Select your cookie preferences

We use essential cookies and similar tools that are necessary to provide our site and services. We use performance cookies to collect anonymous statistics, so we can understand how customers use our site and make improvements. Essential cookies cannot be deactivated, but you can choose “Customize” or “Decline” to decline performance cookies.

If you agree, AWS and approved third parties will also use cookies to provide useful site features, remember your preferences, and display relevant content, including relevant advertising. To accept or decline all non-essential cookies, choose “Accept” or “Decline.” To make more detailed choices, choose “Customize.”

SDK for PHP 3.x

Client: Aws\SageMaker\SageMakerClient
Service ID: sagemaker
Version: 2017-07-24

This page describes the parameters and results for the operations of the Amazon SageMaker Service (2017-07-24), and shows how to use the Aws\SageMaker\SageMakerClient object to call the described operations. This documentation is specific to the 2017-07-24 API version of the service.

Operation Summary

Each of the following operations can be created from a client using $client->getCommand('CommandName'), where "CommandName" is the name of one of the following operations. Note: a command is a value that encapsulates an operation and the parameters used to create an HTTP request.

You can also create and send a command immediately using the magic methods available on a client object: $client->commandName(/* parameters */). You can send the command asynchronously (returning a promise) by appending the word "Async" to the operation name: $client->commandNameAsync(/* parameters */).

AddAssociation ( array $params = [] )
Creates an association between the source and the destination.
AddTags ( array $params = [] )
Adds or overwrites one or more tags for the specified SageMaker resource.
AssociateTrialComponent ( array $params = [] )
Associates a trial component with a trial.
BatchDeleteClusterNodes ( array $params = [] )
Deletes specific nodes within a SageMaker HyperPod cluster.
BatchDescribeModelPackage ( array $params = [] )
This action batch describes a list of versioned model packages
CreateAction ( array $params = [] )
Creates an action.
CreateAlgorithm ( array $params = [] )
Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services Marketplace.
CreateApp ( array $params = [] )
Creates a running app for the specified UserProfile.
CreateAppImageConfig ( array $params = [] )
Creates a configuration for running a SageMaker AI image as a KernelGateway app.
CreateArtifact ( array $params = [] )
Creates an artifact.
CreateAutoMLJob ( array $params = [] )
Creates an Autopilot job also referred to as Autopilot experiment or AutoML job.
CreateAutoMLJobV2 ( array $params = [] )
Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.
CreateCluster ( array $params = [] )
Creates a SageMaker HyperPod cluster.
CreateClusterSchedulerConfig ( array $params = [] )
Create cluster policy configuration.
CreateCodeRepository ( array $params = [] )
Creates a Git repository as a resource in your SageMaker AI account.
CreateCompilationJob ( array $params = [] )
Starts a model compilation job.
CreateComputeQuota ( array $params = [] )
Create compute allocation definition.
CreateContext ( array $params = [] )
Creates a context.
CreateDataQualityJobDefinition ( array $params = [] )
Creates a definition for a job that monitors data quality and drift.
CreateDeviceFleet ( array $params = [] )
Creates a device fleet.
CreateDomain ( array $params = [] )
Creates a Domain.
CreateEdgeDeploymentPlan ( array $params = [] )
Creates an edge deployment plan, consisting of multiple stages.
CreateEdgeDeploymentStage ( array $params = [] )
Creates a new stage in an existing edge deployment plan.
CreateEdgePackagingJob ( array $params = [] )
Starts a SageMaker Edge Manager model packaging job.
CreateEndpoint ( array $params = [] )
Creates an endpoint using the endpoint configuration specified in the request.
CreateEndpointConfig ( array $params = [] )
Creates an endpoint configuration that SageMaker hosting services uses to deploy models.
CreateExperiment ( array $params = [] )
Creates a SageMaker experiment.
CreateFeatureGroup ( array $params = [] )
Create a new FeatureGroup.
CreateFlowDefinition ( array $params = [] )
Creates a flow definition.
CreateHub ( array $params = [] )
Create a hub.
CreateHubContentReference ( array $params = [] )
Create a hub content reference in order to add a model in the JumpStart public hub to a private hub.
CreateHumanTaskUi ( array $params = [] )
Defines the settings you will use for the human review workflow user interface.
CreateHyperParameterTuningJob ( array $params = [] )
Starts a hyperparameter tuning job.
CreateImage ( array $params = [] )
Creates a custom SageMaker AI image.
CreateImageVersion ( array $params = [] )
Creates a version of the SageMaker AI image specified by ImageName.
CreateInferenceComponent ( array $params = [] )
Creates an inference component, which is a SageMaker AI hosting object that you can use to deploy a model to an endpoint.
CreateInferenceExperiment ( array $params = [] )
Creates an inference experiment using the configurations specified in the request.
CreateInferenceRecommendationsJob ( array $params = [] )
Starts a recommendation job.
CreateLabelingJob ( array $params = [] )
Creates a job that uses workers to label the data objects in your input dataset.
CreateMlflowTrackingServer ( array $params = [] )
Creates an MLflow Tracking Server using a general purpose Amazon S3 bucket as the artifact store.
CreateModel ( array $params = [] )
Creates a model in SageMaker.
CreateModelBiasJobDefinition ( array $params = [] )
Creates the definition for a model bias job.
CreateModelCard ( array $params = [] )
Creates an Amazon SageMaker Model Card.
CreateModelCardExportJob ( array $params = [] )
Creates an Amazon SageMaker Model Card export job.
CreateModelExplainabilityJobDefinition ( array $params = [] )
Creates the definition for a model explainability job.
CreateModelPackage ( array $params = [] )
Creates a model package that you can use to create SageMaker models or list on Amazon Web Services Marketplace, or a versioned model that is part of a model group.
CreateModelPackageGroup ( array $params = [] )
Creates a model group.
CreateModelQualityJobDefinition ( array $params = [] )
Creates a definition for a job that monitors model quality and drift.
CreateMonitoringSchedule ( array $params = [] )
Creates a schedule that regularly starts Amazon SageMaker AI Processing Jobs to monitor the data captured for an Amazon SageMaker AI Endpoint.
CreateNotebookInstance ( array $params = [] )
Creates an SageMaker AI notebook instance.
CreateNotebookInstanceLifecycleConfig ( array $params = [] )
Creates a lifecycle configuration that you can associate with a notebook instance.
CreateOptimizationJob ( array $params = [] )
Creates a job that optimizes a model for inference performance.
CreatePartnerApp ( array $params = [] )
Creates an Amazon SageMaker Partner AI App.
CreatePartnerAppPresignedUrl ( array $params = [] )
Creates a presigned URL to access an Amazon SageMaker Partner AI App.
CreatePipeline ( array $params = [] )
Creates a pipeline using a JSON pipeline definition.
CreatePresignedDomainUrl ( array $params = [] )
Creates a URL for a specified UserProfile in a Domain.
CreatePresignedMlflowTrackingServerUrl ( array $params = [] )
Returns a presigned URL that you can use to connect to the MLflow UI attached to your tracking server.
CreatePresignedNotebookInstanceUrl ( array $params = [] )
Returns a URL that you can use to connect to the Jupyter server from a notebook instance.
CreateProcessingJob ( array $params = [] )
Creates a processing job.
CreateProject ( array $params = [] )
Creates a machine learning (ML) project that can contain one or more templates that set up an ML pipeline from training to deploying an approved model.
CreateSpace ( array $params = [] )
Creates a private space or a space used for real time collaboration in a domain.
CreateStudioLifecycleConfig ( array $params = [] )
Creates a new Amazon SageMaker AI Studio Lifecycle Configuration.
CreateTrainingJob ( array $params = [] )
Starts a model training job.
CreateTrainingPlan ( array $params = [] )
Creates a new training plan in SageMaker to reserve compute capacity.
CreateTransformJob ( array $params = [] )
Starts a transform job.
CreateTrial ( array $params = [] )
Creates an SageMaker trial.
CreateTrialComponent ( array $params = [] )
Creates a trial component, which is a stage of a machine learning trial.
CreateUserProfile ( array $params = [] )
Creates a user profile.
CreateWorkforce ( array $params = [] )
Use this operation to create a workforce.
CreateWorkteam ( array $params = [] )
Creates a new work team for labeling your data.
DeleteAction ( array $params = [] )
Deletes an action.
DeleteAlgorithm ( array $params = [] )
Removes the specified algorithm from your account.
DeleteApp ( array $params = [] )
Used to stop and delete an app.
DeleteAppImageConfig ( array $params = [] )
Deletes an AppImageConfig.
DeleteArtifact ( array $params = [] )
Deletes an artifact.
DeleteAssociation ( array $params = [] )
Deletes an association.
DeleteCluster ( array $params = [] )
Delete a SageMaker HyperPod cluster.
DeleteClusterSchedulerConfig ( array $params = [] )
Deletes the cluster policy of the cluster.
DeleteCodeRepository ( array $params = [] )
Deletes the specified Git repository from your account.
DeleteCompilationJob ( array $params = [] )
Deletes the specified compilation job.
DeleteComputeQuota ( array $params = [] )
Deletes the compute allocation from the cluster.
DeleteContext ( array $params = [] )
Deletes an context.
DeleteDataQualityJobDefinition ( array $params = [] )
Deletes a data quality monitoring job definition.
DeleteDeviceFleet ( array $params = [] )
Deletes a fleet.
DeleteDomain ( array $params = [] )
Used to delete a domain.
DeleteEdgeDeploymentPlan ( array $params = [] )
Deletes an edge deployment plan if (and only if) all the stages in the plan are inactive or there are no stages in the plan.
DeleteEdgeDeploymentStage ( array $params = [] )
Delete a stage in an edge deployment plan if (and only if) the stage is inactive.
DeleteEndpoint ( array $params = [] )
Deletes an endpoint.
DeleteEndpointConfig ( array $params = [] )
Deletes an endpoint configuration.
DeleteExperiment ( array $params = [] )
Deletes an SageMaker experiment.
DeleteFeatureGroup ( array $params = [] )
Delete the FeatureGroup and any data that was written to the OnlineStore of the FeatureGroup.
DeleteFlowDefinition ( array $params = [] )
Deletes the specified flow definition.
DeleteHub ( array $params = [] )
Delete a hub.
DeleteHubContent ( array $params = [] )
Delete the contents of a hub.
DeleteHubContentReference ( array $params = [] )
Delete a hub content reference in order to remove a model from a private hub.
DeleteHumanTaskUi ( array $params = [] )
Use this operation to delete a human task user interface (worker task template).
DeleteHyperParameterTuningJob ( array $params = [] )
Deletes a hyperparameter tuning job.
DeleteImage ( array $params = [] )
Deletes a SageMaker AI image and all versions of the image.
DeleteImageVersion ( array $params = [] )
Deletes a version of a SageMaker AI image.
DeleteInferenceComponent ( array $params = [] )
Deletes an inference component.
DeleteInferenceExperiment ( array $params = [] )
Deletes an inference experiment.
DeleteMlflowTrackingServer ( array $params = [] )
Deletes an MLflow Tracking Server.
DeleteModel ( array $params = [] )
Deletes a model.
DeleteModelBiasJobDefinition ( array $params = [] )
Deletes an Amazon SageMaker AI model bias job definition.
DeleteModelCard ( array $params = [] )
Deletes an Amazon SageMaker Model Card.
DeleteModelExplainabilityJobDefinition ( array $params = [] )
Deletes an Amazon SageMaker AI model explainability job definition.
DeleteModelPackage ( array $params = [] )
Deletes a model package.
DeleteModelPackageGroup ( array $params = [] )
Deletes the specified model group.
DeleteModelPackageGroupPolicy ( array $params = [] )
Deletes a model group resource policy.
DeleteModelQualityJobDefinition ( array $params = [] )
Deletes the secified model quality monitoring job definition.
DeleteMonitoringSchedule ( array $params = [] )
Deletes a monitoring schedule.
DeleteNotebookInstance ( array $params = [] )
Deletes an SageMaker AI notebook instance.
DeleteNotebookInstanceLifecycleConfig ( array $params = [] )
Deletes a notebook instance lifecycle configuration.
DeleteOptimizationJob ( array $params = [] )
Deletes an optimization job.
DeletePartnerApp ( array $params = [] )
Deletes a SageMaker Partner AI App.
DeletePipeline ( array $params = [] )
Deletes a pipeline if there are no running instances of the pipeline.
DeleteProject ( array $params = [] )
Delete the specified project.
DeleteSpace ( array $params = [] )
Used to delete a space.
DeleteStudioLifecycleConfig ( array $params = [] )
Deletes the Amazon SageMaker AI Studio Lifecycle Configuration.
DeleteTags ( array $params = [] )
Deletes the specified tags from an SageMaker resource.
DeleteTrial ( array $params = [] )
Deletes the specified trial.
DeleteTrialComponent ( array $params = [] )
Deletes the specified trial component.
DeleteUserProfile ( array $params = [] )
Deletes a user profile.
DeleteWorkforce ( array $params = [] )
Use this operation to delete a workforce.
DeleteWorkteam ( array $params = [] )
Deletes an existing work team.
DeregisterDevices ( array $params = [] )
Deregisters the specified devices.
DescribeAction ( array $params = [] )
Describes an action.
DescribeAlgorithm ( array $params = [] )
Returns a description of the specified algorithm that is in your account.
DescribeApp ( array $params = [] )
Describes the app.
DescribeAppImageConfig ( array $params = [] )
Describes an AppImageConfig.
DescribeArtifact ( array $params = [] )
Describes an artifact.
DescribeAutoMLJob ( array $params = [] )
Returns information about an AutoML job created by calling CreateAutoMLJob.
DescribeAutoMLJobV2 ( array $params = [] )
Returns information about an AutoML job created by calling CreateAutoMLJobV2 or CreateAutoMLJob.
DescribeCluster ( array $params = [] )
Retrieves information of a SageMaker HyperPod cluster.
DescribeClusterNode ( array $params = [] )
Retrieves information of a node (also called a instance interchangeably) of a SageMaker HyperPod cluster.
DescribeClusterSchedulerConfig ( array $params = [] )
Description of the cluster policy.
DescribeCodeRepository ( array $params = [] )
Gets details about the specified Git repository.
DescribeCompilationJob ( array $params = [] )
Returns information about a model compilation job.
DescribeComputeQuota ( array $params = [] )
Description of the compute allocation definition.
DescribeContext ( array $params = [] )
Describes a context.
DescribeDataQualityJobDefinition ( array $params = [] )
Gets the details of a data quality monitoring job definition.
DescribeDevice ( array $params = [] )
Describes the device.
DescribeDeviceFleet ( array $params = [] )
A description of the fleet the device belongs to.
DescribeDomain ( array $params = [] )
The description of the domain.
DescribeEdgeDeploymentPlan ( array $params = [] )
Describes an edge deployment plan with deployment status per stage.
DescribeEdgePackagingJob ( array $params = [] )
A description of edge packaging jobs.
DescribeEndpoint ( array $params = [] )
Returns the description of an endpoint.
DescribeEndpointConfig ( array $params = [] )
Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
DescribeExperiment ( array $params = [] )
Provides a list of an experiment's properties.
DescribeFeatureGroup ( array $params = [] )
Use this operation to describe a FeatureGroup.
DescribeFeatureMetadata ( array $params = [] )
Shows the metadata for a feature within a feature group.
DescribeFlowDefinition ( array $params = [] )
Returns information about the specified flow definition.
DescribeHub ( array $params = [] )
Describes a hub.
DescribeHubContent ( array $params = [] )
Describe the content of a hub.
DescribeHumanTaskUi ( array $params = [] )
Returns information about the requested human task user interface (worker task template).
DescribeHyperParameterTuningJob ( array $params = [] )
Returns a description of a hyperparameter tuning job, depending on the fields selected.
DescribeImage ( array $params = [] )
Describes a SageMaker AI image.
DescribeImageVersion ( array $params = [] )
Describes a version of a SageMaker AI image.
DescribeInferenceComponent ( array $params = [] )
Returns information about an inference component.
DescribeInferenceExperiment ( array $params = [] )
Returns details about an inference experiment.
DescribeInferenceRecommendationsJob ( array $params = [] )
Provides the results of the Inference Recommender job.
DescribeLabelingJob ( array $params = [] )
Gets information about a labeling job.
DescribeLineageGroup ( array $params = [] )
Provides a list of properties for the requested lineage group.
DescribeMlflowTrackingServer ( array $params = [] )
Returns information about an MLflow Tracking Server.
DescribeModel ( array $params = [] )
Describes a model that you created using the CreateModel API.
DescribeModelBiasJobDefinition ( array $params = [] )
Returns a description of a model bias job definition.
DescribeModelCard ( array $params = [] )
Describes the content, creation time, and security configuration of an Amazon SageMaker Model Card.
DescribeModelCardExportJob ( array $params = [] )
Describes an Amazon SageMaker Model Card export job.
DescribeModelExplainabilityJobDefinition ( array $params = [] )
Returns a description of a model explainability job definition.
DescribeModelPackage ( array $params = [] )
Returns a description of the specified model package, which is used to create SageMaker models or list them on Amazon Web Services Marketplace.
DescribeModelPackageGroup ( array $params = [] )
Gets a description for the specified model group.
DescribeModelQualityJobDefinition ( array $params = [] )
Returns a description of a model quality job definition.
DescribeMonitoringSchedule ( array $params = [] )
Describes the schedule for a monitoring job.
DescribeNotebookInstance ( array $params = [] )
Returns information about a notebook instance.
DescribeNotebookInstanceLifecycleConfig ( array $params = [] )
Returns a description of a notebook instance lifecycle configuration.
DescribeOptimizationJob ( array $params = [] )
Provides the properties of the specified optimization job.
DescribePartnerApp ( array $params = [] )
Gets information about a SageMaker Partner AI App.
DescribePipeline ( array $params = [] )
Describes the details of a pipeline.
DescribePipelineDefinitionForExecution ( array $params = [] )
Describes the details of an execution's pipeline definition.
DescribePipelineExecution ( array $params = [] )
Describes the details of a pipeline execution.
DescribeProcessingJob ( array $params = [] )
Returns a description of a processing job.
DescribeProject ( array $params = [] )
Describes the details of a project.
DescribeSpace ( array $params = [] )
Describes the space.
DescribeStudioLifecycleConfig ( array $params = [] )
Describes the Amazon SageMaker AI Studio Lifecycle Configuration.
DescribeSubscribedWorkteam ( array $params = [] )
Gets information about a work team provided by a vendor.
DescribeTrainingJob ( array $params = [] )
Returns information about a training job.
DescribeTrainingPlan ( array $params = [] )
Retrieves detailed information about a specific training plan.
DescribeTransformJob ( array $params = [] )
Returns information about a transform job.
DescribeTrial ( array $params = [] )
Provides a list of a trial's properties.
DescribeTrialComponent ( array $params = [] )
Provides a list of a trials component's properties.
DescribeUserProfile ( array $params = [] )
Describes a user profile.
DescribeWorkforce ( array $params = [] )
Lists private workforce information, including workforce name, Amazon Resource Name (ARN), and, if applicable, allowed IP address ranges (CIDRs).
DescribeWorkteam ( array $params = [] )
Gets information about a specific work team.
DisableSagemakerServicecatalogPortfolio ( array $params = [] )
Disables using Service Catalog in SageMaker.
DisassociateTrialComponent ( array $params = [] )
Disassociates a trial component from a trial.
EnableSagemakerServicecatalogPortfolio ( array $params = [] )
Enables using Service Catalog in SageMaker.
GetDeviceFleetReport ( array $params = [] )
Describes a fleet.
GetLineageGroupPolicy ( array $params = [] )
The resource policy for the lineage group.
GetModelPackageGroupPolicy ( array $params = [] )
Gets a resource policy that manages access for a model group.
GetSagemakerServicecatalogPortfolioStatus ( array $params = [] )
Gets the status of Service Catalog in SageMaker.
GetScalingConfigurationRecommendation ( array $params = [] )
Starts an Amazon SageMaker Inference Recommender autoscaling recommendation job.
GetSearchSuggestions ( array $params = [] )
An auto-complete API for the search functionality in the SageMaker console.
ImportHubContent ( array $params = [] )
Import hub content.
ListActions ( array $params = [] )
Lists the actions in your account and their properties.
ListAlgorithms ( array $params = [] )
Lists the machine learning algorithms that have been created.
ListAliases ( array $params = [] )
Lists the aliases of a specified image or image version.
ListAppImageConfigs ( array $params = [] )
Lists the AppImageConfigs in your account and their properties.
ListApps ( array $params = [] )
Lists apps.
ListArtifacts ( array $params = [] )
Lists the artifacts in your account and their properties.
ListAssociations ( array $params = [] )
Lists the associations in your account and their properties.
ListAutoMLJobs ( array $params = [] )
Request a list of jobs.
ListCandidatesForAutoMLJob ( array $params = [] )
List the candidates created for the job.
ListClusterNodes ( array $params = [] )
Retrieves the list of instances (also called nodes interchangeably) in a SageMaker HyperPod cluster.
ListClusterSchedulerConfigs ( array $params = [] )
List the cluster policy configurations.
ListClusters ( array $params = [] )
Retrieves the list of SageMaker HyperPod clusters.
ListCodeRepositories ( array $params = [] )
Gets a list of the Git repositories in your account.
ListCompilationJobs ( array $params = [] )
Lists model compilation jobs that satisfy various filters.
ListComputeQuotas ( array $params = [] )
List the resource allocation definitions.
ListContexts ( array $params = [] )
Lists the contexts in your account and their properties.
ListDataQualityJobDefinitions ( array $params = [] )
Lists the data quality job definitions in your account.
ListDeviceFleets ( array $params = [] )
Returns a list of devices in the fleet.
ListDevices ( array $params = [] )
A list of devices.
ListDomains ( array $params = [] )
Lists the domains.
ListEdgeDeploymentPlans ( array $params = [] )
Lists all edge deployment plans.
ListEdgePackagingJobs ( array $params = [] )
Returns a list of edge packaging jobs.
ListEndpointConfigs ( array $params = [] )
Lists endpoint configurations.
ListEndpoints ( array $params = [] )
Lists endpoints.
ListExperiments ( array $params = [] )
Lists all the experiments in your account.
ListFeatureGroups ( array $params = [] )
List FeatureGroups based on given filter and order.
ListFlowDefinitions ( array $params = [] )
Returns information about the flow definitions in your account.
ListHubContentVersions ( array $params = [] )
List hub content versions.
ListHubContents ( array $params = [] )
List the contents of a hub.
ListHubs ( array $params = [] )
List all existing hubs.
ListHumanTaskUis ( array $params = [] )
Returns information about the human task user interfaces in your account.
ListHyperParameterTuningJobs ( array $params = [] )
Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.
ListImageVersions ( array $params = [] )
Lists the versions of a specified image and their properties.
ListImages ( array $params = [] )
Lists the images in your account and their properties.
ListInferenceComponents ( array $params = [] )
Lists the inference components in your account and their properties.
ListInferenceExperiments ( array $params = [] )
Returns the list of all inference experiments.
ListInferenceRecommendationsJobSteps ( array $params = [] )
Returns a list of the subtasks for an Inference Recommender job.
ListInferenceRecommendationsJobs ( array $params = [] )
Lists recommendation jobs that satisfy various filters.
ListLabelingJobs ( array $params = [] )
Gets a list of labeling jobs.
ListLabelingJobsForWorkteam ( array $params = [] )
Gets a list of labeling jobs assigned to a specified work team.
ListLineageGroups ( array $params = [] )
A list of lineage groups shared with your Amazon Web Services account.
ListMlflowTrackingServers ( array $params = [] )
Lists all MLflow Tracking Servers.
ListModelBiasJobDefinitions ( array $params = [] )
Lists model bias jobs definitions that satisfy various filters.
ListModelCardExportJobs ( array $params = [] )
List the export jobs for the Amazon SageMaker Model Card.
ListModelCardVersions ( array $params = [] )
List existing versions of an Amazon SageMaker Model Card.
ListModelCards ( array $params = [] )
List existing model cards.
ListModelExplainabilityJobDefinitions ( array $params = [] )
Lists model explainability job definitions that satisfy various filters.
ListModelMetadata ( array $params = [] )
Lists the domain, framework, task, and model name of standard machine learning models found in common model zoos.
ListModelPackageGroups ( array $params = [] )
Gets a list of the model groups in your Amazon Web Services account.
ListModelPackages ( array $params = [] )
Lists the model packages that have been created.
ListModelQualityJobDefinitions ( array $params = [] )
Gets a list of model quality monitoring job definitions in your account.
ListModels ( array $params = [] )
Lists models created with the CreateModel API.
ListMonitoringAlertHistory ( array $params = [] )
Gets a list of past alerts in a model monitoring schedule.
ListMonitoringAlerts ( array $params = [] )
Gets the alerts for a single monitoring schedule.
ListMonitoringExecutions ( array $params = [] )
Returns list of all monitoring job executions.
ListMonitoringSchedules ( array $params = [] )
Returns list of all monitoring schedules.
ListNotebookInstanceLifecycleConfigs ( array $params = [] )
Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.
ListNotebookInstances ( array $params = [] )
Returns a list of the SageMaker AI notebook instances in the requester's account in an Amazon Web Services Region.
ListOptimizationJobs ( array $params = [] )
Lists the optimization jobs in your account and their properties.
ListPartnerApps ( array $params = [] )
Lists all of the SageMaker Partner AI Apps in an account.
ListPipelineExecutionSteps ( array $params = [] )
Gets a list of PipeLineExecutionStep objects.
ListPipelineExecutions ( array $params = [] )
Gets a list of the pipeline executions.
ListPipelineParametersForExecution ( array $params = [] )
Gets a list of parameters for a pipeline execution.
ListPipelines ( array $params = [] )
Gets a list of pipelines.
ListProcessingJobs ( array $params = [] )
Lists processing jobs that satisfy various filters.
ListProjects ( array $params = [] )
Gets a list of the projects in an Amazon Web Services account.
ListResourceCatalogs ( array $params = [] )
Lists Amazon SageMaker Catalogs based on given filters and orders.
ListSpaces ( array $params = [] )
Lists spaces.
ListStageDevices ( array $params = [] )
Lists devices allocated to the stage, containing detailed device information and deployment status.
ListStudioLifecycleConfigs ( array $params = [] )
Lists the Amazon SageMaker AI Studio Lifecycle Configurations in your Amazon Web Services Account.
ListSubscribedWorkteams ( array $params = [] )
Gets a list of the work teams that you are subscribed to in the Amazon Web Services Marketplace.
ListTags ( array $params = [] )
Returns the tags for the specified SageMaker resource.
ListTrainingJobs ( array $params = [] )
Lists training jobs.
ListTrainingJobsForHyperParameterTuningJob ( array $params = [] )
Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.
ListTrainingPlans ( array $params = [] )
Retrieves a list of training plans for the current account.
ListTransformJobs ( array $params = [] )
Lists transform jobs.
ListTrialComponents ( array $params = [] )
Lists the trial components in your account.
ListTrials ( array $params = [] )
Lists the trials in your account.
ListUserProfiles ( array $params = [] )
Lists user profiles.
ListWorkforces ( array $params = [] )
Use this operation to list all private and vendor workforces in an Amazon Web Services Region.
ListWorkteams ( array $params = [] )
Gets a list of private work teams that you have defined in a region.
PutModelPackageGroupPolicy ( array $params = [] )
Adds a resouce policy to control access to a model group.
QueryLineage ( array $params = [] )
Use this action to inspect your lineage and discover relationships between entities.
RegisterDevices ( array $params = [] )
Register devices.
RenderUiTemplate ( array $params = [] )
Renders the UI template so that you can preview the worker's experience.
RetryPipelineExecution ( array $params = [] )
Retry the execution of the pipeline.
Search ( array $params = [] )
Finds SageMaker resources that match a search query.
SearchTrainingPlanOfferings ( array $params = [] )
Searches for available training plan offerings based on specified criteria.
SendPipelineExecutionStepFailure ( array $params = [] )
Notifies the pipeline that the execution of a callback step failed, along with a message describing why.
SendPipelineExecutionStepSuccess ( array $params = [] )
Notifies the pipeline that the execution of a callback step succeeded and provides a list of the step's output parameters.
StartEdgeDeploymentStage ( array $params = [] )
Starts a stage in an edge deployment plan.
StartInferenceExperiment ( array $params = [] )
Starts an inference experiment.
StartMlflowTrackingServer ( array $params = [] )
Programmatically start an MLflow Tracking Server.
StartMonitoringSchedule ( array $params = [] )
Starts a previously stopped monitoring schedule.
StartNotebookInstance ( array $params = [] )
Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume.
StartPipelineExecution ( array $params = [] )
Starts a pipeline execution.
StopAutoMLJob ( array $params = [] )
A method for forcing a running job to shut down.
StopCompilationJob ( array $params = [] )
Stops a model compilation job.
StopEdgeDeploymentStage ( array $params = [] )
Stops a stage in an edge deployment plan.
StopEdgePackagingJob ( array $params = [] )
Request to stop an edge packaging job.
StopHyperParameterTuningJob ( array $params = [] )
Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched.
StopInferenceExperiment ( array $params = [] )
Stops an inference experiment.
StopInferenceRecommendationsJob ( array $params = [] )
Stops an Inference Recommender job.
StopLabelingJob ( array $params = [] )
Stops a running labeling job.
StopMlflowTrackingServer ( array $params = [] )
Programmatically stop an MLflow Tracking Server.
StopMonitoringSchedule ( array $params = [] )
Stops a previously started monitoring schedule.
StopNotebookInstance ( array $params = [] )
Terminates the ML compute instance.
StopOptimizationJob ( array $params = [] )
Ends a running inference optimization job.
StopPipelineExecution ( array $params = [] )
Stops a pipeline execution.
StopProcessingJob ( array $params = [] )
Stops a processing job.
StopTrainingJob ( array $params = [] )
Stops a training job.
StopTransformJob ( array $params = [] )
Stops a batch transform job.
UpdateAction ( array $params = [] )
Updates an action.
UpdateAppImageConfig ( array $params = [] )
Updates the properties of an AppImageConfig.
UpdateArtifact ( array $params = [] )
Updates an artifact.
UpdateCluster ( array $params = [] )
Updates a SageMaker HyperPod cluster.
UpdateClusterSchedulerConfig ( array $params = [] )
Update the cluster policy configuration.
UpdateClusterSoftware ( array $params = [] )
Updates the platform software of a SageMaker HyperPod cluster for security patching.
UpdateCodeRepository ( array $params = [] )
Updates the specified Git repository with the specified values.
UpdateComputeQuota ( array $params = [] )
Update the compute allocation definition.
UpdateContext ( array $params = [] )
Updates a context.
UpdateDeviceFleet ( array $params = [] )
Updates a fleet of devices.
UpdateDevices ( array $params = [] )
Updates one or more devices in a fleet.
UpdateDomain ( array $params = [] )
Updates the default settings for new user profiles in the domain.
UpdateEndpoint ( array $params = [] )
Deploys the EndpointConfig specified in the request to a new fleet of instances.
UpdateEndpointWeightsAndCapacities ( array $params = [] )
Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint.
UpdateExperiment ( array $params = [] )
Adds, updates, or removes the description of an experiment.
UpdateFeatureGroup ( array $params = [] )
Updates the feature group by either adding features or updating the online store configuration.
UpdateFeatureMetadata ( array $params = [] )
Updates the description and parameters of the feature group.
UpdateHub ( array $params = [] )
Update a hub.
UpdateImage ( array $params = [] )
Updates the properties of a SageMaker AI image.
UpdateImageVersion ( array $params = [] )
Updates the properties of a SageMaker AI image version.
UpdateInferenceComponent ( array $params = [] )
Updates an inference component.
UpdateInferenceComponentRuntimeConfig ( array $params = [] )
Runtime settings for a model that is deployed with an inference component.
UpdateInferenceExperiment ( array $params = [] )
Updates an inference experiment that you created.
UpdateMlflowTrackingServer ( array $params = [] )
Updates properties of an existing MLflow Tracking Server.
UpdateModelCard ( array $params = [] )
Update an Amazon SageMaker Model Card.
UpdateModelPackage ( array $params = [] )
Updates a versioned model.
UpdateMonitoringAlert ( array $params = [] )
Update the parameters of a model monitor alert.
UpdateMonitoringSchedule ( array $params = [] )
Updates a previously created schedule.
UpdateNotebookInstance ( array $params = [] )
Updates a notebook instance.
UpdateNotebookInstanceLifecycleConfig ( array $params = [] )
Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig API.
UpdatePartnerApp ( array $params = [] )
Updates all of the SageMaker Partner AI Apps in an account.
UpdatePipeline ( array $params = [] )
Updates a pipeline.
UpdatePipelineExecution ( array $params = [] )
Updates a pipeline execution.
UpdateProject ( array $params = [] )
Updates a machine learning (ML) project that is created from a template that sets up an ML pipeline from training to deploying an approved model.
UpdateSpace ( array $params = [] )
Updates the settings of a space.
UpdateTrainingJob ( array $params = [] )
Update a model training job to request a new Debugger profiling configuration or to change warm pool retention length.
UpdateTrial ( array $params = [] )
Updates the display name of a trial.
UpdateTrialComponent ( array $params = [] )
Updates one or more properties of a trial component.
UpdateUserProfile ( array $params = [] )
Updates a user profile.
UpdateWorkforce ( array $params = [] )
Use this operation to update your workforce.
UpdateWorkteam ( array $params = [] )
Updates an existing work team with new member definitions or description.

