creation time or modified time, and whether the AppImageConfig name contains a specified string.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
18621 18622 18623 18624 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 18621 def list_app_image_configs(params = {}, = {}) req = build_request(:list_app_image_configs, params) req.send_request() end |
#list_apps(params = {}) ⇒ Types::ListAppsResponse
Lists apps.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
18699 18700 18701 18702 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 18699 def list_apps(params = {}, = {}) req = build_request(:list_apps, params) req.send_request() end |
#list_artifacts(params = {}) ⇒ Types::ListArtifactsResponse
Lists the artifacts in your account and their properties.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
18774 18775 18776 18777 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 18774 def list_artifacts(params = {}, = {}) req = build_request(:list_artifacts, params) req.send_request() end |
#list_associations(params = {}) ⇒ Types::ListAssociationsResponse
Lists the associations in your account and their properties.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
18869 18870 18871 18872 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 18869 def list_associations(params = {}, = {}) req = build_request(:list_associations, params) req.send_request() end |
#list_auto_ml_jobs(params = {}) ⇒ Types::ListAutoMLJobsResponse
Request a list of jobs.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
18948 18949 18950 18951 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 18948 def list_auto_ml_jobs(params = {}, = {}) req = build_request(:list_auto_ml_jobs, params) req.send_request() end |
#list_candidates_for_auto_ml_job(params = {}) ⇒ Types::ListCandidatesForAutoMLJobResponse
List the candidates created for the job.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
19040 19041 19042 19043 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 19040 def list_candidates_for_auto_ml_job(params = {}, = {}) req = build_request(:list_candidates_for_auto_ml_job, params) req.send_request() end |
#list_cluster_nodes(params = {}) ⇒ Types::ListClusterNodesResponse
Retrieves the list of instances (also called nodes interchangeably) in a SageMaker HyperPod cluster.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
19143 19144 19145 19146 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 19143 def list_cluster_nodes(params = {}, = {}) req = build_request(:list_cluster_nodes, params) req.send_request() end |
#list_cluster_scheduler_configs(params = {}) ⇒ Types::ListClusterSchedulerConfigsResponse
List the cluster policy configurations.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
19231 19232 19233 19234 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 19231 def list_cluster_scheduler_configs(params = {}, = {}) req = build_request(:list_cluster_scheduler_configs, params) req.send_request() end |
#list_clusters(params = {}) ⇒ Types::ListClustersResponse
Retrieves the list of SageMaker HyperPod clusters.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
19335 19336 19337 19338 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 19335 def list_clusters(params = {}, = {}) req = build_request(:list_clusters, params) req.send_request() end |
#list_code_repositories(params = {}) ⇒ Types::ListCodeRepositoriesOutput
Gets a list of the Git repositories in your account.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
19413 19414 19415 19416 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 19413 def list_code_repositories(params = {}, = {}) req = build_request(:list_code_repositories, params) req.send_request() end |
#list_compilation_jobs(params = {}) ⇒ Types::ListCompilationJobsResponse
Lists model compilation jobs that satisfy various filters.
To create a model compilation job, use CreateCompilationJob. To get information about a particular model compilation job you have created, use DescribeCompilationJob.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
19510 19511 19512 19513 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 19510 def list_compilation_jobs(params = {}, = {}) req = build_request(:list_compilation_jobs, params) req.send_request() end |
#list_compute_quotas(params = {}) ⇒ Types::ListComputeQuotasResponse
List the resource allocation definitions.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
19607 19608 19609 19610 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 19607 def list_compute_quotas(params = {}, = {}) req = build_request(:list_compute_quotas, params) req.send_request() end |
#list_contexts(params = {}) ⇒ Types::ListContextsResponse
Lists the contexts in your account and their properties.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
19681 19682 19683 19684 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 19681 def list_contexts(params = {}, = {}) req = build_request(:list_contexts, params) req.send_request() end |
#list_data_quality_job_definitions(params = {}) ⇒ Types::ListDataQualityJobDefinitionsResponse
Lists the data quality job definitions in your account.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
19754 19755 19756 19757 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 19754 def list_data_quality_job_definitions(params = {}, = {}) req = build_request(:list_data_quality_job_definitions, params) req.send_request() end |
#list_device_fleets(params = {}) ⇒ Types::ListDeviceFleetsResponse
Returns a list of devices in the fleet.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
19824 19825 19826 19827 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 19824 def list_device_fleets(params = {}, = {}) req = build_request(:list_device_fleets, params) req.send_request() end |
#list_devices(params = {}) ⇒ Types::ListDevicesResponse
A list of devices.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
19885 19886 19887 19888 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 19885 def list_devices(params = {}, = {}) req = build_request(:list_devices, params) req.send_request() end |
#list_domains(params = {}) ⇒ Types::ListDomainsResponse
Lists the domains.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
19935 19936 19937 19938 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 19935 def list_domains(params = {}, = {}) req = build_request(:list_domains, params) req.send_request() end |
#list_edge_deployment_plans(params = {}) ⇒ Types::ListEdgeDeploymentPlansResponse
Lists all edge deployment plans.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
20014 20015 20016 20017 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 20014 def list_edge_deployment_plans(params = {}, = {}) req = build_request(:list_edge_deployment_plans, params) req.send_request() end |
#list_edge_packaging_jobs(params = {}) ⇒ Types::ListEdgePackagingJobsResponse
Returns a list of edge packaging jobs.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
20095 20096 20097 20098 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 20095 def list_edge_packaging_jobs(params = {}, = {}) req = build_request(:list_edge_packaging_jobs, params) req.send_request() end |
#list_endpoint_configs(params = {}) ⇒ Types::ListEndpointConfigsOutput
Lists endpoint configurations.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
20159 20160 20161 20162 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 20159 def list_endpoint_configs(params = {}, = {}) req = build_request(:list_endpoint_configs, params) req.send_request() end |
#list_endpoints(params = {}) ⇒ Types::ListEndpointsOutput
Lists endpoints.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
20240 20241 20242 20243 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 20240 def list_endpoints(params = {}, = {}) req = build_request(:list_endpoints, params) req.send_request() end |
#list_experiments(params = {}) ⇒ Types::ListExperimentsResponse
Lists all the experiments in your account. The list can be filtered to show only experiments that were created in a specific time range. The list can be sorted by experiment name or creation time.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
20307 20308 20309 20310 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 20307 def list_experiments(params = {}, = {}) req = build_request(:list_experiments, params) req.send_request() end |
#list_feature_groups(params = {}) ⇒ Types::ListFeatureGroupsResponse
List FeatureGroup
s based on given filter and order.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
20380 20381 20382 20383 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 20380 def list_feature_groups(params = {}, = {}) req = build_request(:list_feature_groups, params) req.send_request() end |
#list_flow_definitions(params = {}) ⇒ Types::ListFlowDefinitionsResponse
Returns information about the flow definitions in your account.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
20439 20440 20441 20442 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 20439 def list_flow_definitions(params = {}, = {}) req = build_request(:list_flow_definitions, params) req.send_request() end |
#list_hub_content_versions(params = {}) ⇒ Types::ListHubContentVersionsResponse
List hub content versions.
