- Navigation GuideYou are on a Command (operation) page with structural examples. Use the navigation breadcrumb if you would like to return to the Client landing page.
CreateTrainingJobCommand
Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify.
If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference.
In the request body, you provide the following:
-
AlgorithmSpecification
- Identifies the training algorithm to use. -
HyperParameters
- Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms .Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.
-
InputDataConfig
- Describes the input required by the training job and the Amazon S3, EFS, or FSx location where it is stored. -
OutputDataConfig
- Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training. -
ResourceConfig
- Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. -
EnableManagedSpotTraining
- Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training . -
RoleArn
- The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training.You must grant this role the necessary permissions so that SageMaker can successfully complete model training. -
StoppingCondition
- To help cap training costs, useMaxRuntimeInSeconds
to set a time limit for training. UseMaxWaitTimeInSeconds
to specify how long a managed spot training job has to complete. -
Environment
- The environment variables to set in the Docker container. -
RetryStrategy
- The number of times to retry the job when the job fails due to anInternalServerError
.
For more information about SageMaker, see How It Works .
Example Syntax
Use a bare-bones client and the command you need to make an API call.
import { SageMakerClient, CreateTrainingJobCommand } from "@aws-sdk/client-sagemaker"; // ES Modules import
// const { SageMakerClient, CreateTrainingJobCommand } = require("@aws-sdk/client-sagemaker"); // CommonJS import
const client = new SageMakerClient(config);
const input = { // CreateTrainingJobRequest
TrainingJobName: "STRING_VALUE", // required
HyperParameters: { // HyperParameters
"<keys>": "STRING_VALUE",
},
AlgorithmSpecification: { // AlgorithmSpecification
TrainingImage: "STRING_VALUE",
AlgorithmName: "STRING_VALUE",
TrainingInputMode: "Pipe" || "File" || "FastFile", // required
MetricDefinitions: [ // MetricDefinitionList
{ // MetricDefinition
Name: "STRING_VALUE", // required
Regex: "STRING_VALUE", // required
},
],
EnableSageMakerMetricsTimeSeries: true || false,
ContainerEntrypoint: [ // TrainingContainerEntrypoint
"STRING_VALUE",
],
ContainerArguments: [ // TrainingContainerArguments
"STRING_VALUE",
],
TrainingImageConfig: { // TrainingImageConfig
TrainingRepositoryAccessMode: "Platform" || "Vpc", // required
TrainingRepositoryAuthConfig: { // TrainingRepositoryAuthConfig
TrainingRepositoryCredentialsProviderArn: "STRING_VALUE", // required
},
},
},
RoleArn: "STRING_VALUE", // required
InputDataConfig: [ // InputDataConfig
{ // Channel
ChannelName: "STRING_VALUE", // required
DataSource: { // DataSource
S3DataSource: { // S3DataSource
S3DataType: "ManifestFile" || "S3Prefix" || "AugmentedManifestFile", // required
S3Uri: "STRING_VALUE", // required
S3DataDistributionType: "FullyReplicated" || "ShardedByS3Key",
AttributeNames: [ // AttributeNames
"STRING_VALUE",
],
InstanceGroupNames: [ // InstanceGroupNames