Paginators

Paginators handle automatically iterating over paginated API results. Paginators are associated with specific API operations, and they accept the parameters that the corresponding API operation accepts. You can get a paginator from a client class using getPaginator($paginatorName, $operationParameters). This client supports the following paginators:

ListActions
ListAlgorithms
ListAliases
ListAppImageConfigs
ListApps
ListArtifacts
ListAssociations
ListAutoMLJobs
ListCandidatesForAutoMLJob
ListClusterNodes
ListClusterSchedulerConfigs
ListClusters
ListCodeRepositories
ListCompilationJobs
ListComputeQuotas
ListContexts
ListDataQualityJobDefinitions
ListDeviceFleets
ListDevices
ListDomains
ListEdgeDeploymentPlans
ListEdgePackagingJobs
ListEndpointConfigs
ListEndpoints
ListExperiments
ListFeatureGroups
ListFlowDefinitions
ListHumanTaskUis
ListHyperParameterTuningJobs
ListImageVersions
ListImages
ListInferenceComponents
ListInferenceExperiments
ListInferenceRecommendationsJobSteps
ListInferenceRecommendationsJobs
ListLabelingJobs
ListLabelingJobsForWorkteam
ListLineageGroups
ListMlflowTrackingServers
ListModelBiasJobDefinitions
ListModelCardExportJobs
ListModelCardVersions
ListModelCards
ListModelExplainabilityJobDefinitions
ListModelMetadata
ListModelPackageGroups
ListModelPackages
ListModelQualityJobDefinitions
ListModels
ListMonitoringAlertHistory
ListMonitoringAlerts
ListMonitoringExecutions
ListMonitoringSchedules
ListNotebookInstanceLifecycleConfigs
ListNotebookInstances
ListOptimizationJobs
ListPartnerApps
ListPipelineExecutionSteps
ListPipelineExecutions
ListPipelineParametersForExecution
ListPipelines
ListProcessingJobs
ListProjects
ListResourceCatalogs
ListSpaces
ListStageDevices
ListStudioLifecycleConfigs
ListSubscribedWorkteams
ListTags
ListTrainingJobs
ListTrainingJobsForHyperParameterTuningJob
ListTrainingPlans
ListTransformJobs
ListTrialComponents
ListTrials
ListUserProfiles
ListWorkforces
ListWorkteams
QueryLineage
Search

Waiters

Waiters allow you to poll a resource until it enters into a desired state. A waiter has a name used to describe what it does, and is associated with an API operation. When creating a waiter, you can provide the API operation parameters associated with the corresponding operation. Waiters can be accessed using the getWaiter($waiterName, $operationParameters) method of a client object. This client supports the following waiters:

Waiter name API Operation Delay Max Attempts
NotebookInstanceInService DescribeNotebookInstance 30 60
NotebookInstanceStopped DescribeNotebookInstance 30 60
NotebookInstanceDeleted DescribeNotebookInstance 30 60
TrainingJobCompletedOrStopped DescribeTrainingJob 120 180
EndpointInService DescribeEndpoint 30 120
EndpointDeleted DescribeEndpoint 30 60
TransformJobCompletedOrStopped DescribeTransformJob 60 60
ProcessingJobCompletedOrStopped DescribeProcessingJob 60 60
ImageCreated DescribeImage 60 60
ImageUpdated DescribeImage 60 60
ImageDeleted DescribeImage 60 60
ImageVersionCreated DescribeImageVersion 60 60
ImageVersionDeleted DescribeImageVersion 60 60

Operations

AddAssociation

$result = $client->addAssociation([/* ... */]);
$promise = $client->addAssociationAsync([/* ... */]);

Creates an association between the source and the destination. A source can be associated with multiple destinations, and a destination can be associated with multiple sources. An association is a lineage tracking entity. For more information, see Amazon SageMaker ML Lineage Tracking.

Parameter Syntax

$result = $client->addAssociation([
    'AssociationType' => 'ContributedTo|AssociatedWith|DerivedFrom|Produced|SameAs',
    'DestinationArn' => '<string>', // REQUIRED
    'SourceArn' => '<string>', // REQUIRED
]);

Parameter Details

Members
AssociationType
Type: string

The type of association. The following are suggested uses for each type. Amazon SageMaker places no restrictions on their use.

  • ContributedTo - The source contributed to the destination or had a part in enabling the destination. For example, the training data contributed to the training job.

  • AssociatedWith - The source is connected to the destination. For example, an approval workflow is associated with a model deployment.

  • DerivedFrom - The destination is a modification of the source. For example, a digest output of a channel input for a processing job is derived from the original inputs.

  • Produced - The source generated the destination. For example, a training job produced a model artifact.

DestinationArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the destination.

SourceArn
Required: Yes
Type: string

The ARN of the source.

Result Syntax

[
    'DestinationArn' => '<string>',
    'SourceArn' => '<string>',
]

Result Details

Members
DestinationArn
Type: string

The Amazon Resource Name (ARN) of the destination.

SourceArn
Type: string

The ARN of the source.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

AddTags

$result = $client->addTags([/* ... */]);
$promise = $client->addTagsAsync([/* ... */]);

Adds or overwrites one or more tags for the specified SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints.

Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see Amazon Web Services Tagging Strategies.

Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the Tags parameter of CreateHyperParameterTuningJob

Tags that you add to a SageMaker Domain or User Profile by calling this API are also added to any Apps that the Domain or User Profile launches after you call this API, but not to Apps that the Domain or User Profile launched before you called this API. To make sure that the tags associated with a Domain or User Profile are also added to all Apps that the Domain or User Profile launches, add the tags when you first create the Domain or User Profile by specifying them in the Tags parameter of CreateDomain or CreateUserProfile.

Parameter Syntax

$result = $client->addTags([
    'ResourceArn' => '<string>', // REQUIRED
    'Tags' => [ // REQUIRED
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
ResourceArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the resource that you want to tag.

Tags
Required: Yes
Type: Array of Tag structures

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

Result Syntax

[
    'Tags' => [
        [
            'Key' => '<string>',
            'Value' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
Tags
Type: Array of Tag structures

A list of tags associated with the SageMaker resource.

Errors

There are no errors described for this operation.

AssociateTrialComponent

$result = $client->associateTrialComponent([/* ... */]);
$promise = $client->associateTrialComponentAsync([/* ... */]);

Associates a trial component with a trial. A trial component can be associated with multiple trials. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.

Parameter Syntax

$result = $client->associateTrialComponent([
    'TrialComponentName' => '<string>', // REQUIRED
    'TrialName' => '<string>', // REQUIRED
]);

Parameter Details

Members
TrialComponentName
Required: Yes
Type: string

The name of the component to associated with the trial.

TrialName
Required: Yes
Type: string

The name of the trial to associate with.

Result Syntax

[
    'TrialArn' => '<string>',
    'TrialComponentArn' => '<string>',
]

Result Details

Members
TrialArn
Type: string

The Amazon Resource Name (ARN) of the trial.

TrialComponentArn
Type: string

The Amazon Resource Name (ARN) of the trial component.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

BatchDeleteClusterNodes

$result = $client->batchDeleteClusterNodes([/* ... */]);
$promise = $client->batchDeleteClusterNodesAsync([/* ... */]);

Deletes specific nodes within a SageMaker HyperPod cluster. BatchDeleteClusterNodes accepts a cluster name and a list of node IDs.

Parameter Syntax

$result = $client->batchDeleteClusterNodes([
    'ClusterName' => '<string>', // REQUIRED
    'NodeIds' => ['<string>', ...], // REQUIRED
]);

Parameter Details

Members
ClusterName
Required: Yes
Type: string

The name of the SageMaker HyperPod cluster from which to delete the specified nodes.

NodeIds
Required: Yes
Type: Array of strings

A list of node IDs to be deleted from the specified cluster.

For SageMaker HyperPod clusters using the Slurm workload manager, you cannot remove instances that are configured as Slurm controller nodes.

Result Syntax

[
    'Failed' => [
        [
            'Code' => 'NodeIdNotFound|InvalidNodeStatus|NodeIdInUse',
            'Message' => '<string>',
            'NodeId' => '<string>',
        ],
        // ...
    ],
    'Successful' => ['<string>', ...],
]

Result Details

Members
Failed
Type: Array of BatchDeleteClusterNodesError structures

A list of errors encountered when deleting the specified nodes.

Successful
Type: Array of strings

A list of node IDs that were successfully deleted from the specified cluster.

Errors

ResourceNotFound:

Resource being access is not found.

BatchDescribeModelPackage

$result = $client->batchDescribeModelPackage([/* ... */]);
$promise = $client->batchDescribeModelPackageAsync([/* ... */]);

This action batch describes a list of versioned model packages

Parameter Syntax

$result = $client->batchDescribeModelPackage([
    'ModelPackageArnList' => ['<string>', ...], // REQUIRED
]);

Parameter Details

Members
ModelPackageArnList
Required: Yes
Type: Array of strings

The list of Amazon Resource Name (ARN) of the model package groups.

Result Syntax

[
    'BatchDescribeModelPackageErrorMap' => [
        '<ModelPackageArn>' => [
            'ErrorCode' => '<string>',
            'ErrorResponse' => '<string>',
        ],
        // ...
    ],
    'ModelPackageSummaries' => [
        '<ModelPackageArn>' => [
            'CreationTime' => <DateTime>,
            'InferenceSpecification' => [
                'Containers' => [
                    [
                        'AdditionalS3DataSource' => [
                            'CompressionType' => 'None|Gzip',
                            'ETag' => '<string>',
                            'S3DataType' => 'S3Object|S3Prefix',
                            'S3Uri' => '<string>',
                        ],
                        'ContainerHostname' => '<string>',
                        'Environment' => ['<string>', ...],
                        'Framework' => '<string>',
                        'FrameworkVersion' => '<string>',
                        'Image' => '<string>',
                        'ImageDigest' => '<string>',
                        'ModelDataETag' => '<string>',
                        'ModelDataSource' => [
                            'S3DataSource' => [
                                'CompressionType' => 'None|Gzip',
                                'ETag' => '<string>',
                                'HubAccessConfig' => [
                                    'HubContentArn' => '<string>',
                                ],
                                'ManifestEtag' => '<string>',
                                'ManifestS3Uri' => '<string>',
                                'ModelAccessConfig' => [
                                    'AcceptEula' => true || false,
                                ],
                                'S3DataType' => 'S3Prefix|S3Object',
                                'S3Uri' => '<string>',
                            ],
                        ],
                        'ModelDataUrl' => '<string>',
                        'ModelInput' => [
                            'DataInputConfig' => '<string>',
                        ],
                        'NearestModelName' => '<string>',
                        'ProductId' => '<string>',
                    ],
                    // ...
                ],
                'SupportedContentTypes' => ['<string>', ...],
                'SupportedRealtimeInferenceInstanceTypes' => ['<string>', ...],
                'SupportedResponseMIMETypes' => ['<string>', ...],
                'SupportedTransformInstanceTypes' => ['<string>', ...],
            ],
            'ModelApprovalStatus' => 'Approved|Rejected|PendingManualApproval',
            'ModelPackageArn' => '<string>',
            'ModelPackageDescription' => '<string>',
            'ModelPackageGroupName' => '<string>',
            'ModelPackageStatus' => 'Pending|InProgress|Completed|Failed|Deleting',
            'ModelPackageVersion' => <integer>,
        ],
        // ...
    ],
]

Result Details

Members
BatchDescribeModelPackageErrorMap
Type: Associative array of custom strings keys (ModelPackageArn) to BatchDescribeModelPackageError structures

A map of the resource and BatchDescribeModelPackageError objects reporting the error associated with describing the model package.

ModelPackageSummaries
Type: Associative array of custom strings keys (ModelPackageArn) to BatchDescribeModelPackageSummary structures

The summaries for the model package versions

Errors

There are no errors described for this operation.

CreateAction

$result = $client->createAction([/* ... */]);
$promise = $client->createActionAsync([/* ... */]);

Creates an action. An action is a lineage tracking entity that represents an action or activity. For example, a model deployment or an HPO job. Generally, an action involves at least one input or output artifact. For more information, see Amazon SageMaker ML Lineage Tracking.

Parameter Syntax

$result = $client->createAction([
    'ActionName' => '<string>', // REQUIRED
    'ActionType' => '<string>', // REQUIRED
    'Description' => '<string>',
    'MetadataProperties' => [
        'CommitId' => '<string>',
        'GeneratedBy' => '<string>',
        'ProjectId' => '<string>',
        'Repository' => '<string>',
    ],
    'Properties' => ['<string>', ...],
    'Source' => [ // REQUIRED
        'SourceId' => '<string>',
        'SourceType' => '<string>',
        'SourceUri' => '<string>', // REQUIRED
    ],
    'Status' => 'Unknown|InProgress|Completed|Failed|Stopping|Stopped',
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
ActionName
Required: Yes
Type: string

The name of the action. Must be unique to your account in an Amazon Web Services Region.

ActionType
Required: Yes
Type: string

The action type.

Description
Type: string

The description of the action.

MetadataProperties
Type: MetadataProperties structure

Metadata properties of the tracking entity, trial, or trial component.

Properties
Type: Associative array of custom strings keys (StringParameterValue) to strings

A list of properties to add to the action.

Source
Required: Yes
Type: ActionSource structure

The source type, ID, and URI.

Status
Type: string

The status of the action.

Tags
Type: Array of Tag structures

A list of tags to apply to the action.

Result Syntax

[
    'ActionArn' => '<string>',
]

Result Details

Members
ActionArn
Type: string

The Amazon Resource Name (ARN) of the action.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateAlgorithm

$result = $client->createAlgorithm([/* ... */]);
$promise = $client->createAlgorithmAsync([/* ... */]);

Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services Marketplace.

Parameter Syntax

$result = $client->createAlgorithm([
    'AlgorithmDescription' => '<string>',
    'AlgorithmName' => '<string>', // REQUIRED
    'CertifyForMarketplace' => true || false,
    'InferenceSpecification' => [
        'Containers' => [ // REQUIRED
            [
                'AdditionalS3DataSource' => [
                    'CompressionType' => 'None|Gzip',
                    'ETag' => '<string>',
                    'S3DataType' => 'S3Object|S3Prefix', // REQUIRED
                    'S3Uri' => '<string>', // REQUIRED
                ],
                'ContainerHostname' => '<string>',
                'Environment' => ['<string>', ...],
                'Framework' => '<string>',
                'FrameworkVersion' => '<string>',
                'Image' => '<string>', // REQUIRED
                'ImageDigest' => '<string>',
                'ModelDataETag' => '<string>',
                'ModelDataSource' => [
                    'S3DataSource' => [
                        'CompressionType' => 'None|Gzip', // REQUIRED
                        'ETag' => '<string>',
                        'HubAccessConfig' => [
                            'HubContentArn' => '<string>', // REQUIRED
                        ],
                        'ManifestEtag' => '<string>',
                        'ManifestS3Uri' => '<string>',
                        'ModelAccessConfig' => [
                            'AcceptEula' => true || false, // REQUIRED
                        ],
                        'S3DataType' => 'S3Prefix|S3Object', // REQUIRED
                        'S3Uri' => '<string>', // REQUIRED
                    ],
                ],
                'ModelDataUrl' => '<string>',
                'ModelInput' => [
                    'DataInputConfig' => '<string>', // REQUIRED
                ],
                'NearestModelName' => '<string>',
                'ProductId' => '<string>',
            ],
            // ...
        ],
        'SupportedContentTypes' => ['<string>', ...],
        'SupportedRealtimeInferenceInstanceTypes' => ['<string>', ...],
        'SupportedResponseMIMETypes' => ['<string>', ...],
        'SupportedTransformInstanceTypes' => ['<string>', ...],
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'TrainingSpecification' => [ // REQUIRED
        'AdditionalS3DataSource' => [
            'CompressionType' => 'None|Gzip',
            'ETag' => '<string>',
            'S3DataType' => 'S3Object|S3Prefix', // REQUIRED
            'S3Uri' => '<string>', // REQUIRED
        ],
        'MetricDefinitions' => [
            [
                'Name' => '<string>', // REQUIRED
                'Regex' => '<string>', // REQUIRED
            ],
            // ...
        ],
        'SupportedHyperParameters' => [
            [
                'DefaultValue' => '<string>',
                'Description' => '<string>',
                'IsRequired' => true || false,
                'IsTunable' => true || false,
                'Name' => '<string>', // REQUIRED
                'Range' => [
                    'CategoricalParameterRangeSpecification' => [
                        'Values' => ['<string>', ...], // REQUIRED
                    ],
                    'ContinuousParameterRangeSpecification' => [
                        'MaxValue' => '<string>', // REQUIRED
                        'MinValue' => '<string>', // REQUIRED
                    ],
                    'IntegerParameterRangeSpecification' => [
                        'MaxValue' => '<string>', // REQUIRED
                        'MinValue' => '<string>', // REQUIRED
                    ],
                ],
                'Type' => 'Integer|Continuous|Categorical|FreeText', // REQUIRED
            ],
            // ...
        ],
        'SupportedTrainingInstanceTypes' => ['<string>', ...], // REQUIRED
        'SupportedTuningJobObjectiveMetrics' => [
            [
                'MetricName' => '<string>', // REQUIRED
                'Type' => 'Maximize|Minimize', // REQUIRED
            ],
            // ...
        ],
        'SupportsDistributedTraining' => true || false,
        'TrainingChannels' => [ // REQUIRED
            [
                'Description' => '<string>',
                'IsRequired' => true || false,
                'Name' => '<string>', // REQUIRED
                'SupportedCompressionTypes' => ['<string>', ...],
                'SupportedContentTypes' => ['<string>', ...], // REQUIRED
                'SupportedInputModes' => ['<string>', ...], // REQUIRED
            ],
            // ...
        ],
        'TrainingImage' => '<string>', // REQUIRED
        'TrainingImageDigest' => '<string>',
    ],
    'ValidationSpecification' => [
        'ValidationProfiles' => [ // REQUIRED
            [
                'ProfileName' => '<string>', // REQUIRED
                'TrainingJobDefinition' => [ // REQUIRED
                    'HyperParameters' => ['<string>', ...],
                    'InputDataConfig' => [ // REQUIRED
                        [
                            'ChannelName' => '<string>', // REQUIRED
                            'CompressionType' => 'None|Gzip',
                            'ContentType' => '<string>',
                            'DataSource' => [ // REQUIRED
                                'FileSystemDataSource' => [
                                    'DirectoryPath' => '<string>', // REQUIRED
                                    'FileSystemAccessMode' => 'rw|ro', // REQUIRED
                                    'FileSystemId' => '<string>', // REQUIRED
                                    'FileSystemType' => 'EFS|FSxLustre', // REQUIRED
                                ],
                                'S3DataSource' => [
                                    'AttributeNames' => ['<string>', ...],
                                    'InstanceGroupNames' => ['<string>', ...],
                                    'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                                    'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile', // REQUIRED
                                    'S3Uri' => '<string>', // REQUIRED
                                ],
                            ],
                            'InputMode' => 'Pipe|File|FastFile',
                            'RecordWrapperType' => 'None|RecordIO',
                            'ShuffleConfig' => [
                                'Seed' => <integer>, // REQUIRED
                            ],
                        ],
                        // ...
                    ],
                    'OutputDataConfig' => [ // REQUIRED
                        'CompressionType' => 'GZIP|NONE',
                        'KmsKeyId' => '<string>',
                        'S3OutputPath' => '<string>', // REQUIRED
                    ],
                    'ResourceConfig' => [ // REQUIRED
                        'InstanceCount' => <integer>,
                        'InstanceGroups' => [
                            [
                                'InstanceCount' => <integer>, // REQUIRED
                                'InstanceGroupName' => '<string>', // REQUIRED
                                'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge', // REQUIRED
                            ],
                            // ...
                        ],
                        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                        'KeepAlivePeriodInSeconds' => <integer>,
                        'TrainingPlanArn' => '<string>',
                        'VolumeKmsKeyId' => '<string>',
                        'VolumeSizeInGB' => <integer>, // REQUIRED
                    ],
                    'StoppingCondition' => [ // REQUIRED
                        'MaxPendingTimeInSeconds' => <integer>,
                        'MaxRuntimeInSeconds' => <integer>,
                        'MaxWaitTimeInSeconds' => <integer>,
                    ],
                    'TrainingInputMode' => 'Pipe|File|FastFile', // REQUIRED
                ],
                'TransformJobDefinition' => [
                    'BatchStrategy' => 'MultiRecord|SingleRecord',
                    'Environment' => ['<string>', ...],
                    'MaxConcurrentTransforms' => <integer>,
                    'MaxPayloadInMB' => <integer>,
                    'TransformInput' => [ // REQUIRED
                        'CompressionType' => 'None|Gzip',
                        'ContentType' => '<string>',
                        'DataSource' => [ // REQUIRED
                            'S3DataSource' => [ // REQUIRED
                                'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile', // REQUIRED
                                'S3Uri' => '<string>', // REQUIRED
                            ],
                        ],
                        'SplitType' => 'None|Line|RecordIO|TFRecord',
                    ],
                    'TransformOutput' => [ // REQUIRED
                        'Accept' => '<string>',
                        'AssembleWith' => 'None|Line',
                        'KmsKeyId' => '<string>',
                        'S3OutputPath' => '<string>', // REQUIRED
                    ],
                    'TransformResources' => [ // REQUIRED
                        'InstanceCount' => <integer>, // REQUIRED
                        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge', // REQUIRED
                        'VolumeKmsKeyId' => '<string>',
                    ],
                ],
            ],
            // ...
        ],
        'ValidationRole' => '<string>', // REQUIRED
    ],
]);

Parameter Details

Members
AlgorithmDescription
Type: string

A description of the algorithm.

AlgorithmName
Required: Yes
Type: string

The name of the algorithm.

CertifyForMarketplace
Type: boolean

Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.

InferenceSpecification
Type: InferenceSpecification structure

Specifies details about inference jobs that the algorithm runs, including the following:

  • The Amazon ECR paths of containers that contain the inference code and model artifacts.

  • The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.

  • The input and output content formats that the algorithm supports for inference.

Tags
Type: Array of Tag structures

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

TrainingSpecification
Required: Yes
Type: TrainingSpecification structure

Specifies details about training jobs run by this algorithm, including the following:

  • The Amazon ECR path of the container and the version digest of the algorithm.

  • The hyperparameters that the algorithm supports.

  • The instance types that the algorithm supports for training.

  • Whether the algorithm supports distributed training.

  • The metrics that the algorithm emits to Amazon CloudWatch.

  • Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.

  • The input channels that the algorithm supports for training data. For example, an algorithm might support train, validation, and test channels.

ValidationSpecification

Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm's inference code.

Result Syntax

[
    'AlgorithmArn' => '<string>',
]

Result Details

Members
AlgorithmArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the new algorithm.

Errors

There are no errors described for this operation.

CreateApp

$result = $client->createApp([/* ... */]);
$promise = $client->createAppAsync([/* ... */]);

Creates a running app for the specified UserProfile. This operation is automatically invoked by Amazon SageMaker AI upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.

Parameter Syntax

$result = $client->createApp([
    'AppName' => '<string>', // REQUIRED
    'AppType' => 'JupyterServer|KernelGateway|DetailedProfiler|TensorBoard|CodeEditor|JupyterLab|RStudioServerPro|RSessionGateway|Canvas', // REQUIRED
    'DomainId' => '<string>', // REQUIRED
    'ResourceSpec' => [
        'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
        'LifecycleConfigArn' => '<string>',
        'SageMakerImageArn' => '<string>',
        'SageMakerImageVersionAlias' => '<string>',
        'SageMakerImageVersionArn' => '<string>',
    ],
    'SpaceName' => '<string>',
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'UserProfileName' => '<string>',
]);

Parameter Details

Members
AppName
Required: Yes
Type: string

The name of the app.

AppType
Required: Yes
Type: string

The type of app.

DomainId
Required: Yes
Type: string

The domain ID.

ResourceSpec
Type: ResourceSpec structure

The instance type and the Amazon Resource Name (ARN) of the SageMaker AI image created on the instance.

The value of InstanceType passed as part of the ResourceSpec in the CreateApp call overrides the value passed as part of the ResourceSpec configured for the user profile or the domain. If InstanceType is not specified in any of those three ResourceSpec values for a KernelGateway app, the CreateApp call fails with a request validation error.

SpaceName
Type: string

The name of the space. If this value is not set, then UserProfileName must be set.

Tags
Type: Array of Tag structures

Each tag consists of a key and an optional value. Tag keys must be unique per resource.

UserProfileName
Type: string

The user profile name. If this value is not set, then SpaceName must be set.

Result Syntax

[
    'AppArn' => '<string>',
]

Result Details

Members
AppArn
Type: string

The Amazon Resource Name (ARN) of the app.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceInUse:

Resource being accessed is in use.

CreateAppImageConfig

$result = $client->createAppImageConfig([/* ... */]);
$promise = $client->createAppImageConfigAsync([/* ... */]);

Creates a configuration for running a SageMaker AI image as a KernelGateway app. The configuration specifies the Amazon Elastic File System storage volume on the image, and a list of the kernels in the image.