20527 20528 20529 20530 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 20527 def list_hub_content_versions(params = {}, = {}) req = build_request(:list_hub_content_versions, params) req.send_request() end |
#list_hub_contents(params = {}) ⇒ Types::ListHubContentsResponse
List the contents of a hub.
20609 20610 20611 20612 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 20609 def list_hub_contents(params = {}, = {}) req = build_request(:list_hub_contents, params) req.send_request() end |
#list_hubs(params = {}) ⇒ Types::ListHubsResponse
List all existing hubs.
20682 20683 20684 20685 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 20682 def list_hubs(params = {}, = {}) req = build_request(:list_hubs, params) req.send_request() end |
#list_human_task_uis(params = {}) ⇒ Types::ListHumanTaskUisResponse
Returns information about the human task user interfaces in your account.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
20740 20741 20742 20743 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 20740 def list_human_task_uis(params = {}, = {}) req = build_request(:list_human_task_uis, params) req.send_request() end |
#list_hyper_parameter_tuning_jobs(params = {}) ⇒ Types::ListHyperParameterTuningJobsResponse
Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
20838 20839 20840 20841 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 20838 def list_hyper_parameter_tuning_jobs(params = {}, = {}) req = build_request(:list_hyper_parameter_tuning_jobs, params) req.send_request() end |
#list_image_versions(params = {}) ⇒ Types::ListImageVersionsResponse
Lists the versions of a specified image and their properties. The list can be filtered by creation time or modified time.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
20918 20919 20920 20921 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 20918 def list_image_versions(params = {}, = {}) req = build_request(:list_image_versions, params) req.send_request() end |
#list_images(params = {}) ⇒ Types::ListImagesResponse
Lists the images in your account and their properties. The list can be filtered by creation time or modified time, and whether the image name contains a specified string.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
21000 21001 21002 21003 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 21000 def list_images(params = {}, = {}) req = build_request(:list_images, params) req.send_request() end |
#list_inference_components(params = {}) ⇒ Types::ListInferenceComponentsOutput
Lists the inference components in your account and their properties.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
21098 21099 21100 21101 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 21098 def list_inference_components(params = {}, = {}) req = build_request(:list_inference_components, params) req.send_request() end |
#list_inference_experiments(params = {}) ⇒ Types::ListInferenceExperimentsResponse
Returns the list of all inference experiments.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
21195 21196 21197 21198 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 21195 def list_inference_experiments(params = {}, = {}) req = build_request(:list_inference_experiments, params) req.send_request() end |
#list_inference_recommendations_job_steps(params = {}) ⇒ Types::ListInferenceRecommendationsJobStepsResponse
Returns a list of the subtasks for an Inference Recommender job.
The supported subtasks are benchmarks, which evaluate the performance of your model on different instance types.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
21280 21281 21282 21283 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 21280 def list_inference_recommendations_job_steps(params = {}, = {}) req = build_request(:list_inference_recommendations_job_steps, params) req.send_request() end |
#list_inference_recommendations_jobs(params = {}) ⇒ Types::ListInferenceRecommendationsJobsResponse
Lists recommendation jobs that satisfy various filters.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
21379 21380 21381 21382 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 21379 def list_inference_recommendations_jobs(params = {}, = {}) req = build_request(:list_inference_recommendations_jobs, params) req.send_request() end |
#list_labeling_jobs(params = {}) ⇒ Types::ListLabelingJobsResponse
Gets a list of labeling jobs.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
21475 21476 21477 21478 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 21475 def list_labeling_jobs(params = {}, = {}) req = build_request(:list_labeling_jobs, params) req.send_request() end |
#list_labeling_jobs_for_workteam(params = {}) ⇒ Types::ListLabelingJobsForWorkteamResponse
Gets a list of labeling jobs assigned to a specified work team.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
21550 21551 21552 21553 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 21550 def list_labeling_jobs_for_workteam(params = {}, = {}) req = build_request(:list_labeling_jobs_for_workteam, params) req.send_request() end |
#list_lineage_groups(params = {}) ⇒ Types::ListLineageGroupsResponse
A list of lineage groups shared with your Amazon Web Services account. For more information, see Cross-Account Lineage Tracking in the Amazon SageMaker Developer Guide.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
21618 21619 21620 21621 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 21618 def list_lineage_groups(params = {}, = {}) req = build_request(:list_lineage_groups, params) req.send_request() end |
#list_mlflow_tracking_servers(params = {}) ⇒ Types::ListMlflowTrackingServersResponse
Lists all MLflow Tracking Servers.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
21705 21706 21707 21708 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 21705 def list_mlflow_tracking_servers(params = {}, = {}) req = build_request(:list_mlflow_tracking_servers, params) req.send_request() end |
#list_model_bias_job_definitions(params = {}) ⇒ Types::ListModelBiasJobDefinitionsResponse
Lists model bias jobs definitions that satisfy various filters.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
21775 21776 21777 21778 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 21775 def list_model_bias_job_definitions(params = {}, = {}) req = build_request(:list_model_bias_job_definitions, params) req.send_request() end |
#list_model_card_export_jobs(params = {}) ⇒ Types::ListModelCardExportJobsResponse
List the export jobs for the Amazon SageMaker Model Card.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
21856 21857 21858 21859 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 21856 def list_model_card_export_jobs(params = {}, = {}) req = build_request(:list_model_card_export_jobs, params) req.send_request() end |
#list_model_card_versions(params = {}) ⇒ Types::ListModelCardVersionsResponse
List existing versions of an Amazon SageMaker Model Card.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
21928 21929 21930 21931 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 21928 def list_model_card_versions(params = {}, = {}) req = build_request(:list_model_card_versions, params) req.send_request() end |
#list_model_cards(params = {}) ⇒ Types::ListModelCardsResponse
List existing model cards.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
21996 21997 21998 21999 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 21996 def list_model_cards(params = {}, = {}) req = build_request(:list_model_cards, params) req.send_request() end |
#list_model_explainability_job_definitions(params = {}) ⇒ Types::ListModelExplainabilityJobDefinitionsResponse
Lists model explainability job definitions that satisfy various filters.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
22068 22069 22070 22071 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 22068 def list_model_explainability_job_definitions(params = {}, = {}) req = build_request(:list_model_explainability_job_definitions, params) req.send_request() end |
#list_model_metadata(params = {}) ⇒ Types::ListModelMetadataResponse
Lists the domain, framework, task, and model name of standard machine learning models found in common model zoos.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
22127 22128 22129 22130 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 22127 def (params = {}, = {}) req = build_request(:list_model_metadata, params) req.send_request() end |
#list_model_package_groups(params = {}) ⇒ Types::ListModelPackageGroupsOutput
Gets a list of the model groups in your Amazon Web Services account.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
22201 22202 22203 22204 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 22201 def list_model_package_groups(params = {}, = {}) req = build_request(:list_model_package_groups, params) req.send_request() end |
#list_model_packages(params = {}) ⇒ Types::ListModelPackagesOutput
Lists the model packages that have been created.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