"STRING_VALUE",
],
ModelAccessConfig: { // ModelAccessConfig
AcceptEula: true || false, // required
},
HubAccessConfig: { // HubAccessConfig
HubContentArn: "STRING_VALUE", // required
},
},
FileSystemDataSource: { // FileSystemDataSource
FileSystemId: "STRING_VALUE", // required
FileSystemAccessMode: "rw" || "ro", // required
FileSystemType: "EFS" || "FSxLustre", // required
DirectoryPath: "STRING_VALUE", // required
},
},
ContentType: "STRING_VALUE",
CompressionType: "None" || "Gzip",
RecordWrapperType: "None" || "RecordIO",
InputMode: "Pipe" || "File" || "FastFile",
ShuffleConfig: { // ShuffleConfig
Seed: Number("long"), // required
},
},
],
OutputDataConfig: { // OutputDataConfig
KmsKeyId: "STRING_VALUE",
S3OutputPath: "STRING_VALUE", // required
CompressionType: "GZIP" || "NONE",
},
ResourceConfig: { // ResourceConfig
InstanceType: "ml.m4.xlarge" || "ml.m4.2xlarge" || "ml.m4.4xlarge" || "ml.m4.10xlarge" || "ml.m4.16xlarge" || "ml.g4dn.xlarge" || "ml.g4dn.2xlarge" || "ml.g4dn.4xlarge" || "ml.g4dn.8xlarge" || "ml.g4dn.12xlarge" || "ml.g4dn.16xlarge" || "ml.m5.large" || "ml.m5.xlarge" || "ml.m5.2xlarge" || "ml.m5.4xlarge" || "ml.m5.12xlarge" || "ml.m5.24xlarge" || "ml.c4.xlarge" || "ml.c4.2xlarge" || "ml.c4.4xlarge" || "ml.c4.8xlarge" || "ml.p2.xlarge" || "ml.p2.8xlarge" || "ml.p2.16xlarge" || "ml.p3.2xlarge" || "ml.p3.8xlarge" || "ml.p3.16xlarge" || "ml.p3dn.24xlarge" || "ml.p4d.24xlarge" || "ml.p4de.24xlarge" || "ml.p5.48xlarge" || "ml.p5e.48xlarge" || "ml.p5en.48xlarge" || "ml.c5.xlarge" || "ml.c5.2xlarge" || "ml.c5.4xlarge" || "ml.c5.9xlarge" || "ml.c5.18xlarge" || "ml.c5n.xlarge" || "ml.c5n.2xlarge" || "ml.c5n.4xlarge" || "ml.c5n.9xlarge" || "ml.c5n.18xlarge" || "ml.g5.xlarge" || "ml.g5.2xlarge" || "ml.g5.4xlarge" || "ml.g5.8xlarge" || "ml.g5.16xlarge" || "ml.g5.12xlarge" || "ml.g5.24xlarge" || "ml.g5.48xlarge" || "ml.g6.xlarge" || "ml.g6.2xlarge" || "ml.g6.4xlarge" || "ml.g6.8xlarge" || "ml.g6.16xlarge" || "ml.g6.12xlarge" || "ml.g6.24xlarge" || "ml.g6.48xlarge" || "ml.g6e.xlarge" || "ml.g6e.2xlarge" || "ml.g6e.4xlarge" || "ml.g6e.8xlarge" || "ml.g6e.16xlarge" || "ml.g6e.12xlarge" || "ml.g6e.24xlarge" || "ml.g6e.48xlarge" || "ml.trn1.2xlarge" || "ml.trn1.32xlarge" || "ml.trn1n.32xlarge" || "ml.trn2.48xlarge" || "ml.m6i.large" || "ml.m6i.xlarge" || "ml.m6i.2xlarge" || "ml.m6i.4xlarge" || "ml.m6i.8xlarge" || "ml.m6i.12xlarge" || "ml.m6i.16xlarge" || "ml.m6i.24xlarge" || "ml.m6i.32xlarge" || "ml.c6i.xlarge" || "ml.c6i.2xlarge" || "ml.c6i.8xlarge" || "ml.c6i.4xlarge" || "ml.c6i.12xlarge" || "ml.c6i.16xlarge" || "ml.c6i.24xlarge" || "ml.c6i.32xlarge" || "ml.r5d.large" || "ml.r5d.xlarge" || "ml.r5d.2xlarge" || "ml.r5d.4xlarge" || "ml.r5d.8xlarge" || "ml.r5d.12xlarge" || "ml.r5d.16xlarge" || "ml.r5d.24xlarge" || "ml.t3.medium" || "ml.t3.large" || "ml.t3.xlarge" || "ml.t3.2xlarge" || "ml.r5.large" || "ml.r5.xlarge" || "ml.r5.2xlarge" || "ml.r5.4xlarge" || "ml.r5.8xlarge" || "ml.r5.12xlarge" || "ml.r5.16xlarge" || "ml.r5.24xlarge",
InstanceCount: Number("int"),
VolumeSizeInGB: Number("int"), // required
VolumeKmsKeyId: "STRING_VALUE",
KeepAlivePeriodInSeconds: Number("int"),
InstanceGroups: [ // InstanceGroups
{ // InstanceGroup