Parameter Syntax

$result = $client->createAppImageConfig([
    'AppImageConfigName' => '<string>', // REQUIRED
    'CodeEditorAppImageConfig' => [
        'ContainerConfig' => [
            'ContainerArguments' => ['<string>', ...],
            'ContainerEntrypoint' => ['<string>', ...],
            'ContainerEnvironmentVariables' => ['<string>', ...],
        ],
        'FileSystemConfig' => [
            'DefaultGid' => <integer>,
            'DefaultUid' => <integer>,
            'MountPath' => '<string>',
        ],
    ],
    'JupyterLabAppImageConfig' => [
        'ContainerConfig' => [
            'ContainerArguments' => ['<string>', ...],
            'ContainerEntrypoint' => ['<string>', ...],
            'ContainerEnvironmentVariables' => ['<string>', ...],
        ],
        'FileSystemConfig' => [
            'DefaultGid' => <integer>,
            'DefaultUid' => <integer>,
            'MountPath' => '<string>',
        ],
    ],
    'KernelGatewayImageConfig' => [
        'FileSystemConfig' => [
            'DefaultGid' => <integer>,
            'DefaultUid' => <integer>,
            'MountPath' => '<string>',
        ],
        'KernelSpecs' => [ // REQUIRED
            [
                'DisplayName' => '<string>',
                'Name' => '<string>', // REQUIRED
            ],
            // ...
        ],
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
AppImageConfigName
Required: Yes
Type: string

The name of the AppImageConfig. Must be unique to your account.

CodeEditorAppImageConfig
Type: CodeEditorAppImageConfig structure

The CodeEditorAppImageConfig. You can only specify one image kernel in the AppImageConfig API. This kernel is shown to users before the image starts. After the image runs, all kernels are visible in Code Editor.

JupyterLabAppImageConfig
Type: JupyterLabAppImageConfig structure

The JupyterLabAppImageConfig. You can only specify one image kernel in the AppImageConfig API. This kernel is shown to users before the image starts. After the image runs, all kernels are visible in JupyterLab.

KernelGatewayImageConfig
Type: KernelGatewayImageConfig structure

The KernelGatewayImageConfig. You can only specify one image kernel in the AppImageConfig API. This kernel will be shown to users before the image starts. Once the image runs, all kernels are visible in JupyterLab.

Tags
Type: Array of Tag structures

A list of tags to apply to the AppImageConfig.

Result Syntax

[
    'AppImageConfigArn' => '<string>',
]

Result Details

Members
AppImageConfigArn
Type: string

The ARN of the AppImageConfig.

Errors

ResourceInUse:

Resource being accessed is in use.

CreateArtifact

$result = $client->createArtifact([/* ... */]);
$promise = $client->createArtifactAsync([/* ... */]);

Creates an artifact. An artifact is a lineage tracking entity that represents a URI addressable object or data. Some examples are the S3 URI of a dataset and the ECR registry path of an image. For more information, see Amazon SageMaker ML Lineage Tracking.

Parameter Syntax

$result = $client->createArtifact([
    'ArtifactName' => '<string>',
    'ArtifactType' => '<string>', // REQUIRED
    'MetadataProperties' => [
        'CommitId' => '<string>',
        'GeneratedBy' => '<string>',
        'ProjectId' => '<string>',
        'Repository' => '<string>',
    ],
    'Properties' => ['<string>', ...],
    'Source' => [ // REQUIRED
        'SourceTypes' => [
            [
                'SourceIdType' => 'MD5Hash|S3ETag|S3Version|Custom', // REQUIRED
                'Value' => '<string>', // REQUIRED
            ],
            // ...
        ],
        'SourceUri' => '<string>', // REQUIRED
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
ArtifactName
Type: string

The name of the artifact. Must be unique to your account in an Amazon Web Services Region.

ArtifactType
Required: Yes
Type: string

The artifact type.

MetadataProperties
Type: MetadataProperties structure

Metadata properties of the tracking entity, trial, or trial component.

Properties
Type: Associative array of custom strings keys (StringParameterValue) to strings

A list of properties to add to the artifact.

Source
Required: Yes
Type: ArtifactSource structure

The ID, ID type, and URI of the source.

Tags
Type: Array of Tag structures

A list of tags to apply to the artifact.

Result Syntax

[
    'ArtifactArn' => '<string>',
]

Result Details

Members
ArtifactArn
Type: string

The Amazon Resource Name (ARN) of the artifact.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateAutoMLJob

$result = $client->createAutoMLJob([/* ... */]);
$promise = $client->createAutoMLJobAsync([/* ... */]);

Creates an Autopilot job also referred to as Autopilot experiment or AutoML job.

An AutoML job in SageMaker AI is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker AI then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AI AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment.

For more information about AutoML jobs, see https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html in the SageMaker AI developer guide.

We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility.

CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning).

Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2.

You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.

Parameter Syntax

$result = $client->createAutoMLJob([
    'AutoMLJobConfig' => [
        'CandidateGenerationConfig' => [
            'AlgorithmsConfig' => [
                [
                    'AutoMLAlgorithms' => ['<string>', ...], // REQUIRED
                ],
                // ...
            ],
            'FeatureSpecificationS3Uri' => '<string>',
        ],
        'CompletionCriteria' => [
            'MaxAutoMLJobRuntimeInSeconds' => <integer>,
            'MaxCandidates' => <integer>,
            'MaxRuntimePerTrainingJobInSeconds' => <integer>,
        ],
        'DataSplitConfig' => [
            'ValidationFraction' => <float>,
        ],
        'Mode' => 'AUTO|ENSEMBLING|HYPERPARAMETER_TUNING',
        'SecurityConfig' => [
            'EnableInterContainerTrafficEncryption' => true || false,
            'VolumeKmsKeyId' => '<string>',
            'VpcConfig' => [
                'SecurityGroupIds' => ['<string>', ...], // REQUIRED
                'Subnets' => ['<string>', ...], // REQUIRED
            ],
        ],
    ],
    'AutoMLJobName' => '<string>', // REQUIRED
    'AutoMLJobObjective' => [
        'MetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|BalancedAccuracy|R2|Recall|RecallMacro|Precision|PrecisionMacro|MAE|MAPE|MASE|WAPE|AverageWeightedQuantileLoss', // REQUIRED
    ],
    'GenerateCandidateDefinitionsOnly' => true || false,
    'InputDataConfig' => [ // REQUIRED
        [
            'ChannelType' => 'training|validation',
            'CompressionType' => 'None|Gzip',
            'ContentType' => '<string>',
            'DataSource' => [
                'S3DataSource' => [ // REQUIRED
                    'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile', // REQUIRED
                    'S3Uri' => '<string>', // REQUIRED
                ],
            ],
            'SampleWeightAttributeName' => '<string>',
            'TargetAttributeName' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'ModelDeployConfig' => [
        'AutoGenerateEndpointName' => true || false,
        'EndpointName' => '<string>',
    ],
    'OutputDataConfig' => [ // REQUIRED
        'KmsKeyId' => '<string>',
        'S3OutputPath' => '<string>', // REQUIRED
    ],
    'ProblemType' => 'BinaryClassification|MulticlassClassification|Regression',
    'RoleArn' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
AutoMLJobConfig
Type: AutoMLJobConfig structure

A collection of settings used to configure an AutoML job.

AutoMLJobName
Required: Yes
Type: string

Identifies an Autopilot job. The name must be unique to your account and is case insensitive.

AutoMLJobObjective
Type: AutoMLJobObjective structure

Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. See AutoMLJobObjective for the default values.

GenerateCandidateDefinitionsOnly
Type: boolean

Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.

InputDataConfig
Required: Yes
Type: Array of AutoMLChannel structures

An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.

ModelDeployConfig
Type: ModelDeployConfig structure

Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.

OutputDataConfig
Required: Yes
Type: AutoMLOutputDataConfig structure

Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.

ProblemType
Type: string

Defines the type of supervised learning problem available for the candidates. For more information, see SageMaker Autopilot problem types.

RoleArn
Required: Yes
Type: string

The ARN of the role that is used to access the data.

Tags
Type: Array of Tag structures

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.

Result Syntax

[
    'AutoMLJobArn' => '<string>',
]

Result Details

Members
AutoMLJobArn
Required: Yes
Type: string

The unique ARN assigned to the AutoML job when it is created.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateAutoMLJobV2

$result = $client->createAutoMLJobV2([/* ... */]);
$promise = $client->createAutoMLJobV2Async([/* ... */]);

Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.

An AutoML job in SageMaker AI is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker AI then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AI AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment.

For more information about AutoML jobs, see https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html in the SageMaker AI developer guide.

AutoML jobs V2 support various problem types such as regression, binary, and multiclass classification with tabular data, text and image classification, time-series forecasting, and fine-tuning of large language models (LLMs) for text generation.

CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility.

CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning).

Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2.

For the list of available problem types supported by CreateAutoMLJobV2, see AutoMLProblemTypeConfig.

You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.

Parameter Syntax

$result = $client->createAutoMLJobV2([
    'AutoMLComputeConfig' => [
        'EmrServerlessComputeConfig' => [
            'ExecutionRoleARN' => '<string>', // REQUIRED
        ],
    ],
    'AutoMLJobInputDataConfig' => [ // REQUIRED
        [
            'ChannelType' => 'training|validation',
            'CompressionType' => 'None|Gzip',
            'ContentType' => '<string>',
            'DataSource' => [
                'S3DataSource' => [ // REQUIRED
                    'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile', // REQUIRED
                    'S3Uri' => '<string>', // REQUIRED
                ],
            ],
        ],
        // ...
    ],
    'AutoMLJobName' => '<string>', // REQUIRED
    'AutoMLJobObjective' => [
        'MetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|BalancedAccuracy|R2|Recall|RecallMacro|Precision|PrecisionMacro|MAE|MAPE|MASE|WAPE|AverageWeightedQuantileLoss', // REQUIRED
    ],
    'AutoMLProblemTypeConfig' => [ // REQUIRED
        'ImageClassificationJobConfig' => [
            'CompletionCriteria' => [
                'MaxAutoMLJobRuntimeInSeconds' => <integer>,
                'MaxCandidates' => <integer>,
                'MaxRuntimePerTrainingJobInSeconds' => <integer>,
            ],
        ],
        'TabularJobConfig' => [
            'CandidateGenerationConfig' => [
                'AlgorithmsConfig' => [
                    [
                        'AutoMLAlgorithms' => ['<string>', ...], // REQUIRED
                    ],
                    // ...
                ],
            ],
            'CompletionCriteria' => [
                'MaxAutoMLJobRuntimeInSeconds' => <integer>,
                'MaxCandidates' => <integer>,
                'MaxRuntimePerTrainingJobInSeconds' => <integer>,
            ],
            'FeatureSpecificationS3Uri' => '<string>',
            'GenerateCandidateDefinitionsOnly' => true || false,
            'Mode' => 'AUTO|ENSEMBLING|HYPERPARAMETER_TUNING',
            'ProblemType' => 'BinaryClassification|MulticlassClassification|Regression',
            'SampleWeightAttributeName' => '<string>',
            'TargetAttributeName' => '<string>', // REQUIRED
        ],
        'TextClassificationJobConfig' => [
            'CompletionCriteria' => [
                'MaxAutoMLJobRuntimeInSeconds' => <integer>,
                'MaxCandidates' => <integer>,
                'MaxRuntimePerTrainingJobInSeconds' => <integer>,
            ],
            'ContentColumn' => '<string>', // REQUIRED
            'TargetLabelColumn' => '<string>', // REQUIRED
        ],
        'TextGenerationJobConfig' => [
            'BaseModelName' => '<string>',
            'CompletionCriteria' => [
                'MaxAutoMLJobRuntimeInSeconds' => <integer>,
                'MaxCandidates' => <integer>,
                'MaxRuntimePerTrainingJobInSeconds' => <integer>,
            ],
            'ModelAccessConfig' => [
                'AcceptEula' => true || false, // REQUIRED
            ],
            'TextGenerationHyperParameters' => ['<string>', ...],
        ],
        'TimeSeriesForecastingJobConfig' => [
            'CandidateGenerationConfig' => [
                'AlgorithmsConfig' => [
                    [
                        'AutoMLAlgorithms' => ['<string>', ...], // REQUIRED
                    ],
                    // ...
                ],
            ],
            'CompletionCriteria' => [
                'MaxAutoMLJobRuntimeInSeconds' => <integer>,
                'MaxCandidates' => <integer>,
                'MaxRuntimePerTrainingJobInSeconds' => <integer>,
            ],
            'FeatureSpecificationS3Uri' => '<string>',
            'ForecastFrequency' => '<string>', // REQUIRED
            'ForecastHorizon' => <integer>, // REQUIRED
            'ForecastQuantiles' => ['<string>', ...],
            'HolidayConfig' => [
                [
                    'CountryCode' => '<string>',
                ],
                // ...
            ],
            'TimeSeriesConfig' => [ // REQUIRED
                'GroupingAttributeNames' => ['<string>', ...],
                'ItemIdentifierAttributeName' => '<string>', // REQUIRED
                'TargetAttributeName' => '<string>', // REQUIRED
                'TimestampAttributeName' => '<string>', // REQUIRED
            ],
            'Transformations' => [
                'Aggregation' => ['<string>', ...],
                'Filling' => [
                    '<TransformationAttributeName>' => ['<string>', ...],
                    // ...
                ],
            ],
        ],
    ],
    'DataSplitConfig' => [
        'ValidationFraction' => <float>,
    ],
    'ModelDeployConfig' => [
        'AutoGenerateEndpointName' => true || false,
        'EndpointName' => '<string>',
    ],
    'OutputDataConfig' => [ // REQUIRED
        'KmsKeyId' => '<string>',
        'S3OutputPath' => '<string>', // REQUIRED
    ],
    'RoleArn' => '<string>', // REQUIRED
    'SecurityConfig' => [
        'EnableInterContainerTrafficEncryption' => true || false,
        'VolumeKmsKeyId' => '<string>',
        'VpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...], // REQUIRED
            'Subnets' => ['<string>', ...], // REQUIRED
        ],
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
AutoMLComputeConfig
Type: AutoMLComputeConfig structure

Specifies the compute configuration for the AutoML job V2.

AutoMLJobInputDataConfig
Required: Yes
Type: Array of AutoMLJobChannel structures

An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the CreateAutoMLJob input parameters. The supported formats depend on the problem type:

  • For tabular problem types: S3Prefix, ManifestFile.

  • For image classification: S3Prefix, ManifestFile, AugmentedManifestFile.

  • For text classification: S3Prefix.

  • For time-series forecasting: S3Prefix.

  • For text generation (LLMs fine-tuning): S3Prefix.

AutoMLJobName
Required: Yes
Type: string

Identifies an Autopilot job. The name must be unique to your account and is case insensitive.

AutoMLJobObjective
Type: AutoMLJobObjective structure

Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective.

  • For tabular problem types: You must either provide both the AutoMLJobObjective and indicate the type of supervised learning problem in AutoMLProblemTypeConfig (TabularJobConfig.ProblemType), or none at all.

  • For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the AutoMLJobObjective field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.

AutoMLProblemTypeConfig
Required: Yes
Type: AutoMLProblemTypeConfig structure

Defines the configuration settings of one of the supported problem types.

DataSplitConfig
Type: AutoMLDataSplitConfig structure

This structure specifies how to split the data into train and validation datasets.

The validation and training datasets must contain the same headers. For jobs created by calling CreateAutoMLJob, the validation dataset must be less than 2 GB in size.

This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.

ModelDeployConfig
Type: ModelDeployConfig structure

Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.

OutputDataConfig
Required: Yes
Type: AutoMLOutputDataConfig structure

Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.

RoleArn
Required: Yes
Type: string

The ARN of the role that is used to access the data.

SecurityConfig
Type: AutoMLSecurityConfig structure

The security configuration for traffic encryption or Amazon VPC settings.

Tags
Type: Array of Tag structures

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.

Result Syntax

[
    'AutoMLJobArn' => '<string>',
]

Result Details

Members
AutoMLJobArn
Required: Yes
Type: string

The unique ARN assigned to the AutoMLJob when it is created.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateCluster

$result = $client->createCluster([/* ... */]);
$promise = $client->createClusterAsync([/* ... */]);

Creates a SageMaker HyperPod cluster. SageMaker HyperPod is a capability of SageMaker for creating and managing persistent clusters for developing large machine learning models, such as large language models (LLMs) and diffusion models. To learn more, see Amazon SageMaker HyperPod in the Amazon SageMaker Developer Guide.

Parameter Syntax

$result = $client->createCluster([
    'ClusterName' => '<string>', // REQUIRED
    'InstanceGroups' => [ // REQUIRED
        [
            'ExecutionRole' => '<string>', // REQUIRED
            'InstanceCount' => <integer>, // REQUIRED
            'InstanceGroupName' => '<string>', // REQUIRED
            'InstanceStorageConfigs' => [
                [
                    'EbsVolumeConfig' => [
                        'VolumeSizeInGB' => <integer>, // REQUIRED
                    ],
                ],
                // ...
            ],
            'InstanceType' => 'ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.c5n.large|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.gr6.4xlarge|ml.gr6.8xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.trn2.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge', // REQUIRED
            'LifeCycleConfig' => [ // REQUIRED
                'OnCreate' => '<string>', // REQUIRED
                'SourceS3Uri' => '<string>', // REQUIRED
            ],
            'OnStartDeepHealthChecks' => ['<string>', ...],
            'OverrideVpcConfig' => [
                'SecurityGroupIds' => ['<string>', ...], // REQUIRED
                'Subnets' => ['<string>', ...], // REQUIRED
            ],
            'ThreadsPerCore' => <integer>,
            'TrainingPlanArn' => '<string>',
        ],
        // ...
    ],
    'NodeRecovery' => 'Automatic|None',
    'Orchestrator' => [
        'Eks' => [ // REQUIRED
            'ClusterArn' => '<string>', // REQUIRED
        ],
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'VpcConfig' => [
        'SecurityGroupIds' => ['<string>', ...], // REQUIRED
        'Subnets' => ['<string>', ...], // REQUIRED
    ],
]);

Parameter Details

Members
ClusterName
Required: Yes
Type: string

The name for the new SageMaker HyperPod cluster.

InstanceGroups
Required: Yes
Type: Array of ClusterInstanceGroupSpecification structures

The instance groups to be created in the SageMaker HyperPod cluster.

NodeRecovery
Type: string

The node recovery mode for the SageMaker HyperPod cluster. When set to Automatic, SageMaker HyperPod will automatically reboot or replace faulty nodes when issues are detected. When set to None, cluster administrators will need to manually manage any faulty cluster instances.

Orchestrator
Type: ClusterOrchestrator structure

The type of orchestrator to use for the SageMaker HyperPod cluster. Currently, the only supported value is "eks", which is to use an Amazon Elastic Kubernetes Service (EKS) cluster as the orchestrator.

Tags
Type: Array of Tag structures

Custom tags for managing the SageMaker HyperPod cluster as an Amazon Web Services resource. You can add tags to your cluster in the same way you add them in other Amazon Web Services services that support tagging. To learn more about tagging Amazon Web Services resources in general, see Tagging Amazon Web Services Resources User Guide.

VpcConfig
Type: VpcConfig structure

Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC.

Result Syntax

[
    'ClusterArn' => '<string>',
]

Result Details

Members
ClusterArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the cluster.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceInUse:

Resource being accessed is in use.

CreateClusterSchedulerConfig

$result = $client->createClusterSchedulerConfig([/* ... */]);
$promise = $client->createClusterSchedulerConfigAsync([/* ... */]);

Create cluster policy configuration. This policy is used for task prioritization and fair-share allocation of idle compute. This helps prioritize critical workloads and distributes idle compute across entities.

Parameter Syntax

$result = $client->createClusterSchedulerConfig([
    'ClusterArn' => '<string>', // REQUIRED
    'Description' => '<string>',
    'Name' => '<string>', // REQUIRED
    'SchedulerConfig' => [ // REQUIRED
        'FairShare' => 'Enabled|Disabled',
        'PriorityClasses' => [
            [
                'Name' => '<string>', // REQUIRED
                'Weight' => <integer>, // REQUIRED
            ],
            // ...
        ],
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
ClusterArn
Required: Yes
Type: string

ARN of the cluster.

Description
Type: string

Description of the cluster policy.

Name
Required: Yes
Type: string

Name for the cluster policy.

SchedulerConfig
Required: Yes
Type: SchedulerConfig structure

Configuration about the monitoring schedule.

Tags
Type: Array of Tag structures

Tags of the cluster policy.

Result Syntax

[
    'ClusterSchedulerConfigArn' => '<string>',
    'ClusterSchedulerConfigId' => '<string>',
]

Result Details

Members
ClusterSchedulerConfigArn
Required: Yes
Type: string

ARN of the cluster policy.

ClusterSchedulerConfigId
Required: Yes
Type: string

ID of the cluster policy.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

CreateCodeRepository

$result = $client->createCodeRepository([/* ... */]);
$promise = $client->createCodeRepositoryAsync([/* ... */]);

Creates a Git repository as a resource in your SageMaker AI account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your SageMaker AI account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with.

The repository can be hosted either in Amazon Web Services CodeCommit or in any other Git repository.

Parameter Syntax

$result = $client->createCodeRepository([
    'CodeRepositoryName' => '<string>', // REQUIRED
    'GitConfig' => [ // REQUIRED
        'Branch' => '<string>',
        'RepositoryUrl' => '<string>', // REQUIRED
        'SecretArn' => '<string>',
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
CodeRepositoryName
Required: Yes
Type: string

The name of the Git repository. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

GitConfig
Required: Yes
Type: GitConfig structure

Specifies details about the repository, including the URL where the repository is located, the default branch, and credentials to use to access the repository.

Tags
Type: Array of Tag structures

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

Result Syntax

[
    'CodeRepositoryArn' => '<string>',
]

Result Details

Members
CodeRepositoryArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the new repository.

Errors

There are no errors described for this operation.

CreateCompilationJob

$result = $client->createCompilationJob([/* ... */]);
$promise = $client->createCompilationJobAsync([/* ... */]);

Starts a model compilation job. After the model has been compiled, Amazon SageMaker AI saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify.

If you choose to host your model using Amazon SageMaker AI hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with Amazon Web Services IoT Greengrass. In that case, deploy them as an ML resource.

In the request body, you provide the following:

  • A name for the compilation job

  • Information about the input model artifacts

  • The output location for the compiled model and the device (target) that the model runs on

  • The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker AI assumes to perform the model compilation job.

You can also provide a Tag to track the model compilation job's resource use and costs. The response body contains the CompilationJobArn for the compiled job.

To stop a model compilation job, use StopCompilationJob. To get information about a particular model compilation job, use DescribeCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.

Parameter Syntax

$result = $client->createCompilationJob([
    'CompilationJobName' => '<string>', // REQUIRED
    'InputConfig' => [
        'DataInputConfig' => '<string>',
        'Framework' => 'TENSORFLOW|KERAS|MXNET|ONNX|PYTORCH|XGBOOST|TFLITE|DARKNET|SKLEARN', // REQUIRED
        'FrameworkVersion' => '<string>',
        'S3Uri' => '<string>', // REQUIRED
    ],
    'ModelPackageVersionArn' => '<string>',
    'OutputConfig' => [ // REQUIRED
        'CompilerOptions' => '<string>',
        'KmsKeyId' => '<string>',
        'S3OutputLocation' => '<string>', // REQUIRED
        'TargetDevice' => 'lambda|ml_m4|ml_m5|ml_m6g|ml_c4|ml_c5|ml_c6g|ml_p2|ml_p3|ml_g4dn|ml_inf1|ml_inf2|ml_trn1|ml_eia2|jetson_tx1|jetson_tx2|jetson_nano|jetson_xavier|rasp3b|rasp4b|imx8qm|deeplens|rk3399|rk3288|aisage|sbe_c|qcs605|qcs603|sitara_am57x|amba_cv2|amba_cv22|amba_cv25|x86_win32|x86_win64|coreml|jacinto_tda4vm|imx8mplus',
        'TargetPlatform' => [
            'Accelerator' => 'INTEL_GRAPHICS|MALI|NVIDIA|NNA',
            'Arch' => 'X86_64|X86|ARM64|ARM_EABI|ARM_EABIHF', // REQUIRED
            'Os' => 'ANDROID|LINUX', // REQUIRED
        ],
    ],
    'RoleArn' => '<string>', // REQUIRED
    'StoppingCondition' => [ // REQUIRED
        'MaxPendingTimeInSeconds' => <integer>,
        'MaxRuntimeInSeconds' => <integer>,
        'MaxWaitTimeInSeconds' => <integer>,
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'VpcConfig' => [
        'SecurityGroupIds' => ['<string>', ...], // REQUIRED
        'Subnets' => ['<string>', ...], // REQUIRED
    ],
]);

Parameter Details

Members
CompilationJobName
Required: Yes
Type: string

A name for the model compilation job. The name must be unique within the Amazon Web Services Region and within your Amazon Web Services account.

InputConfig
Type: InputConfig structure

Provides information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.

ModelPackageVersionArn
Type: string

The Amazon Resource Name (ARN) of a versioned model package. Provide either a ModelPackageVersionArn or an InputConfig object in the request syntax. The presence of both objects in the CreateCompilationJob request will return an exception.

OutputConfig
Required: Yes
Type: OutputConfig structure

Provides information about the output location for the compiled model and the target device the model runs on.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker AI to perform tasks on your behalf.

During model compilation, Amazon SageMaker AI needs your permission to:

  • Read input data from an S3 bucket

  • Write model artifacts to an S3 bucket

  • Write logs to Amazon CloudWatch Logs

  • Publish metrics to Amazon CloudWatch

You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker AI, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker AI Roles.

StoppingCondition
Required: Yes
Type: StoppingCondition structure

Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker AI ends the compilation job. Use this API to cap model training costs.

Tags
Type: Array of Tag structures

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

VpcConfig
Type: NeoVpcConfig structure

A VpcConfig object that specifies the VPC that you want your compilation job to connect to. Control access to your models by configuring the VPC. For more information, see Protect Compilation Jobs by Using an Amazon Virtual Private Cloud.

Result Syntax

[
    'CompilationJobArn' => '<string>',
]

Result Details

Members
CompilationJobArn
Required: Yes
Type: string

If the action is successful, the service sends back an HTTP 200 response. Amazon SageMaker AI returns the following data in JSON format:

  • CompilationJobArn: The Amazon Resource Name (ARN) of the compiled job.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateComputeQuota

$result = $client->createComputeQuota([/* ... */]);
$promise = $client->createComputeQuotaAsync([/* ... */]);

Create compute allocation definition. This defines how compute is allocated, shared, and borrowed for specified entities. Specifically, how to lend and borrow idle compute and assign a fair-share weight to the specified entities.

Parameter Syntax

$result = $client->createComputeQuota([
    'ActivationState' => 'Enabled|Disabled',
    'ClusterArn' => '<string>', // REQUIRED
    'ComputeQuotaConfig' => [ // REQUIRED
        'ComputeQuotaResources' => [
            [
                'Count' => <integer>, // REQUIRED
                'InstanceType' => 'ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.c5n.large|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.gr6.4xlarge|ml.gr6.8xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.trn2.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge', // REQUIRED
            ],
            // ...
        ],
        'PreemptTeamTasks' => 'Never|LowerPriority',
        'ResourceSharingConfig' => [
            'BorrowLimit' => <integer>,
            'Strategy' => 'Lend|DontLend|LendAndBorrow', // REQUIRED
        ],
    ],
    'ComputeQuotaTarget' => [ // REQUIRED
        'FairShareWeight' => <integer>,
        'TeamName' => '<string>', // REQUIRED
    ],
    'Description' => '<string>',
    'Name' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
ActivationState
Type: string

The state of the compute allocation being described. Use to enable or disable compute allocation.

Default is Enabled.

ClusterArn
Required: Yes
Type: string

ARN of the cluster.

ComputeQuotaConfig
Required: Yes
Type: ComputeQuotaConfig structure

Configuration of the compute allocation definition. This includes the resource sharing option, and the setting to preempt low priority tasks.

ComputeQuotaTarget
Required: Yes
Type: ComputeQuotaTarget structure

The target entity to allocate compute resources to.

Description
Type: string

Description of the compute allocation definition.

Name
Required: Yes
Type: string

Name to the compute allocation definition.

Tags
Type: Array of Tag structures

Tags of the compute allocation definition.

Result Syntax

[
    'ComputeQuotaArn' => '<string>',
    'ComputeQuotaId' => '<string>',
]

Result Details

Members
ComputeQuotaArn
Required: Yes
Type: string

ARN of the compute allocation definition.

ComputeQuotaId
Required: Yes
Type: string

ID of the compute allocation definition.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

CreateContext

$result = $client->createContext([/* ... */]);
$promise = $client->createContextAsync([/* ... */]);

Creates a context. A context is a lineage tracking entity that represents a logical grouping of other tracking or experiment entities. Some examples are an endpoint and a model package. For more information, see Amazon SageMaker ML Lineage Tracking.

Parameter Syntax

$result = $client->createContext([
    'ContextName' => '<string>', // REQUIRED
    'ContextType' => '<string>', // REQUIRED
    'Description' => '<string>',
    'Properties' => ['<string>', ...],
    'Source' => [ // REQUIRED
        'SourceId' => '<string>',
        'SourceType' => '<string>',
        'SourceUri' => '<string>', // REQUIRED
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
ContextName
Required: Yes
Type: string

The name of the context. Must be unique to your account in an Amazon Web Services Region.

ContextType
Required: Yes
Type: string

The context type.

Description
Type: string

The description of the context.

Properties
Type: Associative array of custom strings keys (StringParameterValue) to strings

A list of properties to add to the context.

Source
Required: Yes
Type: ContextSource structure

The source type, ID, and URI.

Tags
Type: Array of Tag structures

A list of tags to apply to the context.