22293 22294 22295 22296 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 22293 def list_model_packages(params = {}, = {}) req = build_request(:list_model_packages, params) req.send_request() end |
#list_model_quality_job_definitions(params = {}) ⇒ Types::ListModelQualityJobDefinitionsResponse
Gets a list of model quality monitoring job definitions in your account.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
22368 22369 22370 22371 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 22368 def list_model_quality_job_definitions(params = {}, = {}) req = build_request(:list_model_quality_job_definitions, params) req.send_request() end |
#list_models(params = {}) ⇒ Types::ListModelsOutput
Lists models created with the CreateModel
API.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
22432 22433 22434 22435 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 22432 def list_models(params = {}, = {}) req = build_request(:list_models, params) req.send_request() end |
#list_monitoring_alert_history(params = {}) ⇒ Types::ListMonitoringAlertHistoryResponse
Gets a list of past alerts in a model monitoring schedule.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
22505 22506 22507 22508 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 22505 def list_monitoring_alert_history(params = {}, = {}) req = build_request(:list_monitoring_alert_history, params) req.send_request() end |
#list_monitoring_alerts(params = {}) ⇒ Types::ListMonitoringAlertsResponse
Gets the alerts for a single monitoring schedule.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
22554 22555 22556 22557 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 22554 def list_monitoring_alerts(params = {}, = {}) req = build_request(:list_monitoring_alerts, params) req.send_request() end |
#list_monitoring_executions(params = {}) ⇒ Types::ListMonitoringExecutionsResponse
Returns list of all monitoring job executions.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
22658 22659 22660 22661 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 22658 def list_monitoring_executions(params = {}, = {}) req = build_request(:list_monitoring_executions, params) req.send_request() end |
#list_monitoring_schedules(params = {}) ⇒ Types::ListMonitoringSchedulesResponse
Returns list of all monitoring schedules.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
22758 22759 22760 22761 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 22758 def list_monitoring_schedules(params = {}, = {}) req = build_request(:list_monitoring_schedules, params) req.send_request() end |
#list_notebook_instance_lifecycle_configs(params = {}) ⇒ Types::ListNotebookInstanceLifecycleConfigsOutput
Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
22839 22840 22841 22842 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 22839 def list_notebook_instance_lifecycle_configs(params = {}, = {}) req = build_request(:list_notebook_instance_lifecycle_configs, params) req.send_request() end |
#list_notebook_instances(params = {}) ⇒ Types::ListNotebookInstancesOutput
Returns a list of the SageMaker AI notebook instances in the requester's account in an Amazon Web Services Region.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
22953 22954 22955 22956 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 22953 def list_notebook_instances(params = {}, = {}) req = build_request(:list_notebook_instances, params) req.send_request() end |
#list_optimization_jobs(params = {}) ⇒ Types::ListOptimizationJobsResponse
Lists the optimization jobs in your account and their properties.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
23047 23048 23049 23050 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 23047 def list_optimization_jobs(params = {}, = {}) req = build_request(:list_optimization_jobs, params) req.send_request() end |
#list_partner_apps(params = {}) ⇒ Types::ListPartnerAppsResponse
Lists all of the SageMaker Partner AI Apps in an account.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
23095 23096 23097 23098 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 23095 def list_partner_apps(params = {}, = {}) req = build_request(:list_partner_apps, params) req.send_request() end |
#list_pipeline_execution_steps(params = {}) ⇒ Types::ListPipelineExecutionStepsResponse
Gets a list of PipeLineExecutionStep
objects.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
23194 23195 23196 23197 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 23194 def list_pipeline_execution_steps(params = {}, = {}) req = build_request(:list_pipeline_execution_steps, params) req.send_request() end |
#list_pipeline_executions(params = {}) ⇒ Types::ListPipelineExecutionsResponse
Gets a list of the pipeline executions.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
23260 23261 23262 23263 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 23260 def list_pipeline_executions(params = {}, = {}) req = build_request(:list_pipeline_executions, params) req.send_request() end |
#list_pipeline_parameters_for_execution(params = {}) ⇒ Types::ListPipelineParametersForExecutionResponse
Gets a list of parameters for a pipeline execution.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
23305 23306 23307 23308 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 23305 def list_pipeline_parameters_for_execution(params = {}, = {}) req = build_request(:list_pipeline_parameters_for_execution, params) req.send_request() end |
#list_pipelines(params = {}) ⇒ Types::ListPipelinesResponse
Gets a list of pipelines.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
23373 23374 23375 23376 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 23373 def list_pipelines(params = {}, = {}) req = build_request(:list_pipelines, params) req.send_request() end |
#list_processing_jobs(params = {}) ⇒ Types::ListProcessingJobsResponse
Lists processing jobs that satisfy various filters.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
23456 23457 23458 23459 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 23456 def list_processing_jobs(params = {}, = {}) req = build_request(:list_processing_jobs, params) req.send_request() end |
#list_projects(params = {}) ⇒ Types::ListProjectsOutput
Gets a list of the projects in an Amazon Web Services account.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
23523 23524 23525 23526 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 23523 def list_projects(params = {}, = {}) req = build_request(:list_projects, params) req.send_request() end |
#list_resource_catalogs(params = {}) ⇒ Types::ListResourceCatalogsResponse
Lists Amazon SageMaker Catalogs based on given filters and orders. The
maximum number of ResourceCatalog
s viewable is 1000.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
23587 23588 23589 23590 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 23587 def list_resource_catalogs(params = {}, = {}) req = build_request(:list_resource_catalogs, params) req.send_request() end |
#list_spaces(params = {}) ⇒ Types::ListSpacesResponse
Lists spaces.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
23657 23658 23659 23660 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 23657 def list_spaces(params = {}, = {}) req = build_request(:list_spaces, params) req.send_request() end |
#list_stage_devices(params = {}) ⇒ Types::ListStageDevicesResponse
Lists devices allocated to the stage, containing detailed device information and deployment status.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
23718 23719 23720 23721 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 23718 def list_stage_devices(params = {}, = {}) req = build_request(:list_stage_devices, params) req.send_request() end |
#list_studio_lifecycle_configs(params = {}) ⇒ Types::ListStudioLifecycleConfigsResponse
Lists the Amazon SageMaker AI Studio Lifecycle Configurations in your Amazon Web Services Account.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
23804 23805 23806 23807 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 23804 def list_studio_lifecycle_configs(params = {}, = {}) req = build_request(:list_studio_lifecycle_configs, params) req.send_request() end |
#list_subscribed_workteams(params = {}) ⇒ Types::ListSubscribedWorkteamsResponse
Gets a list of the work teams that you are subscribed to in the Amazon
Web Services Marketplace. The list may be empty if no work team
satisfies the filter specified in the NameContains
parameter.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
23855 23856 23857 23858 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 23855 def list_subscribed_workteams(params = {}, = {}) req = build_request(:list_subscribed_workteams, params) req.send_request() end |
#list_tags(params = {}) ⇒ Types::ListTagsOutput
Returns the tags for the specified SageMaker resource.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
23900 23901 23902 23903 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 23900 def (params = {}, = {}) req = build_request(:list_tags, params) req.send_request() end |
#list_training_jobs(params = {}) ⇒ Types::ListTrainingJobsResponse
Lists training jobs.