InstanceType: "ml.m4.xlarge" || "ml.m4.2xlarge" || "ml.m4.4xlarge" || "ml.m4.10xlarge" || "ml.m4.16xlarge" || "ml.g4dn.xlarge" || "ml.g4dn.2xlarge" || "ml.g4dn.4xlarge" || "ml.g4dn.8xlarge" || "ml.g4dn.12xlarge" || "ml.g4dn.16xlarge" || "ml.m5.large" || "ml.m5.xlarge" || "ml.m5.2xlarge" || "ml.m5.4xlarge" || "ml.m5.12xlarge" || "ml.m5.24xlarge" || "ml.c4.xlarge" || "ml.c4.2xlarge" || "ml.c4.4xlarge" || "ml.c4.8xlarge" || "ml.p2.xlarge" || "ml.p2.8xlarge" || "ml.p2.16xlarge" || "ml.p3.2xlarge" || "ml.p3.8xlarge" || "ml.p3.16xlarge" || "ml.p3dn.24xlarge" || "ml.p4d.24xlarge" || "ml.p4de.24xlarge" || "ml.p5.48xlarge" || "ml.p5e.48xlarge" || "ml.p5en.48xlarge" || "ml.c5.xlarge" || "ml.c5.2xlarge" || "ml.c5.4xlarge" || "ml.c5.9xlarge" || "ml.c5.18xlarge" || "ml.c5n.xlarge" || "ml.c5n.2xlarge" || "ml.c5n.4xlarge" || "ml.c5n.9xlarge" || "ml.c5n.18xlarge" || "ml.g5.xlarge" || "ml.g5.2xlarge" || "ml.g5.4xlarge" || "ml.g5.8xlarge" || "ml.g5.16xlarge" || "ml.g5.12xlarge" || "ml.g5.24xlarge" || "ml.g5.48xlarge" || "ml.g6.xlarge" || "ml.g6.2xlarge" || "ml.g6.4xlarge" || "ml.g6.8xlarge" || "ml.g6.16xlarge" || "ml.g6.12xlarge" || "ml.g6.24xlarge" || "ml.g6.48xlarge" || "ml.g6e.xlarge" || "ml.g6e.2xlarge" || "ml.g6e.4xlarge" || "ml.g6e.8xlarge" || "ml.g6e.16xlarge" || "ml.g6e.12xlarge" || "ml.g6e.24xlarge" || "ml.g6e.48xlarge" || "ml.trn1.2xlarge" || "ml.trn1.32xlarge" || "ml.trn1n.32xlarge" || "ml.trn2.48xlarge" || "ml.m6i.large" || "ml.m6i.xlarge" || "ml.m6i.2xlarge" || "ml.m6i.4xlarge" || "ml.m6i.8xlarge" || "ml.m6i.12xlarge" || "ml.m6i.16xlarge" || "ml.m6i.24xlarge" || "ml.m6i.32xlarge" || "ml.c6i.xlarge" || "ml.c6i.2xlarge" || "ml.c6i.8xlarge" || "ml.c6i.4xlarge" || "ml.c6i.12xlarge" || "ml.c6i.16xlarge" || "ml.c6i.24xlarge" || "ml.c6i.32xlarge" || "ml.r5d.large" || "ml.r5d.xlarge" || "ml.r5d.2xlarge" || "ml.r5d.4xlarge" || "ml.r5d.8xlarge" || "ml.r5d.12xlarge" || "ml.r5d.16xlarge" || "ml.r5d.24xlarge" || "ml.t3.medium" || "ml.t3.large" || "ml.t3.xlarge" || "ml.t3.2xlarge" || "ml.r5.large" || "ml.r5.xlarge" || "ml.r5.2xlarge" || "ml.r5.4xlarge" || "ml.r5.8xlarge" || "ml.r5.12xlarge" || "ml.r5.16xlarge" || "ml.r5.24xlarge", // required
InstanceCount: Number("int"), // required
InstanceGroupName: "STRING_VALUE", // required
},
],
TrainingPlanArn: "STRING_VALUE",
},
VpcConfig: { // VpcConfig
SecurityGroupIds: [ // VpcSecurityGroupIds // required
"STRING_VALUE",
],
Subnets: [ // Subnets // required
"STRING_VALUE",
],
},
StoppingCondition: { // StoppingCondition
MaxRuntimeInSeconds: Number("int"),
MaxWaitTimeInSeconds: Number("int"),
MaxPendingTimeInSeconds: Number("int"),
},
Tags: [ // TagList
{ // Tag
Key: "STRING_VALUE", // required
Value: "STRING_VALUE", // required
},
],
EnableNetworkIsolation: true || false,
EnableInterContainerTrafficEncryption: true || false,
EnableManagedSpotTraining: true || false,
CheckpointConfig: { // CheckpointConfig
S3Uri: "STRING_VALUE", // required
LocalPath: "STRING_VALUE",
},
DebugHookConfig: { // DebugHookConfig
LocalPath: "STRING_VALUE",
S3OutputPath: "STRING_VALUE", // required
HookParameters: { // HookParameters
"<keys>": "STRING_VALUE",
},
CollectionConfigurations: [ // CollectionConfigurations
{ // CollectionConfiguration
CollectionName: "STRING_VALUE",
CollectionParameters: { // CollectionParameters
"<keys>": "STRING_VALUE",
},
},
],
},
DebugRuleConfigurations: [ // DebugRuleConfigurations
{ // DebugRuleConfiguration