Result Syntax

[
    'ContextArn' => '<string>',
]

Result Details

Members
ContextArn
Type: string

The Amazon Resource Name (ARN) of the context.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateDataQualityJobDefinition

$result = $client->createDataQualityJobDefinition([/* ... */]);
$promise = $client->createDataQualityJobDefinitionAsync([/* ... */]);

Creates a definition for a job that monitors data quality and drift. For information about model monitor, see Amazon SageMaker AI Model Monitor.

Parameter Syntax

$result = $client->createDataQualityJobDefinition([
    'DataQualityAppSpecification' => [ // REQUIRED
        'ContainerArguments' => ['<string>', ...],
        'ContainerEntrypoint' => ['<string>', ...],
        'Environment' => ['<string>', ...],
        'ImageUri' => '<string>', // REQUIRED
        'PostAnalyticsProcessorSourceUri' => '<string>',
        'RecordPreprocessorSourceUri' => '<string>',
    ],
    'DataQualityBaselineConfig' => [
        'BaseliningJobName' => '<string>',
        'ConstraintsResource' => [
            'S3Uri' => '<string>',
        ],
        'StatisticsResource' => [
            'S3Uri' => '<string>',
        ],
    ],
    'DataQualityJobInput' => [ // REQUIRED
        'BatchTransformInput' => [
            'DataCapturedDestinationS3Uri' => '<string>', // REQUIRED
            'DatasetFormat' => [ // REQUIRED
                'Csv' => [
                    'Header' => true || false,
                ],
                'Json' => [
                    'Line' => true || false,
                ],
                'Parquet' => [
                ],
            ],
            'EndTimeOffset' => '<string>',
            'ExcludeFeaturesAttribute' => '<string>',
            'FeaturesAttribute' => '<string>',
            'InferenceAttribute' => '<string>',
            'LocalPath' => '<string>', // REQUIRED
            'ProbabilityAttribute' => '<string>',
            'ProbabilityThresholdAttribute' => <float>,
            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
            'S3InputMode' => 'Pipe|File',
            'StartTimeOffset' => '<string>',
        ],
        'EndpointInput' => [
            'EndTimeOffset' => '<string>',
            'EndpointName' => '<string>', // REQUIRED
            'ExcludeFeaturesAttribute' => '<string>',
            'FeaturesAttribute' => '<string>',
            'InferenceAttribute' => '<string>',
            'LocalPath' => '<string>', // REQUIRED
            'ProbabilityAttribute' => '<string>',
            'ProbabilityThresholdAttribute' => <float>,
            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
            'S3InputMode' => 'Pipe|File',
            'StartTimeOffset' => '<string>',
        ],
    ],
    'DataQualityJobOutputConfig' => [ // REQUIRED
        'KmsKeyId' => '<string>',
        'MonitoringOutputs' => [ // REQUIRED
            [
                'S3Output' => [ // REQUIRED
                    'LocalPath' => '<string>', // REQUIRED
                    'S3UploadMode' => 'Continuous|EndOfJob',
                    'S3Uri' => '<string>', // REQUIRED
                ],
            ],
            // ...
        ],
    ],
    'JobDefinitionName' => '<string>', // REQUIRED
    'JobResources' => [ // REQUIRED
        'ClusterConfig' => [ // REQUIRED
            'InstanceCount' => <integer>, // REQUIRED
            'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge', // REQUIRED
            'VolumeKmsKeyId' => '<string>',
            'VolumeSizeInGB' => <integer>, // REQUIRED
        ],
    ],
    'NetworkConfig' => [
        'EnableInterContainerTrafficEncryption' => true || false,
        'EnableNetworkIsolation' => true || false,
        'VpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...], // REQUIRED
            'Subnets' => ['<string>', ...], // REQUIRED
        ],
    ],
    'RoleArn' => '<string>', // REQUIRED
    'StoppingCondition' => [
        'MaxRuntimeInSeconds' => <integer>, // REQUIRED
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
DataQualityAppSpecification
Required: Yes
Type: DataQualityAppSpecification structure

Specifies the container that runs the monitoring job.

DataQualityBaselineConfig
Type: DataQualityBaselineConfig structure

Configures the constraints and baselines for the monitoring job.

DataQualityJobInput
Required: Yes
Type: DataQualityJobInput structure

A list of inputs for the monitoring job. Currently endpoints are supported as monitoring inputs.

DataQualityJobOutputConfig
Required: Yes
Type: MonitoringOutputConfig structure

The output configuration for monitoring jobs.

JobDefinitionName
Required: Yes
Type: string

The name for the monitoring job definition.

JobResources
Required: Yes
Type: MonitoringResources structure

Identifies the resources to deploy for a monitoring job.

NetworkConfig
Type: MonitoringNetworkConfig structure

Specifies networking configuration for the monitoring job.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.

StoppingCondition
Type: MonitoringStoppingCondition structure

A time limit for how long the monitoring job is allowed to run before stopping.

Tags
Type: Array of Tag structures

(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.

Result Syntax

[
    'JobDefinitionArn' => '<string>',
]

Result Details

Members
JobDefinitionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the job definition.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceInUse:

Resource being accessed is in use.

CreateDeviceFleet

$result = $client->createDeviceFleet([/* ... */]);
$promise = $client->createDeviceFleetAsync([/* ... */]);

Creates a device fleet.

Parameter Syntax

$result = $client->createDeviceFleet([
    'Description' => '<string>',
    'DeviceFleetName' => '<string>', // REQUIRED
    'EnableIotRoleAlias' => true || false,
    'OutputConfig' => [ // REQUIRED
        'KmsKeyId' => '<string>',
        'PresetDeploymentConfig' => '<string>',
        'PresetDeploymentType' => 'GreengrassV2Component',
        'S3OutputLocation' => '<string>', // REQUIRED
    ],
    'RoleArn' => '<string>',
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
Description
Type: string

A description of the fleet.

DeviceFleetName
Required: Yes
Type: string

The name of the fleet that the device belongs to.

EnableIotRoleAlias
Type: boolean

Whether to create an Amazon Web Services IoT Role Alias during device fleet creation. The name of the role alias generated will match this pattern: "SageMakerEdge-{DeviceFleetName}".

For example, if your device fleet is called "demo-fleet", the name of the role alias will be "SageMakerEdge-demo-fleet".

OutputConfig
Required: Yes
Type: EdgeOutputConfig structure

The output configuration for storing sample data collected by the fleet.

RoleArn
Type: string

The Amazon Resource Name (ARN) that has access to Amazon Web Services Internet of Things (IoT).

Tags
Type: Array of Tag structures

Creates tags for the specified fleet.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateDomain

$result = $client->createDomain([/* ... */]);
$promise = $client->createDomainAsync([/* ... */]);

Creates a Domain. A domain consists of an associated Amazon Elastic File System volume, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. Users within a domain can share notebook files and other artifacts with each other.

EFS storage

When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files.

SageMaker AI uses the Amazon Web Services Key Management Service (Amazon Web Services KMS) to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key by default. For more control, you can specify a customer managed key. For more information, see Protect Data at Rest Using Encryption.

VPC configuration

All traffic between the domain and the Amazon EFS volume is through the specified VPC and subnets. For other traffic, you can specify the AppNetworkAccessType parameter. AppNetworkAccessType corresponds to the network access type that you choose when you onboard to the domain. The following options are available:

  • PublicInternetOnly - Non-EFS traffic goes through a VPC managed by Amazon SageMaker AI, which allows internet access. This is the default value.

  • VpcOnly - All traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway.

    When internet access is disabled, you won't be able to run a Amazon SageMaker AI Studio notebook or to train or host models unless your VPC has an interface endpoint to the SageMaker AI API and runtime or a NAT gateway and your security groups allow outbound connections.

NFS traffic over TCP on port 2049 needs to be allowed in both inbound and outbound rules in order to launch a Amazon SageMaker AI Studio app successfully.

For more information, see Connect Amazon SageMaker AI Studio Notebooks to Resources in a VPC.

Parameter Syntax

$result = $client->createDomain([
    'AppNetworkAccessType' => 'PublicInternetOnly|VpcOnly',
    'AppSecurityGroupManagement' => 'Service|Customer',
    'AuthMode' => 'SSO|IAM', // REQUIRED
    'DefaultSpaceSettings' => [
        'CustomFileSystemConfigs' => [
            [
                'EFSFileSystemConfig' => [
                    'FileSystemId' => '<string>', // REQUIRED
                    'FileSystemPath' => '<string>',
                ],
                'FSxLustreFileSystemConfig' => [
                    'FileSystemId' => '<string>', // REQUIRED
                    'FileSystemPath' => '<string>',
                ],
            ],
            // ...
        ],
        'CustomPosixUserConfig' => [
            'Gid' => <integer>, // REQUIRED
            'Uid' => <integer>, // REQUIRED
        ],
        'ExecutionRole' => '<string>',
        'JupyterLabAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                    'LifecycleManagement' => 'ENABLED|DISABLED',
                    'MaxIdleTimeoutInMinutes' => <integer>,
                    'MinIdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'BuiltInLifecycleConfigArn' => '<string>',
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'EmrSettings' => [
                'AssumableRoleArns' => ['<string>', ...],
                'ExecutionRoleArns' => ['<string>', ...],
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'JupyterServerAppSettings' => [
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'KernelGatewayAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'SecurityGroups' => ['<string>', ...],
        'SpaceStorageSettings' => [
            'DefaultEbsStorageSettings' => [
                'DefaultEbsVolumeSizeInGb' => <integer>, // REQUIRED
                'MaximumEbsVolumeSizeInGb' => <integer>, // REQUIRED
            ],
        ],
    ],
    'DefaultUserSettings' => [ // REQUIRED
        'AutoMountHomeEFS' => 'Enabled|Disabled|DefaultAsDomain',
        'CanvasAppSettings' => [
            'DirectDeploySettings' => [
                'Status' => 'ENABLED|DISABLED',
            ],
            'EmrServerlessSettings' => [
                'ExecutionRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'GenerativeAiSettings' => [
                'AmazonBedrockRoleArn' => '<string>',
            ],
            'IdentityProviderOAuthSettings' => [
                [
                    'DataSourceName' => 'SalesforceGenie|Snowflake',
                    'SecretArn' => '<string>',
                    'Status' => 'ENABLED|DISABLED',
                ],
                // ...
            ],
            'KendraSettings' => [
                'Status' => 'ENABLED|DISABLED',
            ],
            'ModelRegisterSettings' => [
                'CrossAccountModelRegisterRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'TimeSeriesForecastingSettings' => [
                'AmazonForecastRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'WorkspaceSettings' => [
                'S3ArtifactPath' => '<string>',
                'S3KmsKeyId' => '<string>',
            ],
        ],
        'CodeEditorAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                    'LifecycleManagement' => 'ENABLED|DISABLED',
                    'MaxIdleTimeoutInMinutes' => <integer>,
                    'MinIdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'BuiltInLifecycleConfigArn' => '<string>',
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'CustomFileSystemConfigs' => [
            [
                'EFSFileSystemConfig' => [
                    'FileSystemId' => '<string>', // REQUIRED
                    'FileSystemPath' => '<string>',
                ],
                'FSxLustreFileSystemConfig' => [
                    'FileSystemId' => '<string>', // REQUIRED
                    'FileSystemPath' => '<string>',
                ],
            ],
            // ...
        ],
        'CustomPosixUserConfig' => [
            'Gid' => <integer>, // REQUIRED
            'Uid' => <integer>, // REQUIRED
        ],
        'DefaultLandingUri' => '<string>',
        'ExecutionRole' => '<string>',
        'JupyterLabAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                    'LifecycleManagement' => 'ENABLED|DISABLED',
                    'MaxIdleTimeoutInMinutes' => <integer>,
                    'MinIdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'BuiltInLifecycleConfigArn' => '<string>',
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'EmrSettings' => [
                'AssumableRoleArns' => ['<string>', ...],
                'ExecutionRoleArns' => ['<string>', ...],
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'JupyterServerAppSettings' => [
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'KernelGatewayAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'RSessionAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
        'RStudioServerProAppSettings' => [
            'AccessStatus' => 'ENABLED|DISABLED',
            'UserGroup' => 'R_STUDIO_ADMIN|R_STUDIO_USER',
        ],
        'SecurityGroups' => ['<string>', ...],
        'SharingSettings' => [
            'NotebookOutputOption' => 'Allowed|Disabled',
            'S3KmsKeyId' => '<string>',
            'S3OutputPath' => '<string>',
        ],
        'SpaceStorageSettings' => [
            'DefaultEbsStorageSettings' => [
                'DefaultEbsVolumeSizeInGb' => <integer>, // REQUIRED
                'MaximumEbsVolumeSizeInGb' => <integer>, // REQUIRED
            ],
        ],
        'StudioWebPortal' => 'ENABLED|DISABLED',
        'StudioWebPortalSettings' => [
            'HiddenAppTypes' => ['<string>', ...],
            'HiddenInstanceTypes' => ['<string>', ...],
            'HiddenMlTools' => ['<string>', ...],
            'HiddenSageMakerImageVersionAliases' => [
                [
                    'SageMakerImageName' => 'sagemaker_distribution',
                    'VersionAliases' => ['<string>', ...],
                ],
                // ...
            ],
        ],
        'TensorBoardAppSettings' => [
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
    ],
    'DomainName' => '<string>', // REQUIRED
    'DomainSettings' => [
        'AmazonQSettings' => [
            'QProfileArn' => '<string>',
            'Status' => 'ENABLED|DISABLED',
        ],
        'DockerSettings' => [
            'EnableDockerAccess' => 'ENABLED|DISABLED',
            'VpcOnlyTrustedAccounts' => ['<string>', ...],
        ],
        'ExecutionRoleIdentityConfig' => 'USER_PROFILE_NAME|DISABLED',
        'RStudioServerProDomainSettings' => [
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'DomainExecutionRoleArn' => '<string>', // REQUIRED
            'RStudioConnectUrl' => '<string>',
            'RStudioPackageManagerUrl' => '<string>',
        ],
        'SecurityGroupIds' => ['<string>', ...],
    ],
    'HomeEfsFileSystemKmsKeyId' => '<string>',
    'KmsKeyId' => '<string>',
    'SubnetIds' => ['<string>', ...], // REQUIRED
    'TagPropagation' => 'ENABLED|DISABLED',
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'VpcId' => '<string>', // REQUIRED
]);

Parameter Details

Members
AppNetworkAccessType
Type: string

Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly.

  • PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker AI, which allows direct internet access

  • VpcOnly - All traffic is through the specified VPC and subnets

AppSecurityGroupManagement
Type: string

The entity that creates and manages the required security groups for inter-app communication in VPCOnly mode. Required when CreateDomain.AppNetworkAccessType is VPCOnly and DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided. If setting up the domain for use with RStudio, this value must be set to Service.

AuthMode
Required: Yes
Type: string

The mode of authentication that members use to access the domain.

DefaultSpaceSettings
Type: DefaultSpaceSettings structure

The default settings for shared spaces that users create in the domain.

DefaultUserSettings
Required: Yes
Type: UserSettings structure

The default settings to use to create a user profile when UserSettings isn't specified in the call to the CreateUserProfile API.

SecurityGroups is aggregated when specified in both calls. For all other settings in UserSettings, the values specified in CreateUserProfile take precedence over those specified in CreateDomain.

DomainName
Required: Yes
Type: string

A name for the domain.

DomainSettings
Type: DomainSettings structure

A collection of Domain settings.

HomeEfsFileSystemKmsKeyId
Type: string

Use KmsKeyId.

KmsKeyId
Type: string

SageMaker AI uses Amazon Web Services KMS to encrypt EFS and EBS volumes attached to the domain with an Amazon Web Services managed key by default. For more control, specify a customer managed key.

SubnetIds
Required: Yes
Type: Array of strings

The VPC subnets that the domain uses for communication.

TagPropagation
Type: string

Indicates whether custom tag propagation is supported for the domain. Defaults to DISABLED.

Tags
Type: Array of Tag structures

Tags to associated with the Domain. Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the Search API.

Tags that you specify for the Domain are also added to all Apps that the Domain launches.

VpcId
Required: Yes
Type: string

The ID of the Amazon Virtual Private Cloud (VPC) that the domain uses for communication.

Result Syntax

[
    'DomainArn' => '<string>',
    'Url' => '<string>',
]

Result Details

Members
DomainArn
Type: string

The Amazon Resource Name (ARN) of the created domain.

Url
Type: string

The URL to the created domain.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceInUse:

Resource being accessed is in use.

CreateEdgeDeploymentPlan

$result = $client->createEdgeDeploymentPlan([/* ... */]);
$promise = $client->createEdgeDeploymentPlanAsync([/* ... */]);

Creates an edge deployment plan, consisting of multiple stages. Each stage may have a different deployment configuration and devices.

Parameter Syntax

$result = $client->createEdgeDeploymentPlan([
    'DeviceFleetName' => '<string>', // REQUIRED
    'EdgeDeploymentPlanName' => '<string>', // REQUIRED
    'ModelConfigs' => [ // REQUIRED
        [
            'EdgePackagingJobName' => '<string>', // REQUIRED
            'ModelHandle' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'Stages' => [
        [
            'DeploymentConfig' => [
                'FailureHandlingPolicy' => 'ROLLBACK_ON_FAILURE|DO_NOTHING', // REQUIRED
            ],
            'DeviceSelectionConfig' => [ // REQUIRED
                'DeviceNameContains' => '<string>',
                'DeviceNames' => ['<string>', ...],
                'DeviceSubsetType' => 'PERCENTAGE|SELECTION|NAMECONTAINS', // REQUIRED
                'Percentage' => <integer>,
            ],
            'StageName' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
DeviceFleetName
Required: Yes
Type: string

The device fleet used for this edge deployment plan.

EdgeDeploymentPlanName
Required: Yes
Type: string

The name of the edge deployment plan.

ModelConfigs
Required: Yes
Type: Array of EdgeDeploymentModelConfig structures

List of models associated with the edge deployment plan.

Stages
Type: Array of DeploymentStage structures

List of stages of the edge deployment plan. The number of stages is limited to 10 per deployment.

Tags
Type: Array of Tag structures

List of tags with which to tag the edge deployment plan.

Result Syntax

[
    'EdgeDeploymentPlanArn' => '<string>',
]

Result Details

Members
EdgeDeploymentPlanArn
Required: Yes
Type: string

The ARN of the edge deployment plan.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateEdgeDeploymentStage

$result = $client->createEdgeDeploymentStage([/* ... */]);
$promise = $client->createEdgeDeploymentStageAsync([/* ... */]);

Creates a new stage in an existing edge deployment plan.

Parameter Syntax

$result = $client->createEdgeDeploymentStage([
    'EdgeDeploymentPlanName' => '<string>', // REQUIRED
    'Stages' => [ // REQUIRED
        [
            'DeploymentConfig' => [
                'FailureHandlingPolicy' => 'ROLLBACK_ON_FAILURE|DO_NOTHING', // REQUIRED
            ],
            'DeviceSelectionConfig' => [ // REQUIRED
                'DeviceNameContains' => '<string>',
                'DeviceNames' => ['<string>', ...],
                'DeviceSubsetType' => 'PERCENTAGE|SELECTION|NAMECONTAINS', // REQUIRED
                'Percentage' => <integer>,
            ],
            'StageName' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
EdgeDeploymentPlanName
Required: Yes
Type: string

The name of the edge deployment plan.

Stages
Required: Yes
Type: Array of DeploymentStage structures

List of stages to be added to the edge deployment plan.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateEdgePackagingJob

$result = $client->createEdgePackagingJob([/* ... */]);
$promise = $client->createEdgePackagingJobAsync([/* ... */]);

Starts a SageMaker Edge Manager model packaging job. Edge Manager will use the model artifacts from the Amazon Simple Storage Service bucket that you specify. After the model has been packaged, Amazon SageMaker saves the resulting artifacts to an S3 bucket that you specify.

Parameter Syntax

$result = $client->createEdgePackagingJob([
    'CompilationJobName' => '<string>', // REQUIRED
    'EdgePackagingJobName' => '<string>', // REQUIRED
    'ModelName' => '<string>', // REQUIRED
    'ModelVersion' => '<string>', // REQUIRED
    'OutputConfig' => [ // REQUIRED
        'KmsKeyId' => '<string>',
        'PresetDeploymentConfig' => '<string>',
        'PresetDeploymentType' => 'GreengrassV2Component',
        'S3OutputLocation' => '<string>', // REQUIRED
    ],
    'ResourceKey' => '<string>',
    'RoleArn' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
CompilationJobName
Required: Yes
Type: string

The name of the SageMaker Neo compilation job that will be used to locate model artifacts for packaging.

EdgePackagingJobName
Required: Yes
Type: string

The name of the edge packaging job.

ModelName
Required: Yes
Type: string

The name of the model.

ModelVersion
Required: Yes
Type: string

The version of the model.

OutputConfig
Required: Yes
Type: EdgeOutputConfig structure

Provides information about the output location for the packaged model.

ResourceKey
Type: string

The Amazon Web Services KMS key to use when encrypting the EBS volume the edge packaging job runs on.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to download and upload the model, and to contact SageMaker Neo.

Tags
Type: Array of Tag structures

Creates tags for the packaging job.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateEndpoint

$result = $client->createEndpoint([/* ... */]);
$promise = $client->createEndpointAsync([/* ... */]);

Creates an endpoint using the endpoint configuration specified in the request. SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the CreateEndpointConfig API.

Use this API to deploy models using SageMaker hosting services.

You must not delete an EndpointConfig that is in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig.

The endpoint name must be unique within an Amazon Web Services Region in your Amazon Web Services account.

When it receives the request, SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them.

When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting Eventually Consistent Reads , the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read.

When SageMaker receives the request, it sets the endpoint status to Creating. After it creates the endpoint, it sets the status to InService. SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the DescribeEndpoint API.

If any of the models hosted at this endpoint get model data from an Amazon S3 location, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provided. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region in the Amazon Web Services Identity and Access Management User Guide.

To add the IAM role policies for using this API operation, go to the IAM console, and choose Roles in the left navigation pane. Search the IAM role that you want to grant access to use the CreateEndpoint and CreateEndpointConfig API operations, add the following policies to the role.

  • Option 1: For a full SageMaker access, search and attach the AmazonSageMakerFullAccess policy.

  • Option 2: For granting a limited access to an IAM role, paste the following Action elements manually into the JSON file of the IAM role:

    "Action": ["sagemaker:CreateEndpoint", "sagemaker:CreateEndpointConfig"]

    "Resource": [

    "arn:aws:sagemaker:region:account-id:endpoint/endpointName"

    "arn:aws:sagemaker:region:account-id:endpoint-config/endpointConfigName"

    ]

    For more information, see SageMaker API Permissions: Actions, Permissions, and Resources Reference.

Parameter Syntax

$result = $client->createEndpoint([
    'DeploymentConfig' => [
        'AutoRollbackConfiguration' => [
            'Alarms' => [
                [
                    'AlarmName' => '<string>',
                ],
                // ...
            ],
        ],
        'BlueGreenUpdatePolicy' => [
            'MaximumExecutionTimeoutInSeconds' => <integer>,
            'TerminationWaitInSeconds' => <integer>,
            'TrafficRoutingConfiguration' => [ // REQUIRED
                'CanarySize' => [
                    'Type' => 'INSTANCE_COUNT|CAPACITY_PERCENT', // REQUIRED
                    'Value' => <integer>, // REQUIRED
                ],
                'LinearStepSize' => [
                    'Type' => 'INSTANCE_COUNT|CAPACITY_PERCENT', // REQUIRED
                    'Value' => <integer>, // REQUIRED
                ],
                'Type' => 'ALL_AT_ONCE|CANARY|LINEAR', // REQUIRED
                'WaitIntervalInSeconds' => <integer>, // REQUIRED
            ],
        ],
        'RollingUpdatePolicy' => [
            'MaximumBatchSize' => [ // REQUIRED
                'Type' => 'INSTANCE_COUNT|CAPACITY_PERCENT', // REQUIRED
                'Value' => <integer>, // REQUIRED
            ],
            'MaximumExecutionTimeoutInSeconds' => <integer>,
            'RollbackMaximumBatchSize' => [
                'Type' => 'INSTANCE_COUNT|CAPACITY_PERCENT', // REQUIRED
                'Value' => <integer>, // REQUIRED
            ],
            'WaitIntervalInSeconds' => <integer>, // REQUIRED
        ],
    ],
    'EndpointConfigName' => '<string>', // REQUIRED
    'EndpointName' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
DeploymentConfig
Type: DeploymentConfig structure

The deployment configuration for an endpoint, which contains the desired deployment strategy and rollback configurations.

EndpointConfigName
Required: Yes
Type: string

The name of an endpoint configuration. For more information, see CreateEndpointConfig.

EndpointName
Required: Yes
Type: string

The name of the endpoint.The name must be unique within an Amazon Web Services Region in your Amazon Web Services account. The name is case-insensitive in CreateEndpoint, but the case is preserved and must be matched in InvokeEndpoint.

Tags
Type: Array of Tag structures

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

Result Syntax

[
    'EndpointArn' => '<string>',
]

Result Details

Members
EndpointArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the endpoint.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateEndpointConfig

$result = $client->createEndpointConfig([/* ... */]);
$promise = $client->createEndpointConfigAsync([/* ... */]);

Creates an endpoint configuration that SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the CreateModel API, to deploy and the resources that you want SageMaker to provision. Then you call the CreateEndpoint API.

Use this API if you want to use SageMaker hosting services to deploy models into production.

In the request, you define a ProductionVariant, for each model that you want to deploy. Each ProductionVariant parameter also describes the resources that you want SageMaker to provision. This includes the number and type of ML compute instances to deploy.

If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B.

When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting Eventually Consistent Reads , the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read.