StatusEquals
and MaxResults
are set at the same time, the
MaxResults
number of training jobs are first retrieved ignoring the
StatusEquals
parameter and then they are filtered by the
StatusEquals
parameter, which is returned as a response.
For example, if ListTrainingJobs
is invoked with the following
parameters:
{ ... MaxResults: 100, StatusEquals: InProgress ... }
First, 100 trainings jobs with any status, including those other than
InProgress
, are selected (sorted according to the creation time,
from the most current to the oldest). Next, those with a status of
InProgress
are returned.
You can quickly test the API using the following Amazon Web Services CLI code.
aws sagemaker list-training-jobs --max-results 100 --status-equals
InProgress
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
24021 24022 24023 24024 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 24021 def list_training_jobs(params = {}, = {}) req = build_request(:list_training_jobs, params) req.send_request() end |
#list_training_jobs_for_hyper_parameter_tuning_job(params = {}) ⇒ Types::ListTrainingJobsForHyperParameterTuningJobResponse
Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
24100 24101 24102 24103 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 24100 def list_training_jobs_for_hyper_parameter_tuning_job(params = {}, = {}) req = build_request(:list_training_jobs_for_hyper_parameter_tuning_job, params) req.send_request() end |
#list_training_plans(params = {}) ⇒ Types::ListTrainingPlansResponse
Retrieves a list of training plans for the current account.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
24189 24190 24191 24192 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 24189 def list_training_plans(params = {}, = {}) req = build_request(:list_training_plans, params) req.send_request() end |
#list_transform_jobs(params = {}) ⇒ Types::ListTransformJobsResponse
Lists transform jobs.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
24272 24273 24274 24275 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 24272 def list_transform_jobs(params = {}, = {}) req = build_request(:list_transform_jobs, params) req.send_request() end |
#list_trial_components(params = {}) ⇒ Types::ListTrialComponentsResponse
Lists the trial components in your account. You can sort the list by trial component name or creation time. You can filter the list to show only components that were created in a specific time range. You can also filter on one of the following:
ExperimentName
SourceArn
TrialName
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
24380 24381 24382 24383 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 24380 def list_trial_components(params = {}, = {}) req = build_request(:list_trial_components, params) req.send_request() end |
#list_trials(params = {}) ⇒ Types::ListTrialsResponse
Lists the trials in your account. Specify an experiment name to limit the list to the trials that are part of that experiment. Specify a trial component name to limit the list to the trials that associated with that trial component. The list can be filtered to show only trials that were created in a specific time range. The list can be sorted by trial name or creation time.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
24457 24458 24459 24460 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 24457 def list_trials(params = {}, = {}) req = build_request(:list_trials, params) req.send_request() end |
#list_user_profiles(params = {}) ⇒ Types::ListUserProfilesResponse
Lists user profiles.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
24522 24523 24524 24525 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 24522 def list_user_profiles(params = {}, = {}) req = build_request(:list_user_profiles, params) req.send_request() end |
#list_workforces(params = {}) ⇒ Types::ListWorkforcesResponse
Use this operation to list all private and vendor workforces in an Amazon Web Services Region. Note that you can only have one private workforce per Amazon Web Services Region.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
24600 24601 24602 24603 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 24600 def list_workforces(params = {}, = {}) req = build_request(:list_workforces, params) req.send_request() end |
#list_workteams(params = {}) ⇒ Types::ListWorkteamsResponse
Gets a list of private work teams that you have defined in a region.
The list may be empty if no work team satisfies the filter specified
in the NameContains
parameter.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
24672 24673 24674 24675 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 24672 def list_workteams(params = {}, = {}) req = build_request(:list_workteams, params) req.send_request() end |
#put_model_package_group_policy(params = {}) ⇒ Types::PutModelPackageGroupPolicyOutput
Adds a resouce policy to control access to a model group. For information about resoure policies, see Identity-based policies and resource-based policies in the Amazon Web Services Identity and Access Management User Guide..
24711 24712 24713 24714 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 24711 def put_model_package_group_policy(params = {}, = {}) req = build_request(:put_model_package_group_policy, params) req.send_request() end |
#query_lineage(params = {}) ⇒ Types::QueryLineageResponse
Use this action to inspect your lineage and discover relationships between entities. For more information, see Querying Lineage Entities in the Amazon SageMaker Developer Guide.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
24818 24819 24820 24821 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 24818 def query_lineage(params = {}, = {}) req = build_request(:query_lineage, params) req.send_request() end |
#register_devices(params = {}) ⇒ Struct
Register devices.
24859 24860 24861 24862 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 24859 def register_devices(params = {}, = {}) req = build_request(:register_devices, params) req.send_request() end |
#render_ui_template(params = {}) ⇒ Types::RenderUiTemplateResponse
Renders the UI template so that you can preview the worker's experience.
24917 24918 24919 24920 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 24917 def render_ui_template(params = {}, = {}) req = build_request(:render_ui_template, params) req.send_request() end |
#retry_pipeline_execution(params = {}) ⇒ Types::RetryPipelineExecutionResponse
Retry the execution of the pipeline.
24961 24962 24963 24964 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 24961 def retry_pipeline_execution(params = {}, = {}) req = build_request(:retry_pipeline_execution, params) req.send_request() end |
#search(params = {}) ⇒ Types::SearchResponse
Finds SageMaker resources that match a search query. Matching
resources are returned as a list of SearchRecord
objects in the
response. You can sort the search results by any resource property in
a ascending or descending order.
You can query against the following value types: numeric, text, Boolean, and timestamp.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
25084 25085 25086 25087 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25084 def search(params = {}, = {}) req = build_request(:search, params) req.send_request() end |
#search_training_plan_offerings(params = {}) ⇒ Types::SearchTrainingPlanOfferingsResponse
Searches for available training plan offerings based on specified criteria.