RuleConfigurationName: "STRING_VALUE", // required
LocalPath: "STRING_VALUE",
S3OutputPath: "STRING_VALUE",
RuleEvaluatorImage: "STRING_VALUE", // required
InstanceType: "ml.t3.medium" || "ml.t3.large" || "ml.t3.xlarge" || "ml.t3.2xlarge" || "ml.m4.xlarge" || "ml.m4.2xlarge" || "ml.m4.4xlarge" || "ml.m4.10xlarge" || "ml.m4.16xlarge" || "ml.c4.xlarge" || "ml.c4.2xlarge" || "ml.c4.4xlarge" || "ml.c4.8xlarge" || "ml.p2.xlarge" || "ml.p2.8xlarge" || "ml.p2.16xlarge" || "ml.p3.2xlarge" || "ml.p3.8xlarge" || "ml.p3.16xlarge" || "ml.c5.xlarge" || "ml.c5.2xlarge" || "ml.c5.4xlarge" || "ml.c5.9xlarge" || "ml.c5.18xlarge" || "ml.m5.large" || "ml.m5.xlarge" || "ml.m5.2xlarge" || "ml.m5.4xlarge" || "ml.m5.12xlarge" || "ml.m5.24xlarge" || "ml.r5.large" || "ml.r5.xlarge" || "ml.r5.2xlarge" || "ml.r5.4xlarge" || "ml.r5.8xlarge" || "ml.r5.12xlarge" || "ml.r5.16xlarge" || "ml.r5.24xlarge" || "ml.g4dn.xlarge" || "ml.g4dn.2xlarge" || "ml.g4dn.4xlarge" || "ml.g4dn.8xlarge" || "ml.g4dn.12xlarge" || "ml.g4dn.16xlarge" || "ml.g5.xlarge" || "ml.g5.2xlarge" || "ml.g5.4xlarge" || "ml.g5.8xlarge" || "ml.g5.16xlarge" || "ml.g5.12xlarge" || "ml.g5.24xlarge" || "ml.g5.48xlarge" || "ml.r5d.large" || "ml.r5d.xlarge" || "ml.r5d.2xlarge" || "ml.r5d.4xlarge" || "ml.r5d.8xlarge" || "ml.r5d.12xlarge" || "ml.r5d.16xlarge" || "ml.r5d.24xlarge" || "ml.g6.xlarge" || "ml.g6.2xlarge" || "ml.g6.4xlarge" || "ml.g6.8xlarge" || "ml.g6.12xlarge" || "ml.g6.16xlarge" || "ml.g6.24xlarge" || "ml.g6.48xlarge" || "ml.g6e.xlarge" || "ml.g6e.2xlarge" || "ml.g6e.4xlarge" || "ml.g6e.8xlarge" || "ml.g6e.12xlarge" || "ml.g6e.16xlarge" || "ml.g6e.24xlarge" || "ml.g6e.48xlarge" || "ml.m6i.large" || "ml.m6i.xlarge" || "ml.m6i.2xlarge" || "ml.m6i.4xlarge" || "ml.m6i.8xlarge" || "ml.m6i.12xlarge" || "ml.m6i.16xlarge" || "ml.m6i.24xlarge" || "ml.m6i.32xlarge" || "ml.c6i.xlarge" || "ml.c6i.2xlarge" || "ml.c6i.4xlarge" || "ml.c6i.8xlarge" || "ml.c6i.12xlarge" || "ml.c6i.16xlarge" || "ml.c6i.24xlarge" || "ml.c6i.32xlarge",
VolumeSizeInGB: Number("int"),
RuleParameters: { // RuleParameters
"<keys>": "STRING_VALUE",
},
},
],
TensorBoardOutputConfig: { // TensorBoardOutputConfig
LocalPath: "STRING_VALUE",
S3OutputPath: "STRING_VALUE", // required
},
ExperimentConfig: { // ExperimentConfig
ExperimentName: "STRING_VALUE",
TrialName: "STRING_VALUE",
TrialComponentDisplayName: "STRING_VALUE",
RunName: "STRING_VALUE",
},
ProfilerConfig: { // ProfilerConfig
S3OutputPath: "STRING_VALUE",
ProfilingIntervalInMilliseconds: Number("long"),
ProfilingParameters: { // ProfilingParameters
"<keys>": "STRING_VALUE",
},
DisableProfiler: true || false,
},
ProfilerRuleConfigurations: [ // ProfilerRuleConfigurations
{ // ProfilerRuleConfiguration
RuleConfigurationName: "STRING_VALUE", // required
LocalPath: "STRING_VALUE",
S3OutputPath: "STRING_VALUE",
RuleEvaluatorImage: "STRING_VALUE", // required
