Seleziona le tue preferenze relative ai cookie

Utilizziamo cookie essenziali e strumenti simili necessari per fornire il nostro sito e i nostri servizi. Utilizziamo i cookie prestazionali per raccogliere statistiche anonime in modo da poter capire come i clienti utilizzano il nostro sito e apportare miglioramenti. I cookie essenziali non possono essere disattivati, ma puoi fare clic su \"Personalizza\" o \"Rifiuta\" per rifiutare i cookie prestazionali.

Se sei d'accordo, AWS e le terze parti approvate utilizzeranno i cookie anche per fornire utili funzionalità del sito, ricordare le tue preferenze e visualizzare contenuti pertinenti, inclusa la pubblicità pertinente. Per continuare senza accettare questi cookie, fai clic su \"Continua\" o \"Rifiuta\". Per effettuare scelte più dettagliate o saperne di più, fai clic su \"Personalizza\".

[AG.DLM.3] Automate data processes for reliable collection, transformation, and storage using pipelines - DevOps Guidance
Questa pagina non è tradotta nella tua lingua. Richiedi traduzione

[AG.DLM.3] Automate data processes for reliable collection, transformation, and storage using pipelines

Category: FOUNDATIONAL

A data pipeline is a series of steps to systematically collect, transform, and store data from various sources. Data pipelines can follow different sequences, such as extract, transform, and load (ETL), or extract and load unstructured data directly into a data lake without transformations.

Consistent data collection and transformation fuels informed decision-making, proactive responses, and feedback loops. Data pipelines play a key role in enhancing data quality by performing operations like sorting, reformatting, deduplication, verification, and validation, making data more useful for analysis.

Just as DevOps principles are applied to software delivery, the same can be done with data management through pipelines using a methodology commonly referred to as DataOps. DataOps incorporates DevOps principles into data management, including the automation of testing and deployment processes for data pipelines. This approach improves monitoring, accelerates issue troubleshooting, and fosters collaboration between development and data operations teams.

Related information:

PrivacyCondizioni del sitoPreferenze cookie
© 2025, Amazon Web Services, Inc. o società affiliate. Tutti i diritti riservati.