Users search for available plan offerings based on their requirements (e.g., instance type, count, start time, duration).
And then, they create a plan that best matches their needs using the ID of the plan offering they want to use.
For more information about how to reserve GPU capacity for your
SageMaker training jobs or SageMaker HyperPod clusters using Amazon
SageMaker Training Plan , see CreateTrainingPlan
.
25180 25181 25182 25183 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25180 def search_training_plan_offerings(params = {}, = {}) req = build_request(:search_training_plan_offerings, params) req.send_request() end |
#send_pipeline_execution_step_failure(params = {}) ⇒ Types::SendPipelineExecutionStepFailureResponse
Notifies the pipeline that the execution of a callback step failed, along with a message describing why. When a callback step is run, the pipeline generates a callback token and includes the token in a message sent to Amazon Simple Queue Service (Amazon SQS).
25224 25225 25226 25227 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25224 def send_pipeline_execution_step_failure(params = {}, = {}) req = build_request(:send_pipeline_execution_step_failure, params) req.send_request() end |
#send_pipeline_execution_step_success(params = {}) ⇒ Types::SendPipelineExecutionStepSuccessResponse
Notifies the pipeline that the execution of a callback step succeeded and provides a list of the step's output parameters. When a callback step is run, the pipeline generates a callback token and includes the token in a message sent to Amazon Simple Queue Service (Amazon SQS).
25273 25274 25275 25276 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25273 def send_pipeline_execution_step_success(params = {}, = {}) req = build_request(:send_pipeline_execution_step_success, params) req.send_request() end |
#start_edge_deployment_stage(params = {}) ⇒ Struct
Starts a stage in an edge deployment plan.
25299 25300 25301 25302 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25299 def start_edge_deployment_stage(params = {}, = {}) req = build_request(:start_edge_deployment_stage, params) req.send_request() end |
#start_inference_experiment(params = {}) ⇒ Types::StartInferenceExperimentResponse
Starts an inference experiment.
25327 25328 25329 25330 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25327 def start_inference_experiment(params = {}, = {}) req = build_request(:start_inference_experiment, params) req.send_request() end |
#start_mlflow_tracking_server(params = {}) ⇒ Types::StartMlflowTrackingServerResponse
Programmatically start an MLflow Tracking Server.
25355 25356 25357 25358 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25355 def start_mlflow_tracking_server(params = {}, = {}) req = build_request(:start_mlflow_tracking_server, params) req.send_request() end |
#start_monitoring_schedule(params = {}) ⇒ Struct
Starts a previously stopped monitoring schedule.
scheduled
.
25382 25383 25384 25385 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25382 def start_monitoring_schedule(params = {}, = {}) req = build_request(:start_monitoring_schedule, params) req.send_request() end |
#start_notebook_instance(params = {}) ⇒ Struct
Launches an ML compute instance with the latest version of the
libraries and attaches your ML storage volume. After configuring the
notebook instance, SageMaker AI sets the notebook instance status to
InService
. A notebook instance's status must be InService
before
you can connect to your Jupyter notebook.
25408 25409 25410 25411 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25408 def start_notebook_instance(params = {}, = {}) req = build_request(:start_notebook_instance, params) req.send_request() end |
#start_pipeline_execution(params = {}) ⇒ Types::StartPipelineExecutionResponse
Starts a pipeline execution.
25480 25481 25482 25483 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25480 def start_pipeline_execution(params = {}, = {}) req = build_request(:start_pipeline_execution, params) req.send_request() end |
#stop_auto_ml_job(params = {}) ⇒ Struct
A method for forcing a running job to shut down.
25502 25503 25504 25505 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25502 def stop_auto_ml_job(params = {}, = {}) req = build_request(:stop_auto_ml_job, params) req.send_request() end |
#stop_compilation_job(params = {}) ⇒ Struct
Stops a model compilation job.
To stop a job, Amazon SageMaker AI sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal.
When it receives a StopCompilationJob
request, Amazon SageMaker AI
changes the CompilationJobStatus
of the job to Stopping
. After
Amazon SageMaker stops the job, it sets the CompilationJobStatus
to
Stopped
.
25533 25534 25535 25536 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25533 def stop_compilation_job(params = {}, = {}) req = build_request(:stop_compilation_job, params) req.send_request() end |
#stop_edge_deployment_stage(params = {}) ⇒ Struct
Stops a stage in an edge deployment plan.
25559 25560 25561 25562 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25559 def stop_edge_deployment_stage(params = {}, = {}) req = build_request(:stop_edge_deployment_stage, params) req.send_request() end |
#stop_edge_packaging_job(params = {}) ⇒ Struct
Request to stop an edge packaging job.
25581 25582 25583 25584 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25581 def stop_edge_packaging_job(params = {}, = {}) req = build_request(:stop_edge_packaging_job, params) req.send_request() end |
#stop_hyper_parameter_tuning_job(params = {}) ⇒ Struct
Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched.
All model artifacts output from the training jobs are stored in Amazon
Simple Storage Service (Amazon S3). All data that the training jobs
write to Amazon CloudWatch Logs are still available in CloudWatch.
After the tuning job moves to the Stopped
state, it releases all
reserved resources for the tuning job.
25610 25611 25612 25613 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25610 def stop_hyper_parameter_tuning_job(params = {}, = {}) req = build_request(:stop_hyper_parameter_tuning_job, params) req.send_request() end |
#stop_inference_experiment(params = {}) ⇒ Types::StopInferenceExperimentResponse
Stops an inference experiment.
25683 25684 25685 25686 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25683 def stop_inference_experiment(params = {}, = {}) req = build_request(:stop_inference_experiment, params) req.send_request() end |
#stop_inference_recommendations_job(params = {}) ⇒ Struct
Stops an Inference Recommender job.
25705 25706 25707 25708 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25705 def stop_inference_recommendations_job(params = {}, = {}) req = build_request(:stop_inference_recommendations_job, params) req.send_request() end |
#stop_labeling_job(params = {}) ⇒ Struct
Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.
25729 25730 25731 25732 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25729 def stop_labeling_job(params = {}, = {}) req = build_request(:stop_labeling_job, params) req.send_request() end |
#stop_mlflow_tracking_server(params = {}) ⇒ Types::StopMlflowTrackingServerResponse
Programmatically stop an MLflow Tracking Server.
25757 25758 25759 25760 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25757 def stop_mlflow_tracking_server(params = {}, = {}) req = build_request(:stop_mlflow_tracking_server, params) req.send_request() end |
#stop_monitoring_schedule(params = {}) ⇒ Struct
Stops a previously started monitoring schedule.
25779 25780 25781 25782 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25779 def stop_monitoring_schedule(params = {}, = {}) req = build_request(:stop_monitoring_schedule, params) req.send_request() end |
#stop_notebook_instance(params = {}) ⇒ Struct
Terminates the ML compute instance. Before terminating the instance,
SageMaker AI disconnects the ML storage volume from it. SageMaker AI
preserves the ML storage volume. SageMaker AI stops charging you for
the ML compute instance when you call StopNotebookInstance
.