Parameter Syntax

$result = $client->createEndpointConfig([
    'AsyncInferenceConfig' => [
        'ClientConfig' => [
            'MaxConcurrentInvocationsPerInstance' => <integer>,
        ],
        'OutputConfig' => [ // REQUIRED
            'KmsKeyId' => '<string>',
            'NotificationConfig' => [
                'ErrorTopic' => '<string>',
                'IncludeInferenceResponseIn' => ['<string>', ...],
                'SuccessTopic' => '<string>',
            ],
            'S3FailurePath' => '<string>',
            'S3OutputPath' => '<string>',
        ],
    ],
    'DataCaptureConfig' => [
        'CaptureContentTypeHeader' => [
            'CsvContentTypes' => ['<string>', ...],
            'JsonContentTypes' => ['<string>', ...],
        ],
        'CaptureOptions' => [ // REQUIRED
            [
                'CaptureMode' => 'Input|Output|InputAndOutput', // REQUIRED
            ],
            // ...
        ],
        'DestinationS3Uri' => '<string>', // REQUIRED
        'EnableCapture' => true || false,
        'InitialSamplingPercentage' => <integer>, // REQUIRED
        'KmsKeyId' => '<string>',
    ],
    'EnableNetworkIsolation' => true || false,
    'EndpointConfigName' => '<string>', // REQUIRED
    'ExecutionRoleArn' => '<string>',
    'ExplainerConfig' => [
        'ClarifyExplainerConfig' => [
            'EnableExplanations' => '<string>',
            'InferenceConfig' => [
                'ContentTemplate' => '<string>',
                'FeatureHeaders' => ['<string>', ...],
                'FeatureTypes' => ['<string>', ...],
                'FeaturesAttribute' => '<string>',
                'LabelAttribute' => '<string>',
                'LabelHeaders' => ['<string>', ...],
                'LabelIndex' => <integer>,
                'MaxPayloadInMB' => <integer>,
                'MaxRecordCount' => <integer>,
                'ProbabilityAttribute' => '<string>',
                'ProbabilityIndex' => <integer>,
            ],
            'ShapConfig' => [ // REQUIRED
                'NumberOfSamples' => <integer>,
                'Seed' => <integer>,
                'ShapBaselineConfig' => [ // REQUIRED
                    'MimeType' => '<string>',
                    'ShapBaseline' => '<string>',
                    'ShapBaselineUri' => '<string>',
                ],
                'TextConfig' => [
                    'Granularity' => 'token|sentence|paragraph', // REQUIRED
                    'Language' => 'af|sq|ar|hy|eu|bn|bg|ca|zh|hr|cs|da|nl|en|et|fi|fr|de|el|gu|he|hi|hu|is|id|ga|it|kn|ky|lv|lt|lb|mk|ml|mr|ne|nb|fa|pl|pt|ro|ru|sa|sr|tn|si|sk|sl|es|sv|tl|ta|tt|te|tr|uk|ur|yo|lij|xx', // REQUIRED
                ],
                'UseLogit' => true || false,
            ],
        ],
    ],
    'KmsKeyId' => '<string>',
    'ProductionVariants' => [ // REQUIRED
        [
            'AcceleratorType' => 'ml.eia1.medium|ml.eia1.large|ml.eia1.xlarge|ml.eia2.medium|ml.eia2.large|ml.eia2.xlarge',
            'ContainerStartupHealthCheckTimeoutInSeconds' => <integer>,
            'CoreDumpConfig' => [
                'DestinationS3Uri' => '<string>', // REQUIRED
                'KmsKeyId' => '<string>',
            ],
            'EnableSSMAccess' => true || false,
            'InferenceAmiVersion' => 'al2-ami-sagemaker-inference-gpu-2',
            'InitialInstanceCount' => <integer>,
            'InitialVariantWeight' => <float>,
            'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.12xlarge|ml.m5d.24xlarge|ml.c4.large|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.large|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.12xlarge|ml.r5.24xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.12xlarge|ml.r5d.24xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.dl1.24xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p4d.24xlarge|ml.c7g.large|ml.c7g.xlarge|ml.c7g.2xlarge|ml.c7g.4xlarge|ml.c7g.8xlarge|ml.c7g.12xlarge|ml.c7g.16xlarge|ml.m6g.large|ml.m6g.xlarge|ml.m6g.2xlarge|ml.m6g.4xlarge|ml.m6g.8xlarge|ml.m6g.12xlarge|ml.m6g.16xlarge|ml.m6gd.large|ml.m6gd.xlarge|ml.m6gd.2xlarge|ml.m6gd.4xlarge|ml.m6gd.8xlarge|ml.m6gd.12xlarge|ml.m6gd.16xlarge|ml.c6g.large|ml.c6g.xlarge|ml.c6g.2xlarge|ml.c6g.4xlarge|ml.c6g.8xlarge|ml.c6g.12xlarge|ml.c6g.16xlarge|ml.c6gd.large|ml.c6gd.xlarge|ml.c6gd.2xlarge|ml.c6gd.4xlarge|ml.c6gd.8xlarge|ml.c6gd.12xlarge|ml.c6gd.16xlarge|ml.c6gn.large|ml.c6gn.xlarge|ml.c6gn.2xlarge|ml.c6gn.4xlarge|ml.c6gn.8xlarge|ml.c6gn.12xlarge|ml.c6gn.16xlarge|ml.r6g.large|ml.r6g.xlarge|ml.r6g.2xlarge|ml.r6g.4xlarge|ml.r6g.8xlarge|ml.r6g.12xlarge|ml.r6g.16xlarge|ml.r6gd.large|ml.r6gd.xlarge|ml.r6gd.2xlarge|ml.r6gd.4xlarge|ml.r6gd.8xlarge|ml.r6gd.12xlarge|ml.r6gd.16xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge',
            'ManagedInstanceScaling' => [
                'MaxInstanceCount' => <integer>,
                'MinInstanceCount' => <integer>,
                'Status' => 'ENABLED|DISABLED',
            ],
            'ModelDataDownloadTimeoutInSeconds' => <integer>,
            'ModelName' => '<string>',
            'RoutingConfig' => [
                'RoutingStrategy' => 'LEAST_OUTSTANDING_REQUESTS|RANDOM', // REQUIRED
            ],
            'ServerlessConfig' => [
                'MaxConcurrency' => <integer>, // REQUIRED
                'MemorySizeInMB' => <integer>, // REQUIRED
                'ProvisionedConcurrency' => <integer>,
            ],
            'VariantName' => '<string>', // REQUIRED
            'VolumeSizeInGB' => <integer>,
        ],
        // ...
    ],
    'ShadowProductionVariants' => [
        [
            'AcceleratorType' => 'ml.eia1.medium|ml.eia1.large|ml.eia1.xlarge|ml.eia2.medium|ml.eia2.large|ml.eia2.xlarge',
            'ContainerStartupHealthCheckTimeoutInSeconds' => <integer>,
            'CoreDumpConfig' => [
                'DestinationS3Uri' => '<string>', // REQUIRED
                'KmsKeyId' => '<string>',
            ],
            'EnableSSMAccess' => true || false,
            'InferenceAmiVersion' => 'al2-ami-sagemaker-inference-gpu-2',
            'InitialInstanceCount' => <integer>,
            'InitialVariantWeight' => <float>,
            'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.12xlarge|ml.m5d.24xlarge|ml.c4.large|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.large|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.12xlarge|ml.r5.24xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.12xlarge|ml.r5d.24xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.dl1.24xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p4d.24xlarge|ml.c7g.large|ml.c7g.xlarge|ml.c7g.2xlarge|ml.c7g.4xlarge|ml.c7g.8xlarge|ml.c7g.12xlarge|ml.c7g.16xlarge|ml.m6g.large|ml.m6g.xlarge|ml.m6g.2xlarge|ml.m6g.4xlarge|ml.m6g.8xlarge|ml.m6g.12xlarge|ml.m6g.16xlarge|ml.m6gd.large|ml.m6gd.xlarge|ml.m6gd.2xlarge|ml.m6gd.4xlarge|ml.m6gd.8xlarge|ml.m6gd.12xlarge|ml.m6gd.16xlarge|ml.c6g.large|ml.c6g.xlarge|ml.c6g.2xlarge|ml.c6g.4xlarge|ml.c6g.8xlarge|ml.c6g.12xlarge|ml.c6g.16xlarge|ml.c6gd.large|ml.c6gd.xlarge|ml.c6gd.2xlarge|ml.c6gd.4xlarge|ml.c6gd.8xlarge|ml.c6gd.12xlarge|ml.c6gd.16xlarge|ml.c6gn.large|ml.c6gn.xlarge|ml.c6gn.2xlarge|ml.c6gn.4xlarge|ml.c6gn.8xlarge|ml.c6gn.12xlarge|ml.c6gn.16xlarge|ml.r6g.large|ml.r6g.xlarge|ml.r6g.2xlarge|ml.r6g.4xlarge|ml.r6g.8xlarge|ml.r6g.12xlarge|ml.r6g.16xlarge|ml.r6gd.large|ml.r6gd.xlarge|ml.r6gd.2xlarge|ml.r6gd.4xlarge|ml.r6gd.8xlarge|ml.r6gd.12xlarge|ml.r6gd.16xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge',
            'ManagedInstanceScaling' => [
                'MaxInstanceCount' => <integer>,
                'MinInstanceCount' => <integer>,
                'Status' => 'ENABLED|DISABLED',
            ],
            'ModelDataDownloadTimeoutInSeconds' => <integer>,
            'ModelName' => '<string>',
            'RoutingConfig' => [
                'RoutingStrategy' => 'LEAST_OUTSTANDING_REQUESTS|RANDOM', // REQUIRED
            ],
            'ServerlessConfig' => [
                'MaxConcurrency' => <integer>, // REQUIRED
                'MemorySizeInMB' => <integer>, // REQUIRED
                'ProvisionedConcurrency' => <integer>,
            ],
            'VariantName' => '<string>', // REQUIRED
            'VolumeSizeInGB' => <integer>,
        ],
        // ...
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'VpcConfig' => [
        'SecurityGroupIds' => ['<string>', ...], // REQUIRED
        'Subnets' => ['<string>', ...], // REQUIRED
    ],
]);

Parameter Details

Members
AsyncInferenceConfig
Type: AsyncInferenceConfig structure

Specifies configuration for how an endpoint performs asynchronous inference. This is a required field in order for your Endpoint to be invoked using InvokeEndpointAsync.

DataCaptureConfig
Type: DataCaptureConfig structure

Configuration to control how SageMaker AI captures inference data.

EnableNetworkIsolation
Type: boolean

Sets whether all model containers deployed to the endpoint are isolated. If they are, no inbound or outbound network calls can be made to or from the model containers.

EndpointConfigName
Required: Yes
Type: string

The name of the endpoint configuration. You specify this name in a CreateEndpoint request.

ExecutionRoleArn
Type: string

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform actions on your behalf. For more information, see SageMaker AI Roles.

To be able to pass this role to Amazon SageMaker AI, the caller of this action must have the iam:PassRole permission.

ExplainerConfig
Type: ExplainerConfig structure

A member of CreateEndpointConfig that enables explainers.

KmsKeyId
Type: string

The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint.

The KmsKeyId can be any of the following formats:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

  • Alias name: alias/ExampleAlias

  • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint, UpdateEndpoint requests. For more information, refer to the Amazon Web Services Key Management Service section Using Key Policies in Amazon Web Services KMS

Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a KmsKeyId when using an instance type with local storage. If any of the models that you specify in the ProductionVariants parameter use nitro-based instances with local storage, do not specify a value for the KmsKeyId parameter. If you specify a value for KmsKeyId when using any nitro-based instances with local storage, the call to CreateEndpointConfig fails.

For a list of instance types that support local instance storage, see Instance Store Volumes.

For more information about local instance storage encryption, see SSD Instance Store Volumes.

ProductionVariants
Required: Yes
Type: Array of ProductionVariant structures

An array of ProductionVariant objects, one for each model that you want to host at this endpoint.

ShadowProductionVariants
Type: Array of ProductionVariant structures

An array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants. If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants.

Tags
Type: Array of Tag structures

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

VpcConfig
Type: VpcConfig structure

Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC.

Result Syntax

[
    'EndpointConfigArn' => '<string>',
]

Result Details

Members
EndpointConfigArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the endpoint configuration.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateExperiment

$result = $client->createExperiment([/* ... */]);
$promise = $client->createExperimentAsync([/* ... */]);

Creates a SageMaker experiment. An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called trial components, that produce a machine learning model.

In the Studio UI, trials are referred to as run groups and trial components are referred to as runs.

The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant.

When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK.

You can add tags to experiments, trials, trial components and then use the Search API to search for the tags.

To add a description to an experiment, specify the optional Description parameter. To add a description later, or to change the description, call the UpdateExperiment API.

To get a list of all your experiments, call the ListExperiments API. To view an experiment's properties, call the DescribeExperiment API. To get a list of all the trials associated with an experiment, call the ListTrials API. To create a trial call the CreateTrial API.

Parameter Syntax

$result = $client->createExperiment([
    'Description' => '<string>',
    'DisplayName' => '<string>',
    'ExperimentName' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
Description
Type: string

The description of the experiment.

DisplayName
Type: string

The name of the experiment as displayed. The name doesn't need to be unique. If you don't specify DisplayName, the value in ExperimentName is displayed.

ExperimentName
Required: Yes
Type: string

The name of the experiment. The name must be unique in your Amazon Web Services account and is not case-sensitive.

Tags
Type: Array of Tag structures

A list of tags to associate with the experiment. You can use Search API to search on the tags.

Result Syntax

[
    'ExperimentArn' => '<string>',
]

Result Details

Members
ExperimentArn
Type: string

The Amazon Resource Name (ARN) of the experiment.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateFeatureGroup

$result = $client->createFeatureGroup([/* ... */]);
$promise = $client->createFeatureGroupAsync([/* ... */]);

Create a new FeatureGroup. A FeatureGroup is a group of Features defined in the FeatureStore to describe a Record.

The FeatureGroup defines the schema and features contained in the FeatureGroup. A FeatureGroup definition is composed of a list of Features, a RecordIdentifierFeatureName, an EventTimeFeatureName and configurations for its OnlineStore and OfflineStore. Check Amazon Web Services service quotas to see the FeatureGroups quota for your Amazon Web Services account.

Note that it can take approximately 10-15 minutes to provision an OnlineStore FeatureGroup with the InMemory StorageType.

You must include at least one of OnlineStoreConfig and OfflineStoreConfig to create a FeatureGroup.

Parameter Syntax

$result = $client->createFeatureGroup([
    'Description' => '<string>',
    'EventTimeFeatureName' => '<string>', // REQUIRED
    'FeatureDefinitions' => [ // REQUIRED
        [
            'CollectionConfig' => [
                'VectorConfig' => [
                    'Dimension' => <integer>, // REQUIRED
                ],
            ],
            'CollectionType' => 'List|Set|Vector',
            'FeatureName' => '<string>', // REQUIRED
            'FeatureType' => 'Integral|Fractional|String', // REQUIRED
        ],
        // ...
    ],
    'FeatureGroupName' => '<string>', // REQUIRED
    'OfflineStoreConfig' => [
        'DataCatalogConfig' => [
            'Catalog' => '<string>', // REQUIRED
            'Database' => '<string>', // REQUIRED
            'TableName' => '<string>', // REQUIRED
        ],
        'DisableGlueTableCreation' => true || false,
        'S3StorageConfig' => [ // REQUIRED
            'KmsKeyId' => '<string>',
            'ResolvedOutputS3Uri' => '<string>',
            'S3Uri' => '<string>', // REQUIRED
        ],
        'TableFormat' => 'Default|Glue|Iceberg',
    ],
    'OnlineStoreConfig' => [
        'EnableOnlineStore' => true || false,
        'SecurityConfig' => [
            'KmsKeyId' => '<string>',
        ],
        'StorageType' => 'Standard|InMemory',
        'TtlDuration' => [
            'Unit' => 'Seconds|Minutes|Hours|Days|Weeks',
            'Value' => <integer>,
        ],
    ],
    'RecordIdentifierFeatureName' => '<string>', // REQUIRED
    'RoleArn' => '<string>',
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'ThroughputConfig' => [
        'ProvisionedReadCapacityUnits' => <integer>,
        'ProvisionedWriteCapacityUnits' => <integer>,
        'ThroughputMode' => 'OnDemand|Provisioned', // REQUIRED
    ],
]);

Parameter Details

Members
Description
Type: string

A free-form description of a FeatureGroup.

EventTimeFeatureName
Required: Yes
Type: string

The name of the feature that stores the EventTime of a Record in a FeatureGroup.

An EventTime is a point in time when a new event occurs that corresponds to the creation or update of a Record in a FeatureGroup. All Records in the FeatureGroup must have a corresponding EventTime.

An EventTime can be a String or Fractional.

  • Fractional: EventTime feature values must be a Unix timestamp in seconds.

  • String: EventTime feature values must be an ISO-8601 string in the format. The following formats are supported yyyy-MM-dd'T'HH:mm:ssZ and yyyy-MM-dd'T'HH:mm:ss.SSSZ where yyyy, MM, and dd represent the year, month, and day respectively and HH, mm, ss, and if applicable, SSS represent the hour, month, second and milliseconds respsectively. 'T' and Z are constants.

FeatureDefinitions
Required: Yes
Type: Array of FeatureDefinition structures

A list of Feature names and types. Name and Type is compulsory per Feature.

Valid feature FeatureTypes are Integral, Fractional and String.

FeatureNames cannot be any of the following: is_deleted, write_time, api_invocation_time

You can create up to 2,500 FeatureDefinitions per FeatureGroup.

FeatureGroupName
Required: Yes
Type: string

The name of the FeatureGroup. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.

The name:

  • Must start with an alphanumeric character.

  • Can only include alphanumeric characters, underscores, and hyphens. Spaces are not allowed.

OfflineStoreConfig
Type: OfflineStoreConfig structure

Use this to configure an OfflineFeatureStore. This parameter allows you to specify:

  • The Amazon Simple Storage Service (Amazon S3) location of an OfflineStore.

  • A configuration for an Amazon Web Services Glue or Amazon Web Services Hive data catalog.

  • An KMS encryption key to encrypt the Amazon S3 location used for OfflineStore. If KMS encryption key is not specified, by default we encrypt all data at rest using Amazon Web Services KMS key. By defining your bucket-level key for SSE, you can reduce Amazon Web Services KMS requests costs by up to 99 percent.

  • Format for the offline store table. Supported formats are Glue (Default) and Apache Iceberg.

To learn more about this parameter, see OfflineStoreConfig.

OnlineStoreConfig
Type: OnlineStoreConfig structure

You can turn the OnlineStore on or off by specifying True for the EnableOnlineStore flag in OnlineStoreConfig.

You can also include an Amazon Web Services KMS key ID (KMSKeyId) for at-rest encryption of the OnlineStore.

The default value is False.

RecordIdentifierFeatureName
Required: Yes
Type: string

The name of the Feature whose value uniquely identifies a Record defined in the FeatureStore. Only the latest record per identifier value will be stored in the OnlineStore. RecordIdentifierFeatureName must be one of feature definitions' names.

You use the RecordIdentifierFeatureName to access data in a FeatureStore.

This name:

  • Must start with an alphanumeric character.

  • Can only contains alphanumeric characters, hyphens, underscores. Spaces are not allowed.

RoleArn
Type: string

The Amazon Resource Name (ARN) of the IAM execution role used to persist data into the OfflineStore if an OfflineStoreConfig is provided.

Tags
Type: Array of Tag structures

Tags used to identify Features in each FeatureGroup.

ThroughputConfig
Type: ThroughputConfig structure

Used to set feature group throughput configuration. There are two modes: ON_DEMAND and PROVISIONED. With on-demand mode, you are charged for data reads and writes that your application performs on your feature group. You do not need to specify read and write throughput because Feature Store accommodates your workloads as they ramp up and down. You can switch a feature group to on-demand only once in a 24 hour period. With provisioned throughput mode, you specify the read and write capacity per second that you expect your application to require, and you are billed based on those limits. Exceeding provisioned throughput will result in your requests being throttled.

Note: PROVISIONED throughput mode is supported only for feature groups that are offline-only, or use the Standard tier online store.

Result Syntax

[
    'FeatureGroupArn' => '<string>',
]

Result Details

Members
FeatureGroupArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the FeatureGroup. This is a unique identifier for the feature group.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateFlowDefinition

$result = $client->createFlowDefinition([/* ... */]);
$promise = $client->createFlowDefinitionAsync([/* ... */]);

Creates a flow definition.

Parameter Syntax

$result = $client->createFlowDefinition([
    'FlowDefinitionName' => '<string>', // REQUIRED
    'HumanLoopActivationConfig' => [
        'HumanLoopActivationConditionsConfig' => [ // REQUIRED
            'HumanLoopActivationConditions' => '<string>', // REQUIRED
        ],
    ],
    'HumanLoopConfig' => [
        'HumanTaskUiArn' => '<string>', // REQUIRED
        'PublicWorkforceTaskPrice' => [
            'AmountInUsd' => [
                'Cents' => <integer>,
                'Dollars' => <integer>,
                'TenthFractionsOfACent' => <integer>,
            ],
        ],
        'TaskAvailabilityLifetimeInSeconds' => <integer>,
        'TaskCount' => <integer>, // REQUIRED
        'TaskDescription' => '<string>', // REQUIRED
        'TaskKeywords' => ['<string>', ...],
        'TaskTimeLimitInSeconds' => <integer>,
        'TaskTitle' => '<string>', // REQUIRED
        'WorkteamArn' => '<string>', // REQUIRED
    ],
    'HumanLoopRequestSource' => [
        'AwsManagedHumanLoopRequestSource' => 'AWS/Rekognition/DetectModerationLabels/Image/V3|AWS/Textract/AnalyzeDocument/Forms/V1', // REQUIRED
    ],
    'OutputConfig' => [ // REQUIRED
        'KmsKeyId' => '<string>',
        'S3OutputPath' => '<string>', // REQUIRED
    ],
    'RoleArn' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
FlowDefinitionName
Required: Yes
Type: string

The name of your flow definition.

HumanLoopActivationConfig
Type: HumanLoopActivationConfig structure

An object containing information about the events that trigger a human workflow.

HumanLoopConfig
Type: HumanLoopConfig structure

An object containing information about the tasks the human reviewers will perform.

HumanLoopRequestSource
Type: HumanLoopRequestSource structure

Container for configuring the source of human task requests. Use to specify if Amazon Rekognition or Amazon Textract is used as an integration source.

OutputConfig
Required: Yes
Type: FlowDefinitionOutputConfig structure

An object containing information about where the human review results will be uploaded.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the role needed to call other services on your behalf. For example, arn:aws:iam::1234567890:role/service-role/AmazonSageMaker-ExecutionRole-20180111T151298.

Tags
Type: Array of Tag structures

An array of key-value pairs that contain metadata to help you categorize and organize a flow definition. Each tag consists of a key and a value, both of which you define.

Result Syntax

[
    'FlowDefinitionArn' => '<string>',
]

Result Details

Members
FlowDefinitionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the flow definition you create.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceInUse:

Resource being accessed is in use.

CreateHub

$result = $client->createHub([/* ... */]);
$promise = $client->createHubAsync([/* ... */]);

Create a hub.

Parameter Syntax

$result = $client->createHub([
    'HubDescription' => '<string>', // REQUIRED
    'HubDisplayName' => '<string>',
    'HubName' => '<string>', // REQUIRED
    'HubSearchKeywords' => ['<string>', ...],
    'S3StorageConfig' => [
        'S3OutputPath' => '<string>',
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
HubDescription
Required: Yes
Type: string

A description of the hub.

HubDisplayName
Type: string

The display name of the hub.

HubName
Required: Yes
Type: string

The name of the hub to create.

HubSearchKeywords
Type: Array of strings

The searchable keywords for the hub.

S3StorageConfig
Type: HubS3StorageConfig structure

The Amazon S3 storage configuration for the hub.

Tags
Type: Array of Tag structures

Any tags to associate with the hub.

Result Syntax

[
    'HubArn' => '<string>',
]

Result Details

Members
HubArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the hub.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateHubContentReference

$result = $client->createHubContentReference([/* ... */]);
$promise = $client->createHubContentReferenceAsync([/* ... */]);

Create a hub content reference in order to add a model in the JumpStart public hub to a private hub.

Parameter Syntax

$result = $client->createHubContentReference([
    'HubContentName' => '<string>',
    'HubName' => '<string>', // REQUIRED
    'MinVersion' => '<string>',
    'SageMakerPublicHubContentArn' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
HubContentName
Type: string

The name of the hub content to reference.

HubName
Required: Yes
Type: string

The name of the hub to add the hub content reference to.

MinVersion
Type: string

The minimum version of the hub content to reference.

SageMakerPublicHubContentArn
Required: Yes
Type: string

The ARN of the public hub content to reference.

Tags
Type: Array of Tag structures

Any tags associated with the hub content to reference.

Result Syntax

[
    'HubArn' => '<string>',
    'HubContentArn' => '<string>',
]

Result Details

Members
HubArn
Required: Yes
Type: string

The ARN of the hub that the hub content reference was added to.

HubContentArn
Required: Yes
Type: string

The ARN of the hub content.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateHumanTaskUi

$result = $client->createHumanTaskUi([/* ... */]);
$promise = $client->createHumanTaskUiAsync([/* ... */]);

Defines the settings you will use for the human review workflow user interface. Reviewers will see a three-panel interface with an instruction area, the item to review, and an input area.

Parameter Syntax

$result = $client->createHumanTaskUi([
    'HumanTaskUiName' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'UiTemplate' => [ // REQUIRED
        'Content' => '<string>', // REQUIRED
    ],
]);

Parameter Details

Members
HumanTaskUiName
Required: Yes
Type: string

The name of the user interface you are creating.

Tags
Type: Array of Tag structures

An array of key-value pairs that contain metadata to help you categorize and organize a human review workflow user interface. Each tag consists of a key and a value, both of which you define.

UiTemplate
Required: Yes
Type: UiTemplate structure

The Liquid template for the worker user interface.

Result Syntax

[
    'HumanTaskUiArn' => '<string>',
]

Result Details

Members
HumanTaskUiArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the human review workflow user interface you create.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceInUse:

Resource being accessed is in use.

CreateHyperParameterTuningJob

$result = $client->createHyperParameterTuningJob([/* ... */]);
$promise = $client->createHyperParameterTuningJobAsync([/* ... */]);

Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.

A hyperparameter tuning job automatically creates Amazon SageMaker experiments, trials, and trial components for each training job that it runs. You can view these entities in Amazon SageMaker Studio. For more information, see View Experiments, Trials, and Trial Components.

Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.

Parameter Syntax

$result = $client->createHyperParameterTuningJob([
    'Autotune' => [
        'Mode' => 'Enabled', // REQUIRED
    ],
    'HyperParameterTuningJobConfig' => [ // REQUIRED
        'HyperParameterTuningJobObjective' => [
            'MetricName' => '<string>', // REQUIRED
            'Type' => 'Maximize|Minimize', // REQUIRED
        ],
        'ParameterRanges' => [
            'AutoParameters' => [
                [
                    'Name' => '<string>', // REQUIRED
                    'ValueHint' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'CategoricalParameterRanges' => [
                [
                    'Name' => '<string>', // REQUIRED
                    'Values' => ['<string>', ...], // REQUIRED
                ],
                // ...
            ],
            'ContinuousParameterRanges' => [
                [
                    'MaxValue' => '<string>', // REQUIRED
                    'MinValue' => '<string>', // REQUIRED
                    'Name' => '<string>', // REQUIRED
                    'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                ],
                // ...
            ],
            'IntegerParameterRanges' => [
                [
                    'MaxValue' => '<string>', // REQUIRED
                    'MinValue' => '<string>', // REQUIRED
                    'Name' => '<string>', // REQUIRED
                    'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                ],
                // ...
            ],
        ],
        'RandomSeed' => <integer>,
        'ResourceLimits' => [ // REQUIRED
            'MaxNumberOfTrainingJobs' => <integer>,
            'MaxParallelTrainingJobs' => <integer>, // REQUIRED
            'MaxRuntimeInSeconds' => <integer>,
        ],
        'Strategy' => 'Bayesian|Random|Hyperband|Grid', // REQUIRED
        'StrategyConfig' => [
            'HyperbandStrategyConfig' => [
                'MaxResource' => <integer>,
                'MinResource' => <integer>,
            ],
        ],
        'TrainingJobEarlyStoppingType' => 'Off|Auto',
        'TuningJobCompletionCriteria' => [
            'BestObjectiveNotImproving' => [
                'MaxNumberOfTrainingJobsNotImproving' => <integer>,
            ],
            'ConvergenceDetected' => [
                'CompleteOnConvergence' => 'Disabled|Enabled',
            ],
            'TargetObjectiveMetricValue' => <float>,
        ],
    ],
    'HyperParameterTuningJobName' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'TrainingJobDefinition' => [
        'AlgorithmSpecification' => [ // REQUIRED
            'AlgorithmName' => '<string>',
            'MetricDefinitions' => [
                [
                    'Name' => '<string>', // REQUIRED
                    'Regex' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'TrainingImage' => '<string>',
            'TrainingInputMode' => 'Pipe|File|FastFile', // REQUIRED
        ],
        'CheckpointConfig' => [
            'LocalPath' => '<string>',
            'S3Uri' => '<string>', // REQUIRED
        ],
        'DefinitionName' => '<string>',
        'EnableInterContainerTrafficEncryption' => true || false,
        'EnableManagedSpotTraining' => true || false,
        'EnableNetworkIsolation' => true || false,
        'Environment' => ['<string>', ...],
        'HyperParameterRanges' => [
            'AutoParameters' => [
                [
                    'Name' => '<string>', // REQUIRED
                    'ValueHint' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'CategoricalParameterRanges' => [
                [
                    'Name' => '<string>', // REQUIRED
                    'Values' => ['<string>', ...], // REQUIRED
                ],
                // ...
            ],
            'ContinuousParameterRanges' => [
                [
                    'MaxValue' => '<string>', // REQUIRED
                    'MinValue' => '<string>', // REQUIRED
                    'Name' => '<string>', // REQUIRED
                    'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                ],
                // ...
            ],
            'IntegerParameterRanges' => [
                [
                    'MaxValue' => '<string>', // REQUIRED
                    'MinValue' => '<string>', // REQUIRED
                    'Name' => '<string>', // REQUIRED
                    'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                ],
                // ...
            ],
        ],
        'HyperParameterTuningResourceConfig' => [
            'AllocationStrategy' => 'Prioritized',
            'InstanceConfigs' => [
                [
                    'InstanceCount' => <integer>, // REQUIRED
                    'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge', // REQUIRED
                    'VolumeSizeInGB' => <integer>, // REQUIRED
                ],
                // ...
            ],
            'InstanceCount' => <integer>,
            'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
            'VolumeKmsKeyId' => '<string>',
            'VolumeSizeInGB' => <integer>,
        ],
        'InputDataConfig' => [
            [
                'ChannelName' => '<string>', // REQUIRED
                'CompressionType' => 'None|Gzip',
                'ContentType' => '<string>',
                'DataSource' => [ // REQUIRED
                    'FileSystemDataSource' => [
                        'DirectoryPath' => '<string>', // REQUIRED
                        'FileSystemAccessMode' => 'rw|ro', // REQUIRED
                        'FileSystemId' => '<string>', // REQUIRED
                        'FileSystemType' => 'EFS|FSxLustre', // REQUIRED
                    ],
                    'S3DataSource' => [
                        'AttributeNames' => ['<string>', ...],
                        'InstanceGroupNames' => ['<string>', ...],
                        'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                        'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile', // REQUIRED
                        'S3Uri' => '<string>', // REQUIRED
                    ],
                ],
                'InputMode' => 'Pipe|File|FastFile',
                'RecordWrapperType' => 'None|RecordIO',
                'ShuffleConfig' => [
                    'Seed' => <integer>, // REQUIRED
                ],
            ],
            // ...
        ],
        'OutputDataConfig' => [ // REQUIRED
            'CompressionType' => 'GZIP|NONE',
            'KmsKeyId' => '<string>',
            'S3OutputPath' => '<string>', // REQUIRED
        ],
        'ResourceConfig' => [
            'InstanceCount' => <integer>,
            'InstanceGroups' => [
                [
                    'InstanceCount' => <integer>, // REQUIRED
                    'InstanceGroupName' => '<string>', // REQUIRED
                    'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge', // REQUIRED
                ],
                // ...
            ],
            'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
            'KeepAlivePeriodInSeconds' => <integer>,
            'TrainingPlanArn' => '<string>',
            'VolumeKmsKeyId' => '<string>',
            'VolumeSizeInGB' => <integer>, // REQUIRED
        ],
        'RetryStrategy' => [
            'MaximumRetryAttempts' => <integer>, // REQUIRED
        ],
        'RoleArn' => '<string>', // REQUIRED
        'StaticHyperParameters' => ['<string>', ...],
        'StoppingCondition' => [ // REQUIRED
            'MaxPendingTimeInSeconds' => <integer>,
            'MaxRuntimeInSeconds' => <integer>,
            'MaxWaitTimeInSeconds' => <integer>,
        ],
        'TuningObjective' => [
            'MetricName' => '<string>', // REQUIRED
            'Type' => 'Maximize|Minimize', // REQUIRED
        ],
        'VpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...], // REQUIRED
            'Subnets' => ['<string>', ...], // REQUIRED
        ],
    ],
    'TrainingJobDefinitions' => [
        [
            'AlgorithmSpecification' => [ // REQUIRED
                'AlgorithmName' => '<string>',
                'MetricDefinitions' => [
                    [
                        'Name' => '<string>', // REQUIRED
                        'Regex' => '<string>', // REQUIRED
                    ],
                    // ...
                ],
                'TrainingImage' => '<string>',
                'TrainingInputMode' => 'Pipe|File|FastFile', // REQUIRED
            ],
            'CheckpointConfig' => [
                'LocalPath' => '<string>',
                'S3Uri' => '<string>', // REQUIRED
            ],
            'DefinitionName' => '<string>',
            'EnableInterContainerTrafficEncryption' => true || false,
            'EnableManagedSpotTraining' => true || false,
            'EnableNetworkIsolation' => true || false,
            'Environment' => ['<string>', ...],
            'HyperParameterRanges' => [
                'AutoParameters' => [
                    [
                        'Name' => '<string>', // REQUIRED
                        'ValueHint' => '<string>', // REQUIRED
                    ],
                    // ...
                ],
                'CategoricalParameterRanges' => [
                    [
                        'Name' => '<string>', // REQUIRED
                        'Values' => ['<string>', ...], // REQUIRED
                    ],
                    // ...
                ],
                'ContinuousParameterRanges' => [
                    [
                        'MaxValue' => '<string>', // REQUIRED
                        'MinValue' => '<string>', // REQUIRED
                        'Name' => '<string>', // REQUIRED
                        'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                    ],
                    // ...
                ],
                'IntegerParameterRanges' => [
                    [
                        'MaxValue' => '<string>', // REQUIRED
                        'MinValue' => '<string>', // REQUIRED
                        'Name' => '<string>', // REQUIRED
                        'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                    ],
                    // ...
                ],
            ],
            'HyperParameterTuningResourceConfig' => [
                'AllocationStrategy' => 'Prioritized',
                'InstanceConfigs' => [
                    [
                        'InstanceCount' => <integer>, // REQUIRED
                        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge', // REQUIRED
                        'VolumeSizeInGB' => <integer>, // REQUIRED
                    ],
                    // ...
                ],
                'InstanceCount' => <integer>,
                'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                'VolumeKmsKeyId' => '<string>',
                'VolumeSizeInGB' => <integer>,
            ],
            'InputDataConfig' => [
                [
                    'ChannelName' => '<string>', // REQUIRED
                    'CompressionType' => 'None|Gzip',
                    'ContentType' => '<string>',
                    'DataSource' => [ // REQUIRED
                        'FileSystemDataSource' => [
                            'DirectoryPath' => '<string>', // REQUIRED
                            'FileSystemAccessMode' => 'rw|ro', // REQUIRED
                            'FileSystemId' => '<string>', // REQUIRED
                            'FileSystemType' => 'EFS|FSxLustre', // REQUIRED
                        ],
                        'S3DataSource' => [
                            'AttributeNames' => ['<string>', ...],
                            'InstanceGroupNames' => ['<string>', ...],
                            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                            'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile', // REQUIRED
                            'S3Uri' => '<string>', // REQUIRED
                        ],
                    ],
                    'InputMode' => 'Pipe|File|FastFile',
                    'RecordWrapperType' => 'None|RecordIO',
                    'ShuffleConfig' => [
                        'Seed' => <integer>, // REQUIRED
                    ],
                ],
                // ...
            ],
            'OutputDataConfig' => [ // REQUIRED
                'CompressionType' => 'GZIP|NONE',
                'KmsKeyId' => '<string>',
                'S3OutputPath' => '<string>', // REQUIRED
            ],
            'ResourceConfig' => [
                'InstanceCount' => <integer>,
                'InstanceGroups' => [
                    [
                        'InstanceCount' => <integer>, // REQUIRED
                        'InstanceGroupName' => '<string>', // REQUIRED
                        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge', // REQUIRED
                    ],
                    // ...
                ],
                'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                'KeepAlivePeriodInSeconds' => <integer>,
                'TrainingPlanArn' => '<string>',
                'VolumeKmsKeyId' => '<string>',
                'VolumeSizeInGB' => <integer>, // REQUIRED
            ],
            'RetryStrategy' => [
                'MaximumRetryAttempts' => <integer>, // REQUIRED
            ],
            'RoleArn' => '<string>', // REQUIRED
            'StaticHyperParameters' => ['<string>', ...],
            'StoppingCondition' => [ // REQUIRED
                'MaxPendingTimeInSeconds' => <integer>,
                'MaxRuntimeInSeconds' => <integer>,
                'MaxWaitTimeInSeconds' => <integer>,
            ],
            'TuningObjective' => [
                'MetricName' => '<string>', // REQUIRED
                'Type' => 'Maximize|Minimize', // REQUIRED
            ],
            'VpcConfig' => [
                'SecurityGroupIds' => ['<string>', ...], // REQUIRED
                'Subnets' => ['<string>', ...], // REQUIRED
            ],
        ],
        // ...
    ],
    'WarmStartConfig' => [
        'ParentHyperParameterTuningJobs' => [ // REQUIRED
            [
                'HyperParameterTuningJobName' => '<string>',
            ],
            // ...
        ],
        'WarmStartType' => 'IdenticalDataAndAlgorithm|TransferLearning', // REQUIRED
    ],
]);