InstanceType: "ml.t3.medium" || "ml.t3.large" || "ml.t3.xlarge" || "ml.t3.2xlarge" || "ml.m4.xlarge" || "ml.m4.2xlarge" || "ml.m4.4xlarge" || "ml.m4.10xlarge" || "ml.m4.16xlarge" || "ml.c4.xlarge" || "ml.c4.2xlarge" || "ml.c4.4xlarge" || "ml.c4.8xlarge" || "ml.p2.xlarge" || "ml.p2.8xlarge" || "ml.p2.16xlarge" || "ml.p3.2xlarge" || "ml.p3.8xlarge" || "ml.p3.16xlarge" || "ml.c5.xlarge" || "ml.c5.2xlarge" || "ml.c5.4xlarge" || "ml.c5.9xlarge" || "ml.c5.18xlarge" || "ml.m5.large" || "ml.m5.xlarge" || "ml.m5.2xlarge" || "ml.m5.4xlarge" || "ml.m5.12xlarge" || "ml.m5.24xlarge" || "ml.r5.large" || "ml.r5.xlarge" || "ml.r5.2xlarge" || "ml.r5.4xlarge" || "ml.r5.8xlarge" || "ml.r5.12xlarge" || "ml.r5.16xlarge" || "ml.r5.24xlarge" || "ml.g4dn.xlarge" || "ml.g4dn.2xlarge" || "ml.g4dn.4xlarge" || "ml.g4dn.8xlarge" || "ml.g4dn.12xlarge" || "ml.g4dn.16xlarge" || "ml.g5.xlarge" || "ml.g5.2xlarge" || "ml.g5.4xlarge" || "ml.g5.8xlarge" || "ml.g5.16xlarge" || "ml.g5.12xlarge" || "ml.g5.24xlarge" || "ml.g5.48xlarge" || "ml.r5d.large" || "ml.r5d.xlarge" || "ml.r5d.2xlarge" || "ml.r5d.4xlarge" || "ml.r5d.8xlarge" || "ml.r5d.12xlarge" || "ml.r5d.16xlarge" || "ml.r5d.24xlarge" || "ml.g6.xlarge" || "ml.g6.2xlarge" || "ml.g6.4xlarge" || "ml.g6.8xlarge" || "ml.g6.12xlarge" || "ml.g6.16xlarge" || "ml.g6.24xlarge" || "ml.g6.48xlarge" || "ml.g6e.xlarge" || "ml.g6e.2xlarge" || "ml.g6e.4xlarge" || "ml.g6e.8xlarge" || "ml.g6e.12xlarge" || "ml.g6e.16xlarge" || "ml.g6e.24xlarge" || "ml.g6e.48xlarge" || "ml.m6i.large" || "ml.m6i.xlarge" || "ml.m6i.2xlarge" || "ml.m6i.4xlarge" || "ml.m6i.8xlarge" || "ml.m6i.12xlarge" || "ml.m6i.16xlarge" || "ml.m6i.24xlarge" || "ml.m6i.32xlarge" || "ml.c6i.xlarge" || "ml.c6i.2xlarge" || "ml.c6i.4xlarge" || "ml.c6i.8xlarge" || "ml.c6i.12xlarge" || "ml.c6i.16xlarge" || "ml.c6i.24xlarge" || "ml.c6i.32xlarge",
VolumeSizeInGB: Number("int"),
RuleParameters: {
"<keys>": "STRING_VALUE",
},
},
],
Environment: { // TrainingEnvironmentMap
"<keys>": "STRING_VALUE",
},
RetryStrategy: { // RetryStrategy
MaximumRetryAttempts: Number("int"), // required
},
RemoteDebugConfig: { // RemoteDebugConfig
EnableRemoteDebug: true || false,
},
InfraCheckConfig: { // InfraCheckConfig
EnableInfraCheck: true || false,
},
SessionChainingConfig: { // SessionChainingConfig
EnableSessionTagChaining: true || false,
},
};
const command = new CreateTrainingJobCommand(input);
const response = await client.send(command);
// { // CreateTrainingJobResponse
// TrainingJobArn: "STRING_VALUE", // required
// };
CreateTrainingJobCommand Input
Parameter | Type | Description |
---|
Parameter | Type | Description |
---|---|---|
AlgorithmSpecification Required | AlgorithmSpecification | undefined | The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by SageMaker, see Algorithms . For information about providing your own algorithms, see Using Your Own Algorithms with Amazon SageMaker . |
OutputDataConfig Required | OutputDataConfig | undefined | Specifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts. |
ResourceConfig Required | ResourceConfig | undefined | The resources, including the ML compute instances and ML storage volumes, to use for model training. ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want SageMaker to use the ML storage volume to store the training data, choose |
RoleArn Required | string | undefined | The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf. During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see SageMaker Roles . To be able to pass this role to SageMaker, the caller of this API must have the |
StoppingCondition Required | StoppingCondition | undefined | Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs. To stop a job, SageMaker sends the algorithm the |