To access data on the ML storage volume for a notebook instance that
has been terminated, call the StartNotebookInstance
API.
StartNotebookInstance
launches another ML compute instance,
configures it, and attaches the preserved ML storage volume so you can
continue your work.
25810 25811 25812 25813 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25810 def stop_notebook_instance(params = {}, = {}) req = build_request(:stop_notebook_instance, params) req.send_request() end |
#stop_optimization_job(params = {}) ⇒ Struct
Ends a running inference optimization job.
25832 25833 25834 25835 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25832 def stop_optimization_job(params = {}, = {}) req = build_request(:stop_optimization_job, params) req.send_request() end |
#stop_pipeline_execution(params = {}) ⇒ Types::StopPipelineExecutionResponse
Stops a pipeline execution.
Callback Step
A pipeline execution won't stop while a callback step is running.
When you call StopPipelineExecution
on a pipeline execution with a
running callback step, SageMaker Pipelines sends an additional Amazon
SQS message to the specified SQS queue. The body of the SQS message
contains a "Status" field which is set to "Stopping".
You should add logic to your Amazon SQS message consumer to take any
needed action (for example, resource cleanup) upon receipt of the
message followed by a call to SendPipelineExecutionStepSuccess
or
SendPipelineExecutionStepFailure
.
Only when SageMaker Pipelines receives one of these calls will it stop the pipeline execution.
Lambda Step
A pipeline execution can't be stopped while a lambda step is running
because the Lambda function invoked by the lambda step can't be
stopped. If you attempt to stop the execution while the Lambda
function is running, the pipeline waits for the Lambda function to
finish or until the timeout is hit, whichever occurs first, and then
stops. If the Lambda function finishes, the pipeline execution status
is Stopped
. If the timeout is hit the pipeline execution status is
Failed
.
25896 25897 25898 25899 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25896 def stop_pipeline_execution(params = {}, = {}) req = build_request(:stop_pipeline_execution, params) req.send_request() end |
#stop_processing_job(params = {}) ⇒ Struct
Stops a processing job.
25918 25919 25920 25921 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25918 def stop_processing_job(params = {}, = {}) req = build_request(:stop_processing_job, params) req.send_request() end |
#stop_training_job(params = {}) ⇒ Struct
Stops a training job. To stop a job, SageMaker sends the algorithm the
SIGTERM
signal, which delays job termination for 120 seconds.
Algorithms might use this 120-second window to save the model
artifacts, so the results of the training is not lost.
When it receives a StopTrainingJob
request, SageMaker changes the
status of the job to Stopping
. After SageMaker stops the job, it
sets the status to Stopped
.
25947 25948 25949 25950 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25947 def stop_training_job(params = {}, = {}) req = build_request(:stop_training_job, params) req.send_request() end |
#stop_transform_job(params = {}) ⇒ Struct
Stops a batch transform job.
When Amazon SageMaker receives a StopTransformJob
request, the
status of the job changes to Stopping
. After Amazon SageMaker stops
the job, the status is set to Stopped
. When you stop a batch
transform job before it is completed, Amazon SageMaker doesn't store
the job's output in Amazon S3.
25975 25976 25977 25978 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 25975 def stop_transform_job(params = {}, = {}) req = build_request(:stop_transform_job, params) req.send_request() end |
#update_action(params = {}) ⇒ Types::UpdateActionResponse
Updates an action.
26021 26022 26023 26024 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 26021 def update_action(params = {}, = {}) req = build_request(:update_action, params) req.send_request() end |
#update_app_image_config(params = {}) ⇒ Types::UpdateAppImageConfigResponse
Updates the properties of an AppImageConfig.
26099 26100 26101 26102 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 26099 def update_app_image_config(params = {}, = {}) req = build_request(:update_app_image_config, params) req.send_request() end |
#update_artifact(params = {}) ⇒ Types::UpdateArtifactResponse
Updates an artifact.
26141 26142 26143 26144 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 26141 def update_artifact(params = {}, = {}) req = build_request(:update_artifact, params) req.send_request() end |
#update_cluster(params = {}) ⇒ Types::UpdateClusterResponse
Updates a SageMaker HyperPod cluster.
26203 26204 26205 26206 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 26203 def update_cluster(params = {}, = {}) req = build_request(:update_cluster, params) req.send_request() end |
#update_cluster_scheduler_config(params = {}) ⇒ Types::UpdateClusterSchedulerConfigResponse
Update the cluster policy configuration.
26253 26254 26255 26256 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 26253 def update_cluster_scheduler_config(params = {}, = {}) req = build_request(:update_cluster_scheduler_config, params) req.send_request() end |
#update_cluster_software(params = {}) ⇒ Types::UpdateClusterSoftwareResponse
Updates the platform software of a SageMaker HyperPod cluster for security patching. To learn how to use this API, see Update the SageMaker HyperPod platform software of a cluster.
The UpgradeClusterSoftware
API call may impact your SageMaker
HyperPod cluster uptime and availability. Plan accordingly to mitigate
potential disruptions to your workloads.
26292 26293 26294 26295 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 26292 def update_cluster_software(params = {}, = {}) req = build_request(:update_cluster_software, params) req.send_request() end |
#update_code_repository(params = {}) ⇒ Types::UpdateCodeRepositoryOutput
Updates the specified Git repository with the specified values.
26332 26333 26334 26335 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 26332 def update_code_repository(params = {}, = {}) req = build_request(:update_code_repository, params) req.send_request() end |
#update_compute_quota(params = {}) ⇒ Types::UpdateComputeQuotaResponse
Update the compute allocation definition.
26402 26403 26404 26405 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 26402 def update_compute_quota(params = {}, = {}) req = build_request(:update_compute_quota, params) req.send_request() end |
#update_context(params = {}) ⇒ Types::UpdateContextResponse
Updates a context.
26444 26445 26446 26447 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 26444 def update_context(params = {}, = {}) req = build_request(:update_context, params) req.send_request() end |
#update_device_fleet(params = {}) ⇒ Struct
Updates a fleet of devices.
26492 26493 26494 26495 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 26492 def update_device_fleet(params = {}, = {}) req = build_request(:update_device_fleet, params) req.send_request() end |
#update_devices(params = {}) ⇒ Struct
Updates one or more devices in a fleet.
26524 26525 26526 26527 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 26524 def update_devices(params = {}, = {}) req = build_request(:update_devices, params) req.send_request() end |
#update_domain(params = {}) ⇒ Types::UpdateDomainResponse
Updates the default settings for new user profiles in the domain.