Parameter Details

Members
Autotune
Type: Autotune structure

Configures SageMaker Automatic model tuning (AMT) to automatically find optimal parameters for the following fields:

  • ParameterRanges: The names and ranges of parameters that a hyperparameter tuning job can optimize.

  • ResourceLimits: The maximum resources that can be used for a training job. These resources include the maximum number of training jobs, the maximum runtime of a tuning job, and the maximum number of training jobs to run at the same time.

  • TrainingJobEarlyStoppingType: A flag that specifies whether or not to use early stopping for training jobs launched by a hyperparameter tuning job.

  • RetryStrategy: The number of times to retry a training job.

  • Strategy: Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training jobs that it launches.

  • ConvergenceDetected: A flag to indicate that Automatic model tuning (AMT) has detected model convergence.

HyperParameterTuningJobConfig
Required: Yes
Type: HyperParameterTuningJobConfig structure

The HyperParameterTuningJobConfig object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see How Hyperparameter Tuning Works.

HyperParameterTuningJobName
Required: Yes
Type: string

The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same Amazon Web Services account and Amazon Web Services Region. The name must have 1 to 32 characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.

Tags
Type: Array of Tag structures

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.

TrainingJobDefinition

The HyperParameterTrainingJobDefinition object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.

TrainingJobDefinitions
Type: Array of HyperParameterTrainingJobDefinition structures

A list of the HyperParameterTrainingJobDefinition objects launched for this tuning job.

WarmStartConfig

Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.

All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify IDENTICAL_DATA_AND_ALGORITHM as the WarmStartType value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.

All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.

Result Syntax

[
    'HyperParameterTuningJobArn' => '<string>',
]

Result Details

Members
HyperParameterTuningJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the tuning job. SageMaker assigns an ARN to a hyperparameter tuning job when you create it.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateImage

$result = $client->createImage([/* ... */]);
$promise = $client->createImageAsync([/* ... */]);

Creates a custom SageMaker AI image. A SageMaker AI image is a set of image versions. Each image version represents a container image stored in Amazon ECR. For more information, see Bring your own SageMaker AI image.

Parameter Syntax

$result = $client->createImage([
    'Description' => '<string>',
    'DisplayName' => '<string>',
    'ImageName' => '<string>', // REQUIRED
    'RoleArn' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
Description
Type: string

The description of the image.

DisplayName
Type: string

The display name of the image. If not provided, ImageName is displayed.

ImageName
Required: Yes
Type: string

The name of the image. Must be unique to your account.

RoleArn
Required: Yes
Type: string

The ARN of an IAM role that enables Amazon SageMaker AI to perform tasks on your behalf.

Tags
Type: Array of Tag structures

A list of tags to apply to the image.

Result Syntax

[
    'ImageArn' => '<string>',
]

Result Details

Members
ImageArn
Type: string

The ARN of the image.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateImageVersion

$result = $client->createImageVersion([/* ... */]);
$promise = $client->createImageVersionAsync([/* ... */]);

Creates a version of the SageMaker AI image specified by ImageName. The version represents the Amazon ECR container image specified by BaseImage.

Parameter Syntax

$result = $client->createImageVersion([
    'Aliases' => ['<string>', ...],
    'BaseImage' => '<string>', // REQUIRED
    'ClientToken' => '<string>', // REQUIRED
    'Horovod' => true || false,
    'ImageName' => '<string>', // REQUIRED
    'JobType' => 'TRAINING|INFERENCE|NOTEBOOK_KERNEL',
    'MLFramework' => '<string>',
    'Processor' => 'CPU|GPU',
    'ProgrammingLang' => '<string>',
    'ReleaseNotes' => '<string>',
    'VendorGuidance' => 'NOT_PROVIDED|STABLE|TO_BE_ARCHIVED|ARCHIVED',
]);

Parameter Details

Members
Aliases
Type: Array of strings

A list of aliases created with the image version.

BaseImage
Required: Yes
Type: string

The registry path of the container image to use as the starting point for this version. The path is an Amazon ECR URI in the following format:

<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or [@digest]>

ClientToken
Required: Yes
Type: string

A unique ID. If not specified, the Amazon Web Services CLI and Amazon Web Services SDKs, such as the SDK for Python (Boto3), add a unique value to the call.

Horovod
Type: boolean

Indicates Horovod compatibility.

ImageName
Required: Yes
Type: string

The ImageName of the Image to create a version of.

JobType
Type: string

Indicates SageMaker AI job type compatibility.

  • TRAINING: The image version is compatible with SageMaker AI training jobs.

  • INFERENCE: The image version is compatible with SageMaker AI inference jobs.

  • NOTEBOOK_KERNEL: The image version is compatible with SageMaker AI notebook kernels.

MLFramework
Type: string

The machine learning framework vended in the image version.

Processor
Type: string

Indicates CPU or GPU compatibility.

  • CPU: The image version is compatible with CPU.

  • GPU: The image version is compatible with GPU.

ProgrammingLang
Type: string

The supported programming language and its version.

ReleaseNotes
Type: string

The maintainer description of the image version.

VendorGuidance
Type: string

The stability of the image version, specified by the maintainer.

  • NOT_PROVIDED: The maintainers did not provide a status for image version stability.

  • STABLE: The image version is stable.

  • TO_BE_ARCHIVED: The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months.

  • ARCHIVED: The image version is archived. Archived image versions are not searchable and are no longer actively supported.

Result Syntax

[
    'ImageVersionArn' => '<string>',
]

Result Details

Members
ImageVersionArn
Type: string

The ARN of the image version.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceNotFound:

Resource being access is not found.

CreateInferenceComponent

$result = $client->createInferenceComponent([/* ... */]);
$promise = $client->createInferenceComponentAsync([/* ... */]);

Creates an inference component, which is a SageMaker AI hosting object that you can use to deploy a model to an endpoint. In the inference component settings, you specify the model, the endpoint, and how the model utilizes the resources that the endpoint hosts. You can optimize resource utilization by tailoring how the required CPU cores, accelerators, and memory are allocated. You can deploy multiple inference components to an endpoint, where each inference component contains one model and the resource utilization needs for that individual model. After you deploy an inference component, you can directly invoke the associated model when you use the InvokeEndpoint API action.

Parameter Syntax

$result = $client->createInferenceComponent([
    'EndpointName' => '<string>', // REQUIRED
    'InferenceComponentName' => '<string>', // REQUIRED
    'RuntimeConfig' => [
        'CopyCount' => <integer>, // REQUIRED
    ],
    'Specification' => [ // REQUIRED
        'BaseInferenceComponentName' => '<string>',
        'ComputeResourceRequirements' => [
            'MaxMemoryRequiredInMb' => <integer>,
            'MinMemoryRequiredInMb' => <integer>, // REQUIRED
            'NumberOfAcceleratorDevicesRequired' => <float>,
            'NumberOfCpuCoresRequired' => <float>,
        ],
        'Container' => [
            'ArtifactUrl' => '<string>',
            'Environment' => ['<string>', ...],
            'Image' => '<string>',
        ],
        'ModelName' => '<string>',
        'StartupParameters' => [
            'ContainerStartupHealthCheckTimeoutInSeconds' => <integer>,
            'ModelDataDownloadTimeoutInSeconds' => <integer>,
        ],
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'VariantName' => '<string>',
]);

Parameter Details

Members
EndpointName
Required: Yes
Type: string

The name of an existing endpoint where you host the inference component.

InferenceComponentName
Required: Yes
Type: string

A unique name to assign to the inference component.

RuntimeConfig

Runtime settings for a model that is deployed with an inference component.

Specification
Required: Yes
Type: InferenceComponentSpecification structure

Details about the resources to deploy with this inference component, including the model, container, and compute resources.

Tags
Type: Array of Tag structures

A list of key-value pairs associated with the model. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference.

VariantName
Type: string

The name of an existing production variant where you host the inference component.

Result Syntax

[
    'InferenceComponentArn' => '<string>',
]

Result Details

Members
InferenceComponentArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the inference component.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateInferenceExperiment

$result = $client->createInferenceExperiment([/* ... */]);
$promise = $client->createInferenceExperimentAsync([/* ... */]);

Creates an inference experiment using the configurations specified in the request.

Use this API to setup and schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For more information about inference experiments, see Shadow tests.

Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based on your specified configuration.

While the experiment is in progress or after it has concluded, you can view metrics that compare your model variants. For more information, see View, monitor, and edit shadow tests.

Parameter Syntax

$result = $client->createInferenceExperiment([
    'DataStorageConfig' => [
        'ContentType' => [
            'CsvContentTypes' => ['<string>', ...],
            'JsonContentTypes' => ['<string>', ...],
        ],
        'Destination' => '<string>', // REQUIRED
        'KmsKey' => '<string>',
    ],
    'Description' => '<string>',
    'EndpointName' => '<string>', // REQUIRED
    'KmsKey' => '<string>',
    'ModelVariants' => [ // REQUIRED
        [
            'InfrastructureConfig' => [ // REQUIRED
                'InfrastructureType' => 'RealTimeInference', // REQUIRED
                'RealTimeInferenceConfig' => [ // REQUIRED
                    'InstanceCount' => <integer>, // REQUIRED
                    'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge', // REQUIRED
                ],
            ],
            'ModelName' => '<string>', // REQUIRED
            'VariantName' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'Name' => '<string>', // REQUIRED
    'RoleArn' => '<string>', // REQUIRED
    'Schedule' => [
        'EndTime' => <integer || string || DateTime>,
        'StartTime' => <integer || string || DateTime>,
    ],
    'ShadowModeConfig' => [ // REQUIRED
        'ShadowModelVariants' => [ // REQUIRED
            [
                'SamplingPercentage' => <integer>, // REQUIRED
                'ShadowModelVariantName' => '<string>', // REQUIRED
            ],
            // ...
        ],
        'SourceModelVariantName' => '<string>', // REQUIRED
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'Type' => 'ShadowMode', // REQUIRED
]);

Parameter Details

Members
DataStorageConfig

The Amazon S3 location and configuration for storing inference request and response data.

This is an optional parameter that you can use for data capture. For more information, see Capture data.

Description
Type: string

A description for the inference experiment.

EndpointName
Required: Yes
Type: string

The name of the Amazon SageMaker endpoint on which you want to run the inference experiment.

KmsKey
Type: string

The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. The KmsKey can be any of the following formats:

  • KMS key ID

    "1234abcd-12ab-34cd-56ef-1234567890ab"

  • Amazon Resource Name (ARN) of a KMS key

    "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

  • KMS key Alias

    "alias/ExampleAlias"

  • Amazon Resource Name (ARN) of a KMS key Alias

    "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

If you use a KMS key ID or an alias of your KMS key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS managed keys for OutputDataConfig. If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see KMS managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.

ModelVariants
Required: Yes
Type: Array of ModelVariantConfig structures

An array of ModelVariantConfig objects. There is one for each variant in the inference experiment. Each ModelVariantConfig object in the array describes the infrastructure configuration for the corresponding variant.

Name
Required: Yes
Type: string

The name for the inference experiment.

RoleArn
Required: Yes
Type: string

The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.

Schedule
Type: InferenceExperimentSchedule structure

The duration for which you want the inference experiment to run. If you don't specify this field, the experiment automatically starts immediately upon creation and concludes after 7 days.

ShadowModeConfig
Required: Yes
Type: ShadowModeConfig structure

The configuration of ShadowMode inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates.

Tags
Type: Array of Tag structures

Array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging your Amazon Web Services Resources.

Type
Required: Yes
Type: string

The type of the inference experiment that you want to run. The following types of experiments are possible:

  • ShadowMode: You can use this type to validate a shadow variant. For more information, see Shadow tests.

Result Syntax

[
    'InferenceExperimentArn' => '<string>',
]

Result Details

Members
InferenceExperimentArn
Required: Yes
Type: string

The ARN for your inference experiment.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateInferenceRecommendationsJob

$result = $client->createInferenceRecommendationsJob([/* ... */]);
$promise = $client->createInferenceRecommendationsJobAsync([/* ... */]);

Starts a recommendation job. You can create either an instance recommendation or load test job.

Parameter Syntax

$result = $client->createInferenceRecommendationsJob([
    'InputConfig' => [ // REQUIRED
        'ContainerConfig' => [
            'DataInputConfig' => '<string>',
            'Domain' => '<string>',
            'Framework' => '<string>',
            'FrameworkVersion' => '<string>',
            'NearestModelName' => '<string>',
            'PayloadConfig' => [
                'SamplePayloadUrl' => '<string>',
                'SupportedContentTypes' => ['<string>', ...],
            ],
            'SupportedEndpointType' => 'RealTime|Serverless',
            'SupportedInstanceTypes' => ['<string>', ...],
            'SupportedResponseMIMETypes' => ['<string>', ...],
            'Task' => '<string>',
        ],
        'EndpointConfigurations' => [
            [
                'EnvironmentParameterRanges' => [
                    'CategoricalParameterRanges' => [
                        [
                            'Name' => '<string>', // REQUIRED
                            'Value' => ['<string>', ...], // REQUIRED
                        ],
                        // ...
                    ],
                ],
                'InferenceSpecificationName' => '<string>',
                'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.12xlarge|ml.m5d.24xlarge|ml.c4.large|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.large|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.12xlarge|ml.r5.24xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.12xlarge|ml.r5d.24xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.dl1.24xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p4d.24xlarge|ml.c7g.large|ml.c7g.xlarge|ml.c7g.2xlarge|ml.c7g.4xlarge|ml.c7g.8xlarge|ml.c7g.12xlarge|ml.c7g.16xlarge|ml.m6g.large|ml.m6g.xlarge|ml.m6g.2xlarge|ml.m6g.4xlarge|ml.m6g.8xlarge|ml.m6g.12xlarge|ml.m6g.16xlarge|ml.m6gd.large|ml.m6gd.xlarge|ml.m6gd.2xlarge|ml.m6gd.4xlarge|ml.m6gd.8xlarge|ml.m6gd.12xlarge|ml.m6gd.16xlarge|ml.c6g.large|ml.c6g.xlarge|ml.c6g.2xlarge|ml.c6g.4xlarge|ml.c6g.8xlarge|ml.c6g.12xlarge|ml.c6g.16xlarge|ml.c6gd.large|ml.c6gd.xlarge|ml.c6gd.2xlarge|ml.c6gd.4xlarge|ml.c6gd.8xlarge|ml.c6gd.12xlarge|ml.c6gd.16xlarge|ml.c6gn.large|ml.c6gn.xlarge|ml.c6gn.2xlarge|ml.c6gn.4xlarge|ml.c6gn.8xlarge|ml.c6gn.12xlarge|ml.c6gn.16xlarge|ml.r6g.large|ml.r6g.xlarge|ml.r6g.2xlarge|ml.r6g.4xlarge|ml.r6g.8xlarge|ml.r6g.12xlarge|ml.r6g.16xlarge|ml.r6gd.large|ml.r6gd.xlarge|ml.r6gd.2xlarge|ml.r6gd.4xlarge|ml.r6gd.8xlarge|ml.r6gd.12xlarge|ml.r6gd.16xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge',
                'ServerlessConfig' => [
                    'MaxConcurrency' => <integer>, // REQUIRED
                    'MemorySizeInMB' => <integer>, // REQUIRED
                    'ProvisionedConcurrency' => <integer>,
                ],
            ],
            // ...
        ],
        'Endpoints' => [
            [
                'EndpointName' => '<string>',
            ],
            // ...
        ],
        'JobDurationInSeconds' => <integer>,
        'ModelName' => '<string>',
        'ModelPackageVersionArn' => '<string>',
        'ResourceLimit' => [
            'MaxNumberOfTests' => <integer>,
            'MaxParallelOfTests' => <integer>,
        ],
        'TrafficPattern' => [
            'Phases' => [
                [
                    'DurationInSeconds' => <integer>,
                    'InitialNumberOfUsers' => <integer>,
                    'SpawnRate' => <integer>,
                ],
                // ...
            ],
            'Stairs' => [
                'DurationInSeconds' => <integer>,
                'NumberOfSteps' => <integer>,
                'UsersPerStep' => <integer>,
            ],
            'TrafficType' => 'PHASES|STAIRS',
        ],
        'VolumeKmsKeyId' => '<string>',
        'VpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...], // REQUIRED
            'Subnets' => ['<string>', ...], // REQUIRED
        ],
    ],
    'JobDescription' => '<string>',
    'JobName' => '<string>', // REQUIRED
    'JobType' => 'Default|Advanced', // REQUIRED
    'OutputConfig' => [
        'CompiledOutputConfig' => [
            'S3OutputUri' => '<string>',
        ],
        'KmsKeyId' => '<string>',
    ],
    'RoleArn' => '<string>', // REQUIRED
    'StoppingConditions' => [
        'FlatInvocations' => 'Continue|Stop',
        'MaxInvocations' => <integer>,
        'ModelLatencyThresholds' => [
            [
                'Percentile' => '<string>',
                'ValueInMilliseconds' => <integer>,
            ],
            // ...
        ],
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
InputConfig
Required: Yes
Type: RecommendationJobInputConfig structure

Provides information about the versioned model package Amazon Resource Name (ARN), the traffic pattern, and endpoint configurations.

JobDescription
Type: string

Description of the recommendation job.

JobName
Required: Yes
Type: string

A name for the recommendation job. The name must be unique within the Amazon Web Services Region and within your Amazon Web Services account. The job name is passed down to the resources created by the recommendation job. The names of resources (such as the model, endpoint configuration, endpoint, and compilation) that are prefixed with the job name are truncated at 40 characters.

JobType
Required: Yes
Type: string

Defines the type of recommendation job. Specify Default to initiate an instance recommendation and Advanced to initiate a load test. If left unspecified, Amazon SageMaker Inference Recommender will run an instance recommendation (DEFAULT) job.

OutputConfig

Provides information about the output artifacts and the KMS key to use for Amazon S3 server-side encryption.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.

StoppingConditions

A set of conditions for stopping a recommendation job. If any of the conditions are met, the job is automatically stopped.

Tags
Type: Array of Tag structures

The metadata that you apply to Amazon Web Services resources to help you categorize and organize them. Each tag consists of a key and a value, both of which you define. For more information, see Tagging Amazon Web Services Resources in the Amazon Web Services General Reference.

Result Syntax

[
    'JobArn' => '<string>',
]

Result Details

Members
JobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the recommendation job.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateLabelingJob

$result = $client->createLabelingJob([/* ... */]);
$promise = $client->createLabelingJobAsync([/* ... */]);

Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models.

You can select your workforce from one of three providers:

  • A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.

  • One or more vendors that you select from the Amazon Web Services Marketplace. Vendors provide expertise in specific areas.

  • The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.

You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling.

The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data.

The output can be used as the manifest file for another labeling job or as training data for your machine learning models.

You can use this operation to create a static labeling job or a streaming labeling job. A static labeling job stops if all data objects in the input manifest file identified in ManifestS3Uri have been labeled. A streaming labeling job runs perpetually until it is manually stopped, or remains idle for 10 days. You can send new data objects to an active (InProgress) streaming labeling job in real time. To learn how to create a static labeling job, see Create a Labeling Job (API) in the Amazon SageMaker Developer Guide. To learn how to create a streaming labeling job, see Create a Streaming Labeling Job.

Parameter Syntax

$result = $client->createLabelingJob([
    'HumanTaskConfig' => [ // REQUIRED
        'AnnotationConsolidationConfig' => [
            'AnnotationConsolidationLambdaArn' => '<string>', // REQUIRED
        ],
        'MaxConcurrentTaskCount' => <integer>,
        'NumberOfHumanWorkersPerDataObject' => <integer>, // REQUIRED
        'PreHumanTaskLambdaArn' => '<string>',
        'PublicWorkforceTaskPrice' => [
            'AmountInUsd' => [
                'Cents' => <integer>,
                'Dollars' => <integer>,
                'TenthFractionsOfACent' => <integer>,
            ],
        ],
        'TaskAvailabilityLifetimeInSeconds' => <integer>,
        'TaskDescription' => '<string>', // REQUIRED
        'TaskKeywords' => ['<string>', ...],
        'TaskTimeLimitInSeconds' => <integer>, // REQUIRED
        'TaskTitle' => '<string>', // REQUIRED
        'UiConfig' => [ // REQUIRED
            'HumanTaskUiArn' => '<string>',
            'UiTemplateS3Uri' => '<string>',
        ],
        'WorkteamArn' => '<string>', // REQUIRED
    ],
    'InputConfig' => [ // REQUIRED
        'DataAttributes' => [
            'ContentClassifiers' => ['<string>', ...],
        ],
        'DataSource' => [ // REQUIRED
            'S3DataSource' => [
                'ManifestS3Uri' => '<string>', // REQUIRED
            ],
            'SnsDataSource' => [
                'SnsTopicArn' => '<string>', // REQUIRED
            ],
        ],
    ],
    'LabelAttributeName' => '<string>', // REQUIRED
    'LabelCategoryConfigS3Uri' => '<string>',
    'LabelingJobAlgorithmsConfig' => [
        'InitialActiveLearningModelArn' => '<string>',
        'LabelingJobAlgorithmSpecificationArn' => '<string>', // REQUIRED
        'LabelingJobResourceConfig' => [
            'VolumeKmsKeyId' => '<string>',
            'VpcConfig' => [
                'SecurityGroupIds' => ['<string>', ...], // REQUIRED
                'Subnets' => ['<string>', ...], // REQUIRED
            ],
        ],
    ],
    'LabelingJobName' => '<string>', // REQUIRED
    'OutputConfig' => [ // REQUIRED
        'KmsKeyId' => '<string>',
        'S3OutputPath' => '<string>', // REQUIRED
        'SnsTopicArn' => '<string>',
    ],
    'RoleArn' => '<string>', // REQUIRED
    'StoppingConditions' => [
        'MaxHumanLabeledObjectCount' => <integer>,
        'MaxPercentageOfInputDatasetLabeled' => <integer>,
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
HumanTaskConfig
Required: Yes
Type: HumanTaskConfig structure

Configures the labeling task and how it is presented to workers; including, but not limited to price, keywords, and batch size (task count).

InputConfig
Required: Yes
Type: LabelingJobInputConfig structure

Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.

You must specify at least one of the following: S3DataSource or SnsDataSource.

  • Use SnsDataSource to specify an SNS input topic for a streaming labeling job. If you do not specify and SNS input topic ARN, Ground Truth will create a one-time labeling job that stops after all data objects in the input manifest file have been labeled.

  • Use S3DataSource to specify an input manifest file for both streaming and one-time labeling jobs. Adding an S3DataSource is optional if you use SnsDataSource to create a streaming labeling job.

If you use the Amazon Mechanical Turk workforce, your input data should not include confidential information, personal information or protected health information. Use ContentClassifiers to specify that your data is free of personally identifiable information and adult content.

LabelAttributeName
Required: Yes
Type: string

The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The LabelAttributeName must meet the following requirements.

  • The name can't end with "-metadata".

  • If you are using one of the following built-in task types, the attribute name must end with "-ref". If the task type you are using is not listed below, the attribute name must not end with "-ref".

    • Image semantic segmentation (SemanticSegmentation), and adjustment (AdjustmentSemanticSegmentation) and verification (VerificationSemanticSegmentation) labeling jobs for this task type.

    • Video frame object detection (VideoObjectDetection), and adjustment and verification (AdjustmentVideoObjectDetection) labeling jobs for this task type.

    • Video frame object tracking (VideoObjectTracking), and adjustment and verification (AdjustmentVideoObjectTracking) labeling jobs for this task type.

    • 3D point cloud semantic segmentation (3DPointCloudSemanticSegmentation), and adjustment and verification (Adjustment3DPointCloudSemanticSegmentation) labeling jobs for this task type.

    • 3D point cloud object tracking (3DPointCloudObjectTracking), and adjustment and verification (Adjustment3DPointCloudObjectTracking) labeling jobs for this task type.

If you are creating an adjustment or verification labeling job, you must use a different LabelAttributeName than the one used in the original labeling job. The original labeling job is the Ground Truth labeling job that produced the labels that you want verified or adjusted. To learn more about adjustment and verification labeling jobs, see Verify and Adjust Labels.

