Cookie の設定を選択する

当社は、当社のサイトおよびサービスを提供するために必要な必須 Cookie および類似のツールを使用しています。当社は、パフォーマンス Cookie を使用して匿名の統計情報を収集することで、お客様が当社のサイトをどのように利用しているかを把握し、改善に役立てています。必須 Cookie は無効化できませんが、[カスタマイズ] または [拒否] をクリックしてパフォーマンス Cookie を拒否することはできます。

お客様が同意した場合、AWS および承認された第三者は、Cookie を使用して便利なサイト機能を提供したり、お客様の選択を記憶したり、関連する広告を含む関連コンテンツを表示したりします。すべての必須ではない Cookie を受け入れるか拒否するには、[受け入れる] または [拒否] をクリックしてください。より詳細な選択を行うには、[カスタマイズ] をクリックしてください。

[O.SI.2] Centralize tooling for streamlined system instrumentation and telemetry data interpretation - DevOps Guidance
このページはお客様の言語に翻訳されていません。 翻訳のリクエスト

[O.SI.2] Centralize tooling for streamlined system instrumentation and telemetry data interpretation

Category: FOUNDATIONAL

Centralized observability platforms are able to offer user-friendly, self-service capabilities to individual teams that simplify embedding visibility into system components and their dependencies. These tools streamline the onboarding process and offer auto-instrumentation capabilities to automate the monitoring of applications.

Adopt an observability platform that provides observability to teams using the X as a Service (XaaS) interaction mode as defined in the Team Topologies book by Matthew Skelton and Manuel Pais. The platform needs to support ingesting the required data sources for effective monitoring, and provide the desired level of visibility into the system components and their dependencies.

Onboarding to the platform should be easy for teams, or support auto-instrumentation to automatically monitor applications for a hands-off experience. This enables the organization to achieve real-time visibility into system data and improve the ability to identify and resolve issues quickly.

The observability platform should offer capabilities to follow requests through the system, the services it interacts with, the state of the infrastructure that these services run on, and the impact of each of these on user experience. By understanding the entire request pathway, teams can identify where slowdowns or bottlenecks occur, whether this latency is caused by hardware or dependencies between microservices that weren't identified during development.

As the observability platform matures, it could begin to offer other capabilities such as trend analysis, anomaly detection, and automated responses, ultimately aiming to reduce the mean time to detect (MTTD) and the mean time to resolve (MTTR) any issues. This can lead to reduced downtime and improved ability to achieve desired business outcomes.

Related information:

プライバシーサイト規約Cookie の設定
© 2025, Amazon Web Services, Inc. or its affiliates.All rights reserved.