26919 26920 26921 26922 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 26919 def update_domain(params = {}, = {}) req = build_request(:update_domain, params) req.send_request() end |
#update_endpoint(params = {}) ⇒ Types::UpdateEndpointOutput
Deploys the EndpointConfig
specified in the request to a new fleet
of instances. SageMaker shifts endpoint traffic to the new instances
with the updated endpoint configuration and then deletes the old
instances using the previous EndpointConfig
(there is no
availability loss). For more information about how to control the
update and traffic shifting process, see Update models in
production.
When SageMaker receives the request, it sets the endpoint status to
Updating
. After updating the endpoint, it sets the status to
InService
. To check the status of an endpoint, use the
DescribeEndpoint API.
EndpointConfig
in use by an endpoint that is
live or while the UpdateEndpoint
or CreateEndpoint
operations are
being performed on the endpoint. To update an endpoint, you must
create a new EndpointConfig
.
If you delete the EndpointConfig
of an endpoint that is active or
being created or updated you may lose visibility into the instance
type the endpoint is using. The endpoint must be deleted in order to
stop incurring charges.
27057 27058 27059 27060 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 27057 def update_endpoint(params = {}, = {}) req = build_request(:update_endpoint, params) req.send_request() end |
#update_endpoint_weights_and_capacities(params = {}) ⇒ Types::UpdateEndpointWeightsAndCapacitiesOutput
Updates variant weight of one or more variants associated with an
existing endpoint, or capacity of one variant associated with an
existing endpoint. When it receives the request, SageMaker sets the
endpoint status to Updating
. After updating the endpoint, it sets
the status to InService
. To check the status of an endpoint, use the
DescribeEndpoint API.
27108 27109 27110 27111 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 27108 def update_endpoint_weights_and_capacities(params = {}, = {}) req = build_request(:update_endpoint_weights_and_capacities, params) req.send_request() end |
#update_experiment(params = {}) ⇒ Types::UpdateExperimentResponse
Adds, updates, or removes the description of an experiment. Updates the display name of an experiment.
27147 27148 27149 27150 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 27147 def update_experiment(params = {}, = {}) req = build_request(:update_experiment, params) req.send_request() end |
#update_feature_group(params = {}) ⇒ Types::UpdateFeatureGroupResponse
Updates the feature group by either adding features or updating the
online store configuration. Use one of the following request
parameters at a time while using the UpdateFeatureGroup
API.
You can add features for your feature group using the
FeatureAdditions
request parameter. Features cannot be removed from
a feature group.
You can update the online store configuration by using the
OnlineStoreConfig
request parameter. If a TtlDuration
is
specified, the default TtlDuration
applies for all records added to
the feature group after the feature group is updated. If a record
level TtlDuration
exists from using the PutRecord
API, the record
level TtlDuration
applies to that record instead of the default
TtlDuration
. To remove the default TtlDuration
from an existing
feature group, use the UpdateFeatureGroup
API and set the
TtlDuration
Unit
and Value
to null
.
27230 27231 27232 27233 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 27230 def update_feature_group(params = {}, = {}) req = build_request(:update_feature_group, params) req.send_request() end |
#update_feature_metadata(params = {}) ⇒ Struct
Updates the description and parameters of the feature group.
27276 27277 27278 27279 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 27276 def (params = {}, = {}) req = build_request(:update_feature_metadata, params) req.send_request() end |
#update_hub(params = {}) ⇒ Types::UpdateHubResponse
Update a hub.
27316 27317 27318 27319 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 27316 def update_hub(params = {}, = {}) req = build_request(:update_hub, params) req.send_request() end |
#update_image(params = {}) ⇒ Types::UpdateImageResponse
Updates the properties of a SageMaker AI image. To change the image's tags, use the AddTags and DeleteTags APIs.
27368 27369 27370 27371 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 27368 def update_image(params = {}, = {}) req = build_request(:update_image, params) req.send_request() end |
#update_image_version(params = {}) ⇒ Types::UpdateImageVersionResponse
Updates the properties of a SageMaker AI image version.
27465 27466 27467 27468 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 27465 def update_image_version(params = {}, = {}) req = build_request(:update_image_version, params) req.send_request() end |
#update_inference_component(params = {}) ⇒ Types::UpdateInferenceComponentOutput
Updates an inference component.
27525 27526 27527 27528 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 27525 def update_inference_component(params = {}, = {}) req = build_request(:update_inference_component, params) req.send_request() end |
#update_inference_component_runtime_config(params = {}) ⇒ Types::UpdateInferenceComponentRuntimeConfigOutput
Runtime settings for a model that is deployed with an inference component.
27561 27562 27563 27564 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 27561 def update_inference_component_runtime_config(params = {}, = {}) req = build_request(:update_inference_component_runtime_config, params) req.send_request() end |
#update_inference_experiment(params = {}) ⇒ Types::UpdateInferenceExperimentResponse
Updates an inference experiment that you created. The status of the
inference experiment has to be either Created
, Running
. For more
information on the status of an inference experiment, see
DescribeInferenceExperiment.
27655 27656 27657 27658 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 27655 def update_inference_experiment(params = {}, = {}) req = build_request(:update_inference_experiment, params) req.send_request() end |
#update_mlflow_tracking_server(params = {}) ⇒ Types::UpdateMlflowTrackingServerResponse
Updates properties of an existing MLflow Tracking Server.
27706 27707 27708 27709 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 27706 def update_mlflow_tracking_server(params = {}, = {}) req = build_request(:update_mlflow_tracking_server, params) req.send_request() end |
#update_model_card(params = {}) ⇒ Types::UpdateModelCardResponse
Update an Amazon SageMaker Model Card.
You cannot update both model card content and model card status in a single call.
27764 27765 27766 27767 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 27764 def update_model_card(params = {}, = {}) req = build_request(:update_model_card, params) req.send_request() end |
#update_model_package(params = {}) ⇒ Types::UpdateModelPackageOutput
Updates a versioned model.
27969 27970 27971 27972 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 27969 def update_model_package(params = {}, = {}) req = build_request(:update_model_package, params) req.send_request() end |
#update_monitoring_alert(params = {}) ⇒ Types::UpdateMonitoringAlertResponse
Update the parameters of a model monitor alert.
28013 28014 28015 28016 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 28013 def update_monitoring_alert(params = {}, = {}) req = build_request(:update_monitoring_alert, params) req.send_request() end |
#update_monitoring_schedule(params = {}) ⇒ Types::UpdateMonitoringScheduleResponse
Updates a previously created schedule.
28148 28149 28150 28151 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 28148 def update_monitoring_schedule(params = {}, = {}) req = build_request(:update_monitoring_schedule, params) req.send_request() end |
#update_notebook_instance(params = {}) ⇒ Struct
Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.
28299 28300 28301 28302 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 28299 def update_notebook_instance(params = {}, = {}) req = build_request(:update_notebook_instance, params) req.send_request() end |
#update_notebook_instance_lifecycle_config(params = {}) ⇒ Struct
Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig API.