LabelCategoryConfigS3Uri
Type: string

The S3 URI of the file, referred to as a label category configuration file, that defines the categories used to label the data objects.

For 3D point cloud and video frame task types, you can add label category attributes and frame attributes to your label category configuration file. To learn how, see Create a Labeling Category Configuration File for 3D Point Cloud Labeling Jobs.

For named entity recognition jobs, in addition to "labels", you must provide worker instructions in the label category configuration file using the "instructions" parameter: "instructions": {"shortInstruction":"<h1>Add header</h1><p>Add Instructions</p>", "fullInstruction":"<p>Add additional instructions.</p>"}. For details and an example, see Create a Named Entity Recognition Labeling Job (API) .

For all other built-in task types and custom tasks, your label category configuration file must be a JSON file in the following format. Identify the labels you want to use by replacing label_1, label_2,...,label_n with your label categories.

{

"document-version": "2018-11-28",

"labels": [{"label": "label_1"},{"label": "label_2"},...{"label": "label_n"}]

}

Note the following about the label category configuration file:

  • For image classification and text classification (single and multi-label) you must specify at least two label categories. For all other task types, the minimum number of label categories required is one.

  • Each label category must be unique, you cannot specify duplicate label categories.

  • If you create a 3D point cloud or video frame adjustment or verification labeling job, you must include auditLabelAttributeName in the label category configuration. Use this parameter to enter the LabelAttributeName of the labeling job you want to adjust or verify annotations of.

LabelingJobAlgorithmsConfig
Type: LabelingJobAlgorithmsConfig structure

Configures the information required to perform automated data labeling.

LabelingJobName
Required: Yes
Type: string

The name of the labeling job. This name is used to identify the job in a list of labeling jobs. Labeling job names must be unique within an Amazon Web Services account and region. LabelingJobName is not case sensitive. For example, Example-job and example-job are considered the same labeling job name by Ground Truth.

OutputConfig
Required: Yes
Type: LabelingJobOutputConfig structure

The location of the output data and the Amazon Web Services Key Management Service key ID for the key used to encrypt the output data, if any.

RoleArn
Required: Yes
Type: string

The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.

StoppingConditions

A set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.

Tags
Type: Array of Tag structures

An array of key/value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.

Result Syntax

[
    'LabelingJobArn' => '<string>',
]

Result Details

Members
LabelingJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the labeling job. You use this ARN to identify the labeling job.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateMlflowTrackingServer

$result = $client->createMlflowTrackingServer([/* ... */]);
$promise = $client->createMlflowTrackingServerAsync([/* ... */]);

Creates an MLflow Tracking Server using a general purpose Amazon S3 bucket as the artifact store. For more information, see Create an MLflow Tracking Server.

Parameter Syntax

$result = $client->createMlflowTrackingServer([
    'ArtifactStoreUri' => '<string>', // REQUIRED
    'AutomaticModelRegistration' => true || false,
    'MlflowVersion' => '<string>',
    'RoleArn' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'TrackingServerName' => '<string>', // REQUIRED
    'TrackingServerSize' => 'Small|Medium|Large',
    'WeeklyMaintenanceWindowStart' => '<string>',
]);

Parameter Details

Members
ArtifactStoreUri
Required: Yes
Type: string

The S3 URI for a general purpose bucket to use as the MLflow Tracking Server artifact store.

AutomaticModelRegistration
Type: boolean

Whether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to True. To disable automatic model registration, set this value to False. If not specified, AutomaticModelRegistration defaults to False.

MlflowVersion
Type: string

The version of MLflow that the tracking server uses. To see which MLflow versions are available to use, see How it works.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) for an IAM role in your account that the MLflow Tracking Server uses to access the artifact store in Amazon S3. The role should have AmazonS3FullAccess permissions. For more information on IAM permissions for tracking server creation, see Set up IAM permissions for MLflow.

Tags
Type: Array of Tag structures

Tags consisting of key-value pairs used to manage metadata for the tracking server.

TrackingServerName
Required: Yes
Type: string

A unique string identifying the tracking server name. This string is part of the tracking server ARN.

TrackingServerSize
Type: string

The size of the tracking server you want to create. You can choose between "Small", "Medium", and "Large". The default MLflow Tracking Server configuration size is "Small". You can choose a size depending on the projected use of the tracking server such as the volume of data logged, number of users, and frequency of use.

We recommend using a small tracking server for teams of up to 25 users, a medium tracking server for teams of up to 50 users, and a large tracking server for teams of up to 100 users.

WeeklyMaintenanceWindowStart
Type: string

The day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. For example: TUE:03:30.

Result Syntax

[
    'TrackingServerArn' => '<string>',
]

Result Details

Members
TrackingServerArn
Type: string

The ARN of the tracking server.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateModel

$result = $client->createModel([/* ... */]);
$promise = $client->createModelAsync([/* ... */]);

Creates a model in SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions.

Use this API to create a model if you want to use SageMaker hosting services or run a batch transform job.

To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. SageMaker then deploys all of the containers that you defined for the model in the hosting environment.

To run a batch transform using your model, you start a job with the CreateTransformJob API. SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location.

In the request, you also provide an IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other Amazon Web Services resources, you grant necessary permissions via this role.

Parameter Syntax

$result = $client->createModel([
    'Containers' => [
        [
            'AdditionalModelDataSources' => [
                [
                    'ChannelName' => '<string>', // REQUIRED
                    'S3DataSource' => [ // REQUIRED
                        'CompressionType' => 'None|Gzip', // REQUIRED
                        'ETag' => '<string>',
                        'HubAccessConfig' => [
                            'HubContentArn' => '<string>', // REQUIRED
                        ],
                        'ManifestEtag' => '<string>',
                        'ManifestS3Uri' => '<string>',
                        'ModelAccessConfig' => [
                            'AcceptEula' => true || false, // REQUIRED
                        ],
                        'S3DataType' => 'S3Prefix|S3Object', // REQUIRED
                        'S3Uri' => '<string>', // REQUIRED
                    ],
                ],
                // ...
            ],
            'ContainerHostname' => '<string>',
            'Environment' => ['<string>', ...],
            'Image' => '<string>',
            'ImageConfig' => [
                'RepositoryAccessMode' => 'Platform|Vpc', // REQUIRED
                'RepositoryAuthConfig' => [
                    'RepositoryCredentialsProviderArn' => '<string>', // REQUIRED
                ],
            ],
            'InferenceSpecificationName' => '<string>',
            'Mode' => 'SingleModel|MultiModel',
            'ModelDataSource' => [
                'S3DataSource' => [
                    'CompressionType' => 'None|Gzip', // REQUIRED
                    'ETag' => '<string>',
                    'HubAccessConfig' => [
                        'HubContentArn' => '<string>', // REQUIRED
                    ],
                    'ManifestEtag' => '<string>',
                    'ManifestS3Uri' => '<string>',
                    'ModelAccessConfig' => [
                        'AcceptEula' => true || false, // REQUIRED
                    ],
                    'S3DataType' => 'S3Prefix|S3Object', // REQUIRED
                    'S3Uri' => '<string>', // REQUIRED
                ],
            ],
            'ModelDataUrl' => '<string>',
            'ModelPackageName' => '<string>',
            'MultiModelConfig' => [
                'ModelCacheSetting' => 'Enabled|Disabled',
            ],
        ],
        // ...
    ],
    'EnableNetworkIsolation' => true || false,
    'ExecutionRoleArn' => '<string>',
    'InferenceExecutionConfig' => [
        'Mode' => 'Serial|Direct', // REQUIRED
    ],
    'ModelName' => '<string>', // REQUIRED
    'PrimaryContainer' => [
        'AdditionalModelDataSources' => [
            [
                'ChannelName' => '<string>', // REQUIRED
                'S3DataSource' => [ // REQUIRED
                    'CompressionType' => 'None|Gzip', // REQUIRED
                    'ETag' => '<string>',
                    'HubAccessConfig' => [
                        'HubContentArn' => '<string>', // REQUIRED
                    ],
                    'ManifestEtag' => '<string>',
                    'ManifestS3Uri' => '<string>',
                    'ModelAccessConfig' => [
                        'AcceptEula' => true || false, // REQUIRED
                    ],
                    'S3DataType' => 'S3Prefix|S3Object', // REQUIRED
                    'S3Uri' => '<string>', // REQUIRED
                ],
            ],
            // ...
        ],
        'ContainerHostname' => '<string>',
        'Environment' => ['<string>', ...],
        'Image' => '<string>',
        'ImageConfig' => [
            'RepositoryAccessMode' => 'Platform|Vpc', // REQUIRED
            'RepositoryAuthConfig' => [
                'RepositoryCredentialsProviderArn' => '<string>', // REQUIRED
            ],
        ],
        'InferenceSpecificationName' => '<string>',
        'Mode' => 'SingleModel|MultiModel',
        'ModelDataSource' => [
            'S3DataSource' => [
                'CompressionType' => 'None|Gzip', // REQUIRED
                'ETag' => '<string>',
                'HubAccessConfig' => [
                    'HubContentArn' => '<string>', // REQUIRED
                ],
                'ManifestEtag' => '<string>',
                'ManifestS3Uri' => '<string>',
                'ModelAccessConfig' => [
                    'AcceptEula' => true || false, // REQUIRED
                ],
                'S3DataType' => 'S3Prefix|S3Object', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
        ],
        'ModelDataUrl' => '<string>',
        'ModelPackageName' => '<string>',
        'MultiModelConfig' => [
            'ModelCacheSetting' => 'Enabled|Disabled',
        ],
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'VpcConfig' => [
        'SecurityGroupIds' => ['<string>', ...], // REQUIRED
        'Subnets' => ['<string>', ...], // REQUIRED
    ],
]);

Parameter Details

Members
Containers
Type: Array of ContainerDefinition structures

Specifies the containers in the inference pipeline.

EnableNetworkIsolation
Type: boolean

Isolates the model container. No inbound or outbound network calls can be made to or from the model container.

ExecutionRoleArn
Type: string

The Amazon Resource Name (ARN) of the IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute instances or for batch transform jobs. Deploying on ML compute instances is part of model hosting. For more information, see SageMaker Roles.

To be able to pass this role to SageMaker, the caller of this API must have the iam:PassRole permission.

InferenceExecutionConfig
Type: InferenceExecutionConfig structure

Specifies details of how containers in a multi-container endpoint are called.

ModelName
Required: Yes
Type: string

The name of the new model.

PrimaryContainer
Type: ContainerDefinition structure

The location of the primary docker image containing inference code, associated artifacts, and custom environment map that the inference code uses when the model is deployed for predictions.

Tags
Type: Array of Tag structures

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

VpcConfig
Type: VpcConfig structure

A VpcConfig object that specifies the VPC that you want your model to connect to. Control access to and from your model container by configuring the VPC. VpcConfig is used in hosting services and in batch transform. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private Cloud.

Result Syntax

[
    'ModelArn' => '<string>',
]

Result Details

Members
ModelArn
Required: Yes
Type: string

The ARN of the model created in SageMaker.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateModelBiasJobDefinition

$result = $client->createModelBiasJobDefinition([/* ... */]);
$promise = $client->createModelBiasJobDefinitionAsync([/* ... */]);

Creates the definition for a model bias job.

Parameter Syntax

$result = $client->createModelBiasJobDefinition([
    'JobDefinitionName' => '<string>', // REQUIRED
    'JobResources' => [ // REQUIRED
        'ClusterConfig' => [ // REQUIRED
            'InstanceCount' => <integer>, // REQUIRED
            'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge', // REQUIRED
            'VolumeKmsKeyId' => '<string>',
            'VolumeSizeInGB' => <integer>, // REQUIRED
        ],
    ],
    'ModelBiasAppSpecification' => [ // REQUIRED
        'ConfigUri' => '<string>', // REQUIRED
        'Environment' => ['<string>', ...],
        'ImageUri' => '<string>', // REQUIRED
    ],
    'ModelBiasBaselineConfig' => [
        'BaseliningJobName' => '<string>',
        'ConstraintsResource' => [
            'S3Uri' => '<string>',
        ],
    ],
    'ModelBiasJobInput' => [ // REQUIRED
        'BatchTransformInput' => [
            'DataCapturedDestinationS3Uri' => '<string>', // REQUIRED
            'DatasetFormat' => [ // REQUIRED
                'Csv' => [
                    'Header' => true || false,
                ],
                'Json' => [
                    'Line' => true || false,
                ],
                'Parquet' => [
                ],
            ],
            'EndTimeOffset' => '<string>',
            'ExcludeFeaturesAttribute' => '<string>',
            'FeaturesAttribute' => '<string>',
            'InferenceAttribute' => '<string>',
            'LocalPath' => '<string>', // REQUIRED
            'ProbabilityAttribute' => '<string>',
            'ProbabilityThresholdAttribute' => <float>,
            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
            'S3InputMode' => 'Pipe|File',
            'StartTimeOffset' => '<string>',
        ],
        'EndpointInput' => [
            'EndTimeOffset' => '<string>',
            'EndpointName' => '<string>', // REQUIRED
            'ExcludeFeaturesAttribute' => '<string>',
            'FeaturesAttribute' => '<string>',
            'InferenceAttribute' => '<string>',
            'LocalPath' => '<string>', // REQUIRED
            'ProbabilityAttribute' => '<string>',
            'ProbabilityThresholdAttribute' => <float>,
            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
            'S3InputMode' => 'Pipe|File',
            'StartTimeOffset' => '<string>',
        ],
        'GroundTruthS3Input' => [ // REQUIRED
            'S3Uri' => '<string>',
        ],
    ],
    'ModelBiasJobOutputConfig' => [ // REQUIRED
        'KmsKeyId' => '<string>',
        'MonitoringOutputs' => [ // REQUIRED
            [
                'S3Output' => [ // REQUIRED
                    'LocalPath' => '<string>', // REQUIRED
                    'S3UploadMode' => 'Continuous|EndOfJob',
                    'S3Uri' => '<string>', // REQUIRED
                ],
            ],
            // ...
        ],
    ],
    'NetworkConfig' => [
        'EnableInterContainerTrafficEncryption' => true || false,
        'EnableNetworkIsolation' => true || false,
        'VpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...], // REQUIRED
            'Subnets' => ['<string>', ...], // REQUIRED
        ],
    ],
    'RoleArn' => '<string>', // REQUIRED
    'StoppingCondition' => [
        'MaxRuntimeInSeconds' => <integer>, // REQUIRED
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
JobDefinitionName
Required: Yes
Type: string

The name of the bias job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

JobResources
Required: Yes
Type: MonitoringResources structure

Identifies the resources to deploy for a monitoring job.

ModelBiasAppSpecification
Required: Yes
Type: ModelBiasAppSpecification structure

Configures the model bias job to run a specified Docker container image.

ModelBiasBaselineConfig
Type: ModelBiasBaselineConfig structure

The baseline configuration for a model bias job.

ModelBiasJobInput
Required: Yes
Type: ModelBiasJobInput structure

Inputs for the model bias job.

ModelBiasJobOutputConfig
Required: Yes
Type: MonitoringOutputConfig structure

The output configuration for monitoring jobs.

NetworkConfig
Type: MonitoringNetworkConfig structure

Networking options for a model bias job.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.

StoppingCondition
Type: MonitoringStoppingCondition structure

A time limit for how long the monitoring job is allowed to run before stopping.

Tags
Type: Array of Tag structures

(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.

Result Syntax

[
    'JobDefinitionArn' => '<string>',
]

Result Details

Members
JobDefinitionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model bias job.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceInUse:

Resource being accessed is in use.

CreateModelCard

$result = $client->createModelCard([/* ... */]);
$promise = $client->createModelCardAsync([/* ... */]);

Creates an Amazon SageMaker Model Card.

For information about how to use model cards, see Amazon SageMaker Model Card.

Parameter Syntax

$result = $client->createModelCard([
    'Content' => '<string>', // REQUIRED
    'ModelCardName' => '<string>', // REQUIRED
    'ModelCardStatus' => 'Draft|PendingReview|Approved|Archived', // REQUIRED
    'SecurityConfig' => [
        'KmsKeyId' => '<string>',
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
Content
Required: Yes
Type: string

The content of the model card. Content must be in model card JSON schema and provided as a string.

ModelCardName
Required: Yes
Type: string

The unique name of the model card.

ModelCardStatus
Required: Yes
Type: string

The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.

  • Draft: The model card is a work in progress.

  • PendingReview: The model card is pending review.

  • Approved: The model card is approved.

  • Archived: The model card is archived. No more updates should be made to the model card, but it can still be exported.

SecurityConfig
Type: ModelCardSecurityConfig structure

An optional Key Management Service key to encrypt, decrypt, and re-encrypt model card content for regulated workloads with highly sensitive data.

Tags
Type: Array of Tag structures

Key-value pairs used to manage metadata for model cards.

Result Syntax

[
    'ModelCardArn' => '<string>',
]

Result Details

Members
ModelCardArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the successfully created model card.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

CreateModelCardExportJob

$result = $client->createModelCardExportJob([/* ... */]);
$promise = $client->createModelCardExportJobAsync([/* ... */]);

Creates an Amazon SageMaker Model Card export job.

Parameter Syntax

$result = $client->createModelCardExportJob([
    'ModelCardExportJobName' => '<string>', // REQUIRED
    'ModelCardName' => '<string>', // REQUIRED
    'ModelCardVersion' => <integer>,
    'OutputConfig' => [ // REQUIRED
        'S3OutputPath' => '<string>', // REQUIRED
    ],
]);

Parameter Details

Members
ModelCardExportJobName
Required: Yes
Type: string

The name of the model card export job.

ModelCardName
Required: Yes
Type: string

The name or Amazon Resource Name (ARN) of the model card to export.

ModelCardVersion
Type: int

The version of the model card to export. If a version is not provided, then the latest version of the model card is exported.

OutputConfig
Required: Yes
Type: ModelCardExportOutputConfig structure

The model card output configuration that specifies the Amazon S3 path for exporting.

Result Syntax

[
    'ModelCardExportJobArn' => '<string>',
]

Result Details

Members
ModelCardExportJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model card export job.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

CreateModelExplainabilityJobDefinition

$result = $client->createModelExplainabilityJobDefinition([/* ... */]);
$promise = $client->createModelExplainabilityJobDefinitionAsync([/* ... */]);

Creates the definition for a model explainability job.

Parameter Syntax

$result = $client->createModelExplainabilityJobDefinition([
    'JobDefinitionName' => '<string>', // REQUIRED
    'JobResources' => [ // REQUIRED
        'ClusterConfig' => [ // REQUIRED
            'InstanceCount' => <integer>, // REQUIRED
            'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge', // REQUIRED
            'VolumeKmsKeyId' => '<string>',
            'VolumeSizeInGB' => <integer>, // REQUIRED
        ],
    ],
    'ModelExplainabilityAppSpecification' => [ // REQUIRED
        'ConfigUri' => '<string>', // REQUIRED
        'Environment' => ['<string>', ...],
        'ImageUri' => '<string>', // REQUIRED
    ],
    'ModelExplainabilityBaselineConfig' => [
        'BaseliningJobName' => '<string>',
        'ConstraintsResource' => [
            'S3Uri' => '<string>',
        ],
    ],
    'ModelExplainabilityJobInput' => [ // REQUIRED
        'BatchTransformInput' => [
            'DataCapturedDestinationS3Uri' => '<string>', // REQUIRED
            'DatasetFormat' => [ // REQUIRED
                'Csv' => [
                    'Header' => true || false,
                ],
                'Json' => [
                    'Line' => true || false,
                ],
                'Parquet' => [
                ],
            ],
            'EndTimeOffset' => '<string>',
            'ExcludeFeaturesAttribute' => '<string>',
            'FeaturesAttribute' => '<string>',
            'InferenceAttribute' => '<string>',
            'LocalPath' => '<string>', // REQUIRED
            'ProbabilityAttribute' => '<string>',
            'ProbabilityThresholdAttribute' => <float>,
            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
            'S3InputMode' => 'Pipe|File',
            'StartTimeOffset' => '<string>',
        ],
        'EndpointInput' => [
            'EndTimeOffset' => '<string>',
            'EndpointName' => '<string>', // REQUIRED
            'ExcludeFeaturesAttribute' => '<string>',
            'FeaturesAttribute' => '<string>',
            'InferenceAttribute' => '<string>',
            'LocalPath' => '<string>', // REQUIRED
            'ProbabilityAttribute' => '<string>',
            'ProbabilityThresholdAttribute' => <float>,
            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
            'S3InputMode' => 'Pipe|File',
            'StartTimeOffset' => '<string>',
        ],
    ],
    'ModelExplainabilityJobOutputConfig' => [ // REQUIRED
        'KmsKeyId' => '<string>',
        'MonitoringOutputs' => [ // REQUIRED
            [
                'S3Output' => [ // REQUIRED
                    'LocalPath' => '<string>', // REQUIRED
                    'S3UploadMode' => 'Continuous|EndOfJob',
                    'S3Uri' => '<string>', // REQUIRED
                ],
            ],
            // ...
        ],
    ],
    'NetworkConfig' => [
        'EnableInterContainerTrafficEncryption' => true || false,
        'EnableNetworkIsolation' => true || false,
        'VpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...], // REQUIRED
            'Subnets' => ['<string>', ...], // REQUIRED
        ],
    ],
    'RoleArn' => '<string>', // REQUIRED
    'StoppingCondition' => [
        'MaxRuntimeInSeconds' => <integer>, // REQUIRED
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
JobDefinitionName
Required: Yes
Type: string

The name of the model explainability job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

JobResources
Required: Yes
Type: MonitoringResources structure

Identifies the resources to deploy for a monitoring job.

ModelExplainabilityAppSpecification
Required: Yes
Type: ModelExplainabilityAppSpecification structure

Configures the model explainability job to run a specified Docker container image.

ModelExplainabilityBaselineConfig

The baseline configuration for a model explainability job.

ModelExplainabilityJobInput
Required: Yes
Type: ModelExplainabilityJobInput structure

Inputs for the model explainability job.

ModelExplainabilityJobOutputConfig
Required: Yes
Type: MonitoringOutputConfig structure

The output configuration for monitoring jobs.

NetworkConfig
Type: MonitoringNetworkConfig structure

Networking options for a model explainability job.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.

StoppingCondition
Type: MonitoringStoppingCondition structure

A time limit for how long the monitoring job is allowed to run before stopping.

Tags
Type: Array of Tag structures

(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.

Result Syntax

[
    'JobDefinitionArn' => '<string>',
]

Result Details

Members
JobDefinitionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model explainability job.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceInUse:

Resource being accessed is in use.

CreateModelPackage

$result = $client->createModelPackage([/* ... */]);
$promise = $client->createModelPackageAsync([/* ... */]);

Creates a model package that you can use to create SageMaker models or list on Amazon Web Services Marketplace, or a versioned model that is part of a model group. Buyers can subscribe to model packages listed on Amazon Web Services Marketplace to create models in SageMaker.

To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for InferenceSpecification. To create a model from an algorithm resource that you created or subscribed to in Amazon Web Services Marketplace, provide a value for SourceAlgorithmSpecification.

There are two types of model packages:

  • Versioned - a model that is part of a model group in the model registry.

  • Unversioned - a model package that is not part of a model group.

Parameter Syntax

$result = $client->createModelPackage([
    'AdditionalInferenceSpecifications' => [
        [
            'Containers' => [ // REQUIRED
                [
                    'AdditionalS3DataSource' => [
                        'CompressionType' => 'None|Gzip',
                        'ETag' => '<string>',
                        'S3DataType' => 'S3Object|S3Prefix', // REQUIRED
                        'S3Uri' => '<string>', // REQUIRED
                    ],
                    'ContainerHostname' => '<string>',
                    'Environment' => ['<string>', ...],
                    'Framework' => '<string>',
                    'FrameworkVersion' => '<string>',
                    'Image' => '<string>', // REQUIRED
                    'ImageDigest' => '<string>',
                    'ModelDataETag' => '<string>',
                    'ModelDataSource' => [
                        'S3DataSource' => [
                            'CompressionType' => 'None|Gzip', // REQUIRED
                            'ETag' => '<string>',
                            'HubAccessConfig' => [
                                'HubContentArn' => '<string>', // REQUIRED
                            ],
                            'ManifestEtag' => '<string>',
                            'ManifestS3Uri' => '<string>',
                            'ModelAccessConfig' => [
                                'AcceptEula' => true || false, // REQUIRED
                            ],
                            'S3DataType' => 'S3Prefix|S3Object', // REQUIRED
                            'S3Uri' => '<string>', // REQUIRED
                        ],
                    ],
                    'ModelDataUrl' => '<string>',
                    'ModelInput' => [
                        'DataInputConfig' => '<string>', // REQUIRED
                    ],
                    'NearestModelName' => '<string>',
                    'ProductId' => '<string>',
                ],
                // ...
            ],
            'Description' => '<string>',
            'Name' => '<string>', // REQUIRED
            'SupportedContentTypes' => ['<string>', ...],
            'SupportedRealtimeInferenceInstanceTypes' => ['<string>', ...],
            'SupportedResponseMIMETypes' => ['<string>', ...],
            'SupportedTransformInstanceTypes' => ['<string>', ...],
        ],
        // ...
    ],
    'CertifyForMarketplace' => true || false,
    'ClientToken' => '<string>',
    'CustomerMetadataProperties' => ['<string>', ...],
    'Domain' => '<string>',
    'DriftCheckBaselines' => [
        'Bias' => [
            'ConfigFile' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>', // REQUIRED
            ],
            'PostTrainingConstraints' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
            'PreTrainingConstraints' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
        ],
        'Explainability' => [
            'ConfigFile' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>', // REQUIRED
            ],
            'Constraints' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
        ],
        'ModelDataQuality' => [
            'Constraints' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
            'Statistics' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
        ],
        'ModelQuality' => [
            'Constraints' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
            'Statistics' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
        ],
    ],
    'InferenceSpecification' => [
        'Containers' => [ // REQUIRED
            [
                'AdditionalS3DataSource' => [
                    'CompressionType' => 'None|Gzip',
                    'ETag' => '<string>',
                    'S3DataType' => 'S3Object|S3Prefix', // REQUIRED
                    'S3Uri' => '<string>', // REQUIRED
                ],
                'ContainerHostname' => '<string>',
                'Environment' => ['<string>', ...],
                'Framework' => '<string>',
                'FrameworkVersion' => '<string>',
                'Image' => '<string>', // REQUIRED
                'ImageDigest' => '<string>',
                'ModelDataETag' => '<string>',
                'ModelDataSource' => [
                    'S3DataSource' => [
                        'CompressionType' => 'None|Gzip', // REQUIRED
                        'ETag' => '<string>',
                        'HubAccessConfig' => [
                            'HubContentArn' => '<string>', // REQUIRED
                        ],
                        'ManifestEtag' => '<string>',
                        'ManifestS3Uri' => '<string>',
                        'ModelAccessConfig' => [
                            'AcceptEula' => true || false, // REQUIRED
                        ],
                        'S3DataType' => 'S3Prefix|S3Object', // REQUIRED
                        'S3Uri' => '<string>', // REQUIRED
                    ],
                ],
                'ModelDataUrl' => '<string>',
                'ModelInput' => [
                    'DataInputConfig' => '<string>', // REQUIRED
                ],
                'NearestModelName' => '<string>',
                'ProductId' => '<string>',
            ],
            // ...
        ],
        'SupportedContentTypes' => ['<string>', ...],
        'SupportedRealtimeInferenceInstanceTypes' => ['<string>', ...],
        'SupportedResponseMIMETypes' => ['<string>', ...],
        'SupportedTransformInstanceTypes' => ['<string>', ...],
    ],
    'MetadataProperties' => [
        'CommitId' => '<string>',
        'GeneratedBy' => '<string>',
        'ProjectId' => '<string>',
        'Repository' => '<string>',
    ],
    'ModelApprovalStatus' => 'Approved|Rejected|PendingManualApproval',
    'ModelCard' => [
        'ModelCardContent' => '<string>',
        'ModelCardStatus' => 'Draft|PendingReview|Approved|Archived',
    ],
    'ModelLifeCycle' => [
        'Stage' => '<string>', // REQUIRED
        'StageDescription' => '<string>',
        'StageStatus' => '<string>', // REQUIRED
    ],
    'ModelMetrics' => [
        'Bias' => [
            'PostTrainingReport' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
            'PreTrainingReport' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
            'Report' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
        ],
        'Explainability' => [
            'Report' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
        ],
        'ModelDataQuality' => [
            'Constraints' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
            'Statistics' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
        ],
        'ModelQuality' => [
            'Constraints' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
            'Statistics' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
        ],
    ],
    'ModelPackageDescription' => '<string>',
    'ModelPackageGroupName' => '<string>',
    'ModelPackageName' => '<string>',
    'SamplePayloadUrl' => '<string>',
    'SecurityConfig' => [
        'KmsKeyId' => '<string>', // REQUIRED
    ],
    'SkipModelValidation' => 'All|None',
    'SourceAlgorithmSpecification' => [
        'SourceAlgorithms' => [ // REQUIRED
            [
                'AlgorithmName' => '<string>', // REQUIRED
                'ModelDataETag' => '<string>',
                'ModelDataSource' => [
                    'S3DataSource' => [
                        'CompressionType' => 'None|Gzip', // REQUIRED
                        'ETag' => '<string>',
                        'HubAccessConfig' => [
                            'HubContentArn' => '<string>', // REQUIRED
                        ],
                        'ManifestEtag' => '<string>',
                        'ManifestS3Uri' => '<string>',
                        'ModelAccessConfig' => [
                            'AcceptEula' => true || false, // REQUIRED
                        ],
                        'S3DataType' => 'S3Prefix|S3Object', // REQUIRED
                        'S3Uri' => '<string>', // REQUIRED
                    ],
                ],
                'ModelDataUrl' => '<string>',
            ],
            // ...
        ],
    ],
    'SourceUri' => '<string>',
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'Task' => '<string>',
    'ValidationSpecification' => [
        'ValidationProfiles' => [ // REQUIRED
            [
                'ProfileName' => '<string>', // REQUIRED
                'TransformJobDefinition' => [ // REQUIRED
                    'BatchStrategy' => 'MultiRecord|SingleRecord',
                    'Environment' => ['<string>', ...],
                    'MaxConcurrentTransforms' => <integer>,
                    'MaxPayloadInMB' => <integer>,
                    'TransformInput' => [ // REQUIRED
                        'CompressionType' => 'None|Gzip',
                        'ContentType' => '<string>',
                        'DataSource' => [ // REQUIRED
                            'S3DataSource' => [ // REQUIRED
                                'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile', // REQUIRED
                                'S3Uri' => '<string>', // REQUIRED
                            ],
                        ],
                        'SplitType' => 'None|Line|RecordIO|TFRecord',
                    ],
                    'TransformOutput' => [ // REQUIRED
                        'Accept' => '<string>',
                        'AssembleWith' => 'None|Line',
                        'KmsKeyId' => '<string>',
                        'S3OutputPath' => '<string>', // REQUIRED
                    ],
                    'TransformResources' => [ // REQUIRED
                        'InstanceCount' => <integer>, // REQUIRED
                        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge', // REQUIRED
                        'VolumeKmsKeyId' => '<string>',
                    ],
                ],
            ],
            // ...
        ],
        'ValidationRole' => '<string>', // REQUIRED
    ],
]);

Parameter Details

Members
AdditionalInferenceSpecifications
Type: Array of AdditionalInferenceSpecificationDefinition structures

An array of additional Inference Specification objects. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.