TrainingJobName Required | string | undefined | The name of the training job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account. |
CheckpointConfig | CheckpointConfig | undefined | Contains information about the output location for managed spot training checkpoint data. |
DebugHookConfig | DebugHookConfig | undefined | Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the |
DebugRuleConfigurations | DebugRuleConfiguration[] | undefined | Configuration information for Amazon SageMaker Debugger rules for debugging output tensors. |
EnableInterContainerTrafficEncryption | boolean | undefined | To encrypt all communications between ML compute instances in distributed training, choose |
EnableManagedSpotTraining | boolean | undefined | To train models using managed spot training, choose The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed. |
EnableNetworkIsolation | boolean | undefined | Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access. |
Environment | Record<string, string> | undefined | The environment variables to set in the Docker container. |
ExperimentConfig | ExperimentConfig | undefined | Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs: |
HyperParameters | Record<string, string> | undefined | Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms . You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error. |
InfraCheckConfig | InfraCheckConfig | undefined | Contains information about the infrastructure health check configuration for the training job. |
InputDataConfig | Channel[] | undefined | An array of Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded. Your input must be in the same Amazon Web Services region as your training job. |
ProfilerConfig | ProfilerConfig | undefined | Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths. |
ProfilerRuleConfigurations | ProfilerRuleConfiguration[] | undefined | Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics. |
RemoteDebugConfig | RemoteDebugConfig | undefined | Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging . |
RetryStrategy | RetryStrategy | undefined | The number of times to retry the job when the job fails due to an |
SessionChainingConfig | SessionChainingConfig | undefined | Contains information about attribute-based access control (ABAC) for the training job. |
Tags | Tag[] | undefined | An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources . |
TensorBoardOutputConfig | TensorBoardOutputConfig | undefined | Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data. |
VpcConfig | VpcConfig | undefined | A VpcConfig object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud . |
CreateTrainingJobCommand Output
Parameter | Type | Description |
---|
Parameter | Type | Description |
---|---|---|
$metadata Required | ResponseMetadata | Metadata pertaining to this request. |
TrainingJobArn Required | string | undefined | The Amazon Resource Name (ARN) of the training job. |
Throws
Name | Fault | Details |
---|
Name | Fault | Details |
---|---|---|
ResourceInUse | client | Resource being accessed is in use. |
ResourceLimitExceeded | client | You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. |
ResourceNotFound | client | Resource being access is not found. |
SageMakerServiceException | Base exception class for all service exceptions from SageMaker service. |