28345 28346 28347 28348 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 28345 def update_notebook_instance_lifecycle_config(params = {}, = {}) req = build_request(:update_notebook_instance_lifecycle_config, params) req.send_request() end |
#update_partner_app(params = {}) ⇒ Types::UpdatePartnerAppResponse
Updates all of the SageMaker Partner AI Apps in an account.
28417 28418 28419 28420 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 28417 def update_partner_app(params = {}, = {}) req = build_request(:update_partner_app, params) req.send_request() end |
#update_pipeline(params = {}) ⇒ Types::UpdatePipelineResponse
Updates a pipeline.
28478 28479 28480 28481 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 28478 def update_pipeline(params = {}, = {}) req = build_request(:update_pipeline, params) req.send_request() end |
#update_pipeline_execution(params = {}) ⇒ Types::UpdatePipelineExecutionResponse
Updates a pipeline execution.
28521 28522 28523 28524 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 28521 def update_pipeline_execution(params = {}, = {}) req = build_request(:update_pipeline_execution, params) req.send_request() end |
#update_project(params = {}) ⇒ Types::UpdateProjectOutput
Updates a machine learning (ML) project that is created from a template that sets up an ML pipeline from training to deploying an approved model.
ServiceCatalogProvisioningUpdateDetails
of a project that is active
or being created, or updated, you may lose resources already created
by the project.
28602 28603 28604 28605 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 28602 def update_project(params = {}, = {}) req = build_request(:update_project, params) req.send_request() end |
#update_space(params = {}) ⇒ Types::UpdateSpaceResponse
Updates the settings of a space.
SpaceSettings
.
28728 28729 28730 28731 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 28728 def update_space(params = {}, = {}) req = build_request(:update_space, params) req.send_request() end |
#update_training_job(params = {}) ⇒ Types::UpdateTrainingJobResponse
Update a model training job to request a new Debugger profiling configuration or to change warm pool retention length.
28809 28810 28811 28812 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 28809 def update_training_job(params = {}, = {}) req = build_request(:update_training_job, params) req.send_request() end |
#update_trial(params = {}) ⇒ Types::UpdateTrialResponse
Updates the display name of a trial.
28842 28843 28844 28845 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 28842 def update_trial(params = {}, = {}) req = build_request(:update_trial, params) req.send_request() end |
#update_trial_component(params = {}) ⇒ Types::UpdateTrialComponentResponse
Updates one or more properties of a trial component.
28939 28940 28941 28942 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 28939 def update_trial_component(params = {}, = {}) req = build_request(:update_trial_component, params) req.send_request() end |
#update_user_profile(params = {}) ⇒ Types::UpdateUserProfileResponse
Updates a user profile.
29175 29176 29177 29178 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 29175 def update_user_profile(params = {}, = {}) req = build_request(:update_user_profile, params) req.send_request() end |
#update_workforce(params = {}) ⇒ Types::UpdateWorkforceResponse
Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration.
The worker portal is now supported in VPC and public internet.
Use SourceIpConfig
to restrict worker access to tasks to a specific
range of IP addresses. You specify allowed IP addresses by creating a
list of up to ten CIDRs. By default, a workforce isn't
restricted to specific IP addresses. If you specify a range of IP
addresses, workers who attempt to access tasks using any IP address
outside the specified range are denied and get a Not Found
error
message on the worker portal.
To restrict access to all the workers in public internet, add the
SourceIpConfig
CIDR value as "10.0.0.0/16".
Amazon SageMaker does not support Source Ip restriction for worker portals in VPC.
Use OidcConfig
to update the configuration of a workforce created
using your own OIDC IdP.
You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the DeleteWorkteam operation.
After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the DescribeWorkforce operation.
This operation only applies to private workforces.
29311 29312 29313 29314 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 29311 def update_workforce(params = {}, = {}) req = build_request(:update_workforce, params) req.send_request() end |
#update_workteam(params = {}) ⇒ Types::UpdateWorkteamResponse
Updates an existing work team with new member definitions or description.
29425 29426 29427 29428 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 29425 def update_workteam(params = {}, = {}) req = build_request(:update_workteam, params) req.send_request() end |
#wait_until(waiter_name, params = {}, options = {}) {|w.waiter| ... } ⇒ Boolean
Polls an API operation until a resource enters a desired state.
Basic Usage
A waiter will call an API operation until:
- It is successful
- It enters a terminal state
- It makes the maximum number of attempts
In between attempts, the waiter will sleep.
# polls in a loop, sleeping between attempts
client.wait_until(waiter_name, params)
Configuration
You can configure the maximum number of polling attempts, and the delay (in seconds) between each polling attempt. You can pass configuration as the final arguments hash.
# poll for ~25 seconds
client.wait_until(waiter_name, params, {
max_attempts: 5,
delay: 5,
})
Callbacks
You can be notified before each polling attempt and before each
delay. If you throw :success
or :failure
from these callbacks,
it will terminate the waiter.
started_at = Time.now
client.wait_until(waiter_name, params, {
# disable max attempts
max_attempts: nil,
# poll for 1 hour, instead of a number of attempts
before_wait: -> (attempts, response) do
throw :failure if Time.now - started_at > 3600
end
})
Handling Errors
When a waiter is unsuccessful, it will raise an error. All of the failure errors extend from Waiters::Errors::WaiterFailed.
begin
client.wait_until(...)
rescue Aws::Waiters::Errors::WaiterFailed
# resource did not enter the desired state in time
end
Valid Waiters
The following table lists the valid waiter names, the operations they call,
and the default :delay
and :max_attempts
values.
waiter_name | params | :delay | :max_attempts |
---|---|---|---|
endpoint_deleted | #describe_endpoint | 30 | 60 |
endpoint_in_service | #describe_endpoint | 30 | 120 |
image_created | #describe_image | 60 | 60 |
image_deleted | #describe_image | 60 | 60 |
image_updated | #describe_image | 60 | 60 |
image_version_created | #describe_image_version | 60 | 60 |
image_version_deleted | #describe_image_version | 60 | 60 |
notebook_instance_deleted | #describe_notebook_instance | 30 | 60 |
notebook_instance_in_service | #describe_notebook_instance | 30 | 60 |
notebook_instance_stopped | #describe_notebook_instance | 30 | 60 |
processing_job_completed_or_stopped | #describe_processing_job | 60 | 60 |
training_job_completed_or_stopped | #describe_training_job | 120 | 180 |
transform_job_completed_or_stopped | #describe_transform_job | 60 | 60 |
29552 29553 29554 29555 29556 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/client.rb', line 29552 def wait_until(waiter_name, params = {}, = {}) w = waiter(waiter_name, ) yield(w.waiter) if block_given? # deprecated w.wait(params) end |