CertifyForMarketplace
Type: boolean

Whether to certify the model package for listing on Amazon Web Services Marketplace.

This parameter is optional for unversioned models, and does not apply to versioned models.

ClientToken
Type: string

A unique token that guarantees that the call to this API is idempotent.

CustomerMetadataProperties
Type: Associative array of custom strings keys (CustomerMetadataKey) to strings

The metadata properties associated with the model package versions.

Domain
Type: string

The machine learning domain of your model package and its components. Common machine learning domains include computer vision and natural language processing.

DriftCheckBaselines
Type: DriftCheckBaselines structure

Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on Drift Detection against Previous Baselines in SageMaker Pipelines in the Amazon SageMaker Developer Guide.

InferenceSpecification
Type: InferenceSpecification structure

Specifies details about inference jobs that you can run with models based on this model package, including the following information:

  • The Amazon ECR paths of containers that contain the inference code and model artifacts.

  • The instance types that the model package supports for transform jobs and real-time endpoints used for inference.

  • The input and output content formats that the model package supports for inference.

MetadataProperties
Type: MetadataProperties structure

Metadata properties of the tracking entity, trial, or trial component.

ModelApprovalStatus
Type: string

Whether the model is approved for deployment.

This parameter is optional for versioned models, and does not apply to unversioned models.

For versioned models, the value of this parameter must be set to Approved to deploy the model.

ModelCard
Type: ModelPackageModelCard structure

The model card associated with the model package. Since ModelPackageModelCard is tied to a model package, it is a specific usage of a model card and its schema is simplified compared to the schema of ModelCard. The ModelPackageModelCard schema does not include model_package_details, and model_overview is composed of the model_creator and model_artifact properties. For more information about the model package model card schema, see Model package model card schema. For more information about the model card associated with the model package, see View the Details of a Model Version.

ModelLifeCycle
Type: ModelLifeCycle structure

A structure describing the current state of the model in its life cycle.

ModelMetrics
Type: ModelMetrics structure

A structure that contains model metrics reports.

ModelPackageDescription
Type: string

A description of the model package.

ModelPackageGroupName
Type: string

The name or Amazon Resource Name (ARN) of the model package group that this model version belongs to.

This parameter is required for versioned models, and does not apply to unversioned models.

ModelPackageName
Type: string

The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

This parameter is required for unversioned models. It is not applicable to versioned models.

SamplePayloadUrl
Type: string

The Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). This archive can hold multiple files that are all equally used in the load test. Each file in the archive must satisfy the size constraints of the InvokeEndpoint call.

SecurityConfig
Type: ModelPackageSecurityConfig structure

The KMS Key ID (KMSKeyId) used for encryption of model package information.

SkipModelValidation
Type: string

Indicates if you want to skip model validation.

SourceAlgorithmSpecification

Details about the algorithm that was used to create the model package.

SourceUri
Type: string

The URI of the source for the model package. If you want to clone a model package, set it to the model package Amazon Resource Name (ARN). If you want to register a model, set it to the model ARN.

Tags
Type: Array of Tag structures

A list of key value pairs associated with the model. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.

If you supply ModelPackageGroupName, your model package belongs to the model group you specify and uses the tags associated with the model group. In this case, you cannot supply a tag argument.

Task
Type: string

The machine learning task your model package accomplishes. Common machine learning tasks include object detection and image classification. The following tasks are supported by Inference Recommender: "IMAGE_CLASSIFICATION" | "OBJECT_DETECTION" | "TEXT_GENERATION" |"IMAGE_SEGMENTATION" | "FILL_MASK" | "CLASSIFICATION" | "REGRESSION" | "OTHER".

Specify "OTHER" if none of the tasks listed fit your use case.

ValidationSpecification

Specifies configurations for one or more transform jobs that SageMaker runs to test the model package.

Result Syntax

[
    'ModelPackageArn' => '<string>',
]

Result Details

Members
ModelPackageArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the new model package.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateModelPackageGroup

$result = $client->createModelPackageGroup([/* ... */]);
$promise = $client->createModelPackageGroupAsync([/* ... */]);

Creates a model group. A model group contains a group of model versions.

Parameter Syntax

$result = $client->createModelPackageGroup([
    'ModelPackageGroupDescription' => '<string>',
    'ModelPackageGroupName' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
ModelPackageGroupDescription
Type: string

A description for the model group.

ModelPackageGroupName
Required: Yes
Type: string

The name of the model group.

Tags
Type: Array of Tag structures

A list of key value pairs associated with the model group. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.

Result Syntax

[
    'ModelPackageGroupArn' => '<string>',
]

Result Details

Members
ModelPackageGroupArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model group.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateModelQualityJobDefinition

$result = $client->createModelQualityJobDefinition([/* ... */]);
$promise = $client->createModelQualityJobDefinitionAsync([/* ... */]);

Creates a definition for a job that monitors model quality and drift. For information about model monitor, see Amazon SageMaker AI Model Monitor.

Parameter Syntax

$result = $client->createModelQualityJobDefinition([
    'JobDefinitionName' => '<string>', // REQUIRED
    'JobResources' => [ // REQUIRED
        'ClusterConfig' => [ // REQUIRED
            'InstanceCount' => <integer>, // REQUIRED
            'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge', // REQUIRED
            'VolumeKmsKeyId' => '<string>',
            'VolumeSizeInGB' => <integer>, // REQUIRED
        ],
    ],
    'ModelQualityAppSpecification' => [ // REQUIRED
        'ContainerArguments' => ['<string>', ...],
        'ContainerEntrypoint' => ['<string>', ...],
        'Environment' => ['<string>', ...],
        'ImageUri' => '<string>', // REQUIRED
        'PostAnalyticsProcessorSourceUri' => '<string>',
        'ProblemType' => 'BinaryClassification|MulticlassClassification|Regression',
        'RecordPreprocessorSourceUri' => '<string>',
    ],
    'ModelQualityBaselineConfig' => [
        'BaseliningJobName' => '<string>',
        'ConstraintsResource' => [
            'S3Uri' => '<string>',
        ],
    ],
    'ModelQualityJobInput' => [ // REQUIRED
        'BatchTransformInput' => [
            'DataCapturedDestinationS3Uri' => '<string>', // REQUIRED
            'DatasetFormat' => [ // REQUIRED
                'Csv' => [
                    'Header' => true || false,
                ],
                'Json' => [
                    'Line' => true || false,
                ],
                'Parquet' => [
                ],
            ],
            'EndTimeOffset' => '<string>',
            'ExcludeFeaturesAttribute' => '<string>',
            'FeaturesAttribute' => '<string>',
            'InferenceAttribute' => '<string>',
            'LocalPath' => '<string>', // REQUIRED
            'ProbabilityAttribute' => '<string>',
            'ProbabilityThresholdAttribute' => <float>,
            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
            'S3InputMode' => 'Pipe|File',
            'StartTimeOffset' => '<string>',
        ],
        'EndpointInput' => [
            'EndTimeOffset' => '<string>',
            'EndpointName' => '<string>', // REQUIRED
            'ExcludeFeaturesAttribute' => '<string>',
            'FeaturesAttribute' => '<string>',
            'InferenceAttribute' => '<string>',
            'LocalPath' => '<string>', // REQUIRED
            'ProbabilityAttribute' => '<string>',
            'ProbabilityThresholdAttribute' => <float>,
            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
            'S3InputMode' => 'Pipe|File',
            'StartTimeOffset' => '<string>',
        ],
        'GroundTruthS3Input' => [ // REQUIRED
            'S3Uri' => '<string>',
        ],
    ],
    'ModelQualityJobOutputConfig' => [ // REQUIRED
        'KmsKeyId' => '<string>',
        'MonitoringOutputs' => [ // REQUIRED
            [
                'S3Output' => [ // REQUIRED
                    'LocalPath' => '<string>', // REQUIRED
                    'S3UploadMode' => 'Continuous|EndOfJob',
                    'S3Uri' => '<string>', // REQUIRED
                ],
            ],
            // ...
        ],
    ],
    'NetworkConfig' => [
        'EnableInterContainerTrafficEncryption' => true || false,
        'EnableNetworkIsolation' => true || false,
        'VpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...], // REQUIRED
            'Subnets' => ['<string>', ...], // REQUIRED
        ],
    ],
    'RoleArn' => '<string>', // REQUIRED
    'StoppingCondition' => [
        'MaxRuntimeInSeconds' => <integer>, // REQUIRED
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
JobDefinitionName
Required: Yes
Type: string

The name of the monitoring job definition.

JobResources
Required: Yes
Type: MonitoringResources structure

Identifies the resources to deploy for a monitoring job.

ModelQualityAppSpecification
Required: Yes
Type: ModelQualityAppSpecification structure

The container that runs the monitoring job.

ModelQualityBaselineConfig
Type: ModelQualityBaselineConfig structure

Specifies the constraints and baselines for the monitoring job.

ModelQualityJobInput
Required: Yes
Type: ModelQualityJobInput structure

A list of the inputs that are monitored. Currently endpoints are supported.

ModelQualityJobOutputConfig
Required: Yes
Type: MonitoringOutputConfig structure

The output configuration for monitoring jobs.

NetworkConfig
Type: MonitoringNetworkConfig structure

Specifies the network configuration for the monitoring job.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.

StoppingCondition
Type: MonitoringStoppingCondition structure

A time limit for how long the monitoring job is allowed to run before stopping.

Tags
Type: Array of Tag structures

(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.

Result Syntax

[
    'JobDefinitionArn' => '<string>',
]

Result Details

Members
JobDefinitionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model quality monitoring job.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceInUse:

Resource being accessed is in use.

CreateMonitoringSchedule

$result = $client->createMonitoringSchedule([/* ... */]);
$promise = $client->createMonitoringScheduleAsync([/* ... */]);

Creates a schedule that regularly starts Amazon SageMaker AI Processing Jobs to monitor the data captured for an Amazon SageMaker AI Endpoint.

Parameter Syntax

$result = $client->createMonitoringSchedule([
    'MonitoringScheduleConfig' => [ // REQUIRED
        'MonitoringJobDefinition' => [
            'BaselineConfig' => [
                'BaseliningJobName' => '<string>',
                'ConstraintsResource' => [
                    'S3Uri' => '<string>',
                ],
                'StatisticsResource' => [
                    'S3Uri' => '<string>',
                ],
            ],
            'Environment' => ['<string>', ...],
            'MonitoringAppSpecification' => [ // REQUIRED
                'ContainerArguments' => ['<string>', ...],
                'ContainerEntrypoint' => ['<string>', ...],
                'ImageUri' => '<string>', // REQUIRED
                'PostAnalyticsProcessorSourceUri' => '<string>',
                'RecordPreprocessorSourceUri' => '<string>',
            ],
            'MonitoringInputs' => [ // REQUIRED
                [
                    'BatchTransformInput' => [
                        'DataCapturedDestinationS3Uri' => '<string>', // REQUIRED
                        'DatasetFormat' => [ // REQUIRED
                            'Csv' => [
                                'Header' => true || false,
                            ],
                            'Json' => [
                                'Line' => true || false,
                            ],
                            'Parquet' => [
                            ],
                        ],
                        'EndTimeOffset' => '<string>',
                        'ExcludeFeaturesAttribute' => '<string>',
                        'FeaturesAttribute' => '<string>',
                        'InferenceAttribute' => '<string>',
                        'LocalPath' => '<string>', // REQUIRED
                        'ProbabilityAttribute' => '<string>',
                        'ProbabilityThresholdAttribute' => <float>,
                        'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                        'S3InputMode' => 'Pipe|File',
                        'StartTimeOffset' => '<string>',
                    ],
                    'EndpointInput' => [
                        'EndTimeOffset' => '<string>',
                        'EndpointName' => '<string>', // REQUIRED
                        'ExcludeFeaturesAttribute' => '<string>',
                        'FeaturesAttribute' => '<string>',
                        'InferenceAttribute' => '<string>',
                        'LocalPath' => '<string>', // REQUIRED
                        'ProbabilityAttribute' => '<string>',
                        'ProbabilityThresholdAttribute' => <float>,
                        'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                        'S3InputMode' => 'Pipe|File',
                        'StartTimeOffset' => '<string>',
                    ],
                ],
                // ...
            ],
            'MonitoringOutputConfig' => [ // REQUIRED
                'KmsKeyId' => '<string>',
                'MonitoringOutputs' => [ // REQUIRED
                    [
                        'S3Output' => [ // REQUIRED
                            'LocalPath' => '<string>', // REQUIRED
                            'S3UploadMode' => 'Continuous|EndOfJob',
                            'S3Uri' => '<string>', // REQUIRED
                        ],
                    ],
                    // ...
                ],
            ],
            'MonitoringResources' => [ // REQUIRED
                'ClusterConfig' => [ // REQUIRED
                    'InstanceCount' => <integer>, // REQUIRED
                    'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge', // REQUIRED
                    'VolumeKmsKeyId' => '<string>',
                    'VolumeSizeInGB' => <integer>, // REQUIRED
                ],
            ],
            'NetworkConfig' => [
                'EnableInterContainerTrafficEncryption' => true || false,
                'EnableNetworkIsolation' => true || false,
                'VpcConfig' => [
                    'SecurityGroupIds' => ['<string>', ...], // REQUIRED
                    'Subnets' => ['<string>', ...], // REQUIRED
                ],
            ],
            'RoleArn' => '<string>', // REQUIRED
            'StoppingCondition' => [
                'MaxRuntimeInSeconds' => <integer>, // REQUIRED
            ],
        ],
        'MonitoringJobDefinitionName' => '<string>',
        'MonitoringType' => 'DataQuality|ModelQuality|ModelBias|ModelExplainability',
        'ScheduleConfig' => [
            'DataAnalysisEndTime' => '<string>',
            'DataAnalysisStartTime' => '<string>',
            'ScheduleExpression' => '<string>', // REQUIRED
        ],
    ],
    'MonitoringScheduleName' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
MonitoringScheduleConfig
Required: Yes
Type: MonitoringScheduleConfig structure

The configuration object that specifies the monitoring schedule and defines the monitoring job.

MonitoringScheduleName
Required: Yes
Type: string

The name of the monitoring schedule. The name must be unique within an Amazon Web Services Region within an Amazon Web Services account.

Tags
Type: Array of Tag structures

(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.

Result Syntax

[
    'MonitoringScheduleArn' => '<string>',
]

Result Details

Members
MonitoringScheduleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the monitoring schedule.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceInUse:

Resource being accessed is in use.

CreateNotebookInstance

$result = $client->createNotebookInstance([/* ... */]);
$promise = $client->createNotebookInstanceAsync([/* ... */]);

Creates an SageMaker AI notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook.

In a CreateNotebookInstance request, specify the type of ML compute instance that you want to run. SageMaker AI launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance.

SageMaker AI also provides a set of example notebooks. Each notebook demonstrates how to use SageMaker AI with a specific algorithm or with a machine learning framework.

After receiving the request, SageMaker AI does the following:

  1. Creates a network interface in the SageMaker AI VPC.

  2. (Option) If you specified SubnetId, SageMaker AI creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, SageMaker AI attaches the security group that you specified in the request to the network interface that it creates in your VPC.

  3. Launches an EC2 instance of the type specified in the request in the SageMaker AI VPC. If you specified SubnetId of your VPC, SageMaker AI specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.

After creating the notebook instance, SageMaker AI returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it.

After SageMaker AI creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating SageMaker AI endpoints, and validate hosted models.

For more information, see How It Works.

Parameter Syntax

$result = $client->createNotebookInstance([
    'AcceleratorTypes' => ['<string>', ...],
    'AdditionalCodeRepositories' => ['<string>', ...],
    'DefaultCodeRepository' => '<string>',
    'DirectInternetAccess' => 'Enabled|Disabled',
    'InstanceMetadataServiceConfiguration' => [
        'MinimumInstanceMetadataServiceVersion' => '<string>', // REQUIRED
    ],
    'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge', // REQUIRED
    'KmsKeyId' => '<string>',
    'LifecycleConfigName' => '<string>',
    'NotebookInstanceName' => '<string>', // REQUIRED
    'PlatformIdentifier' => '<string>',
    'RoleArn' => '<string>', // REQUIRED
    'RootAccess' => 'Enabled|Disabled',
    'SecurityGroupIds' => ['<string>', ...],
    'SubnetId' => '<string>',
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'VolumeSizeInGB' => <integer>,
]);

Parameter Details

Members
AcceleratorTypes
Type: Array of strings

This parameter is no longer supported. Elastic Inference (EI) is no longer available.

This parameter was used to specify a list of EI instance types to associate with this notebook instance.

AdditionalCodeRepositories
Type: Array of strings

An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.

DefaultCodeRepository
Type: string

A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.

DirectInternetAccess
Type: string

Sets whether SageMaker AI provides internet access to the notebook instance. If you set this to Disabled this notebook instance is able to access resources only in your VPC, and is not be able to connect to SageMaker AI training and endpoint services unless you configure a NAT Gateway in your VPC.

For more information, see Notebook Instances Are Internet-Enabled by Default. You can set the value of this parameter to Disabled only if you set a value for the SubnetId parameter.

InstanceMetadataServiceConfiguration

Information on the IMDS configuration of the notebook instance

InstanceType
Required: Yes
Type: string

The type of ML compute instance to launch for the notebook instance.

KmsKeyId
Type: string

The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker AI uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see Enabling and Disabling Keys in the Amazon Web Services Key Management Service Developer Guide.

LifecycleConfigName
Type: string

The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

NotebookInstanceName
Required: Yes
Type: string

The name of the new notebook instance.

PlatformIdentifier
Type: string

The platform identifier of the notebook instance runtime environment.

RoleArn
Required: Yes
Type: string

When you send any requests to Amazon Web Services resources from the notebook instance, SageMaker AI assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so SageMaker AI can perform these tasks. The policy must allow the SageMaker AI service principal (sagemaker.amazonaws.com) permissions to assume this role. For more information, see SageMaker AI Roles.

To be able to pass this role to SageMaker AI, the caller of this API must have the iam:PassRole permission.

RootAccess
Type: string

Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled.

Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.

SecurityGroupIds
Type: Array of strings

The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.

SubnetId
Type: string

The ID of the subnet in a VPC to which you would like to have a connectivity from your ML compute instance.

Tags
Type: Array of Tag structures

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

VolumeSizeInGB
Type: int

The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.

Result Syntax

[
    'NotebookInstanceArn' => '<string>',
]

Result Details

Members
NotebookInstanceArn
Type: string

The Amazon Resource Name (ARN) of the notebook instance.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateNotebookInstanceLifecycleConfig

$result = $client->createNotebookInstanceLifecycleConfig([/* ... */]);
$promise = $client->createNotebookInstanceLifecycleConfigAsync([/* ... */]);

Creates a lifecycle configuration that you can associate with a notebook instance. A lifecycle configuration is a collection of shell scripts that run when you create or start a notebook instance.

Each lifecycle configuration script has a limit of 16384 characters.

The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin.

View Amazon CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook].

Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.

For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

Parameter Syntax

$result = $client->createNotebookInstanceLifecycleConfig([
    'NotebookInstanceLifecycleConfigName' => '<string>', // REQUIRED
    'OnCreate' => [
        [
            'Content' => '<string>',
        ],
        // ...
    ],
    'OnStart' => [
        [
            'Content' => '<string>',
        ],
        // ...
    ],
]);

Parameter Details

Members
NotebookInstanceLifecycleConfigName
Required: Yes
Type: string

The name of the lifecycle configuration.

OnCreate
Type: Array of NotebookInstanceLifecycleHook structures

A shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.

OnStart
Type: Array of NotebookInstanceLifecycleHook structures

A shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.

Result Syntax

[
    'NotebookInstanceLifecycleConfigArn' => '<string>',
]

Result Details

Members
NotebookInstanceLifecycleConfigArn
Type: string

The Amazon Resource Name (ARN) of the lifecycle configuration.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateOptimizationJob

$result = $client->createOptimizationJob([/* ... */]);
$promise = $client->createOptimizationJobAsync([/* ... */]);

Creates a job that optimizes a model for inference performance. To create the job, you provide the location of a source model, and you provide the settings for the optimization techniques that you want the job to apply. When the job completes successfully, SageMaker uploads the new optimized model to the output destination that you specify.

For more information about how to use this action, and about the supported optimization techniques, see Optimize model inference with Amazon SageMaker.

Parameter Syntax

$result = $client->createOptimizationJob([
    'DeploymentInstanceType' => 'ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge', // REQUIRED
    'ModelSource' => [ // REQUIRED
        'S3' => [
            'ModelAccessConfig' => [
                'AcceptEula' => true || false, // REQUIRED
            ],
            'S3Uri' => '<string>',
        ],
    ],
    'OptimizationConfigs' => [ // REQUIRED
        [
            'ModelCompilationConfig' => [
                'Image' => '<string>',
                'OverrideEnvironment' => ['<string>', ...],
            ],
            'ModelQuantizationConfig' => [
                'Image' => '<string>',
                'OverrideEnvironment' => ['<string>', ...],
            ],
            'ModelShardingConfig' => [
                'Image' => '<string>',
                'OverrideEnvironment' => ['<string>', ...],
            ],
        ],
        // ...
    ],
    'OptimizationEnvironment' => ['<string>', ...],
    'OptimizationJobName' => '<string>', // REQUIRED
    'OutputConfig' => [ // REQUIRED
        'KmsKeyId' => '<string>',
        'S3OutputLocation' => '<string>', // REQUIRED
    ],
    'RoleArn' => '<string>', // REQUIRED
    'StoppingCondition' => [ // REQUIRED
        'MaxPendingTimeInSeconds' => <integer>,
        'MaxRuntimeInSeconds' => <integer>,
        'MaxWaitTimeInSeconds' => <integer>,
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'VpcConfig' => [
        'SecurityGroupIds' => ['<string>', ...], // REQUIRED
        'Subnets' => ['<string>', ...], // REQUIRED
    ],
]);

Parameter Details

Members
DeploymentInstanceType
Required: Yes
Type: string

The type of instance that hosts the optimized model that you create with the optimization job.

ModelSource
Required: Yes
Type: OptimizationJobModelSource structure

The location of the source model to optimize with an optimization job.

OptimizationConfigs
Required: Yes
Type: Array of OptimizationConfig structures

Settings for each of the optimization techniques that the job applies.

OptimizationEnvironment
Type: Associative array of custom strings keys (NonEmptyString256) to strings

The environment variables to set in the model container.

OptimizationJobName
Required: Yes
Type: string

A custom name for the new optimization job.

OutputConfig
Required: Yes
Type: OptimizationJobOutputConfig structure

Details for where to store the optimized model that you create with the optimization job.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker AI to perform tasks on your behalf.

During model optimization, Amazon SageMaker AI needs your permission to:

  • Read input data from an S3 bucket

  • Write model artifacts to an S3 bucket

  • Write logs to Amazon CloudWatch Logs

  • Publish metrics to Amazon CloudWatch

You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker AI, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker AI Roles.

StoppingCondition
Required: Yes
Type: StoppingCondition structure

Specifies a limit to how long a job can run. When the job reaches the time limit, SageMaker ends the job. Use this API to cap costs.

To stop a training job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.

The training algorithms provided by SageMaker automatically save the intermediate results of a model training job when possible. This attempt to save artifacts is only a best effort case as model might not be in a state from which it can be saved. For example, if training has just started, the model might not be ready to save. When saved, this intermediate data is a valid model artifact. You can use it to create a model with CreateModel.

The Neural Topic Model (NTM) currently does not support saving intermediate model artifacts. When training NTMs, make sure that the maximum runtime is sufficient for the training job to complete.

Tags
Type: Array of Tag structures

A list of key-value pairs associated with the optimization job. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.

VpcConfig
Type: OptimizationVpcConfig structure

A VPC in Amazon VPC that your optimized model has access to.

Result Syntax

[
    'OptimizationJobArn' => '<string>',
]

Result Details

Members
OptimizationJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the optimization job.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreatePartnerApp

$result = $client->createPartnerApp([/* ... */]);
$promise = $client->createPartnerAppAsync([/* ... */]);

Creates an Amazon SageMaker Partner AI App.

Parameter Syntax

$result = $client->createPartnerApp([
    'ApplicationConfig' => [
        'AdminUsers' => ['<string>', ...],
        'Arguments' => ['<string>', ...],
    ],
    'AuthType' => 'IAM', // REQUIRED
    'ClientToken' => '<string>',
    'EnableIamSessionBasedIdentity' => true || false,
    'ExecutionRoleArn' => '<string>', // REQUIRED
    'MaintenanceConfig' => [
        'MaintenanceWindowStart' => '<string>',
    ],
    'Name' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'Tier' => '<string>', // REQUIRED
    'Type' => 'lakera-guard|comet|deepchecks-llm-evaluation|fiddler', // REQUIRED
]);

Parameter Details

Members
ApplicationConfig
Type: PartnerAppConfig structure

Configuration settings for the SageMaker Partner AI App.

AuthType
Required: Yes
Type: string

The authorization type that users use to access the SageMaker Partner AI App.

ClientToken
Type: string

A unique token that guarantees that the call to this API is idempotent.

EnableIamSessionBasedIdentity
Type: boolean

When set to TRUE, the SageMaker Partner AI App sets the Amazon Web Services IAM session name or the authenticated IAM user as the identity of the SageMaker Partner AI App user.

ExecutionRoleArn
Required: Yes
Type: string

The ARN of the IAM role that the partner application uses.

MaintenanceConfig
Type: PartnerAppMaintenanceConfig structure

Maintenance configuration settings for the SageMaker Partner AI App.

Name
Required: Yes
Type: string

The name to give the SageMaker Partner AI App.

Tags
Type: Array of Tag structures

Each tag consists of a key and an optional value. Tag keys must be unique per resource.

Tier
Required: Yes
Type: string

Indicates the instance type and size of the cluster attached to the SageMaker Partner AI App.

Type
Required: Yes
Type: string

The type of SageMaker Partner AI App to create. Must be one of the following: lakera-guard, comet, deepchecks-llm-evaluation, or fiddler.

Result Syntax

[
    'Arn' => '<string>',
]

Result Details

Members
Arn
Type: string

The ARN of the SageMaker Partner AI App.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

CreatePartnerAppPresignedUrl

$result = $client->createPartnerAppPresignedUrl([/* ... */]);
$promise = $client->createPartnerAppPresignedUrlAsync([/* ... */]);

Creates a presigned URL to access an Amazon SageMaker Partner AI App.

Parameter Syntax

$result = $client->createPartnerAppPresignedUrl([
    'Arn' => '<string>', // REQUIRED
    'ExpiresInSeconds' => <integer>,
    'SessionExpirationDurationInSeconds' => <integer>,
]);

Parameter Details

Members
Arn
Required: Yes
Type: string

The ARN of the SageMaker Partner AI App to create the presigned URL for.

ExpiresInSeconds
Type: int

The time that will pass before the presigned URL expires.

SessionExpirationDurationInSeconds
Type: int

Indicates how long the Amazon SageMaker Partner AI App session can be accessed for after logging in.

Result Syntax

[
    'Url' => '<string>',
]

Result Details

Members
Url
Type: string

The presigned URL that you can use to access the SageMaker Partner AI App.

Errors

ResourceNotFound:

Resource being access is not found.

CreatePipeline

$result = $client->createPipeline([/* ... */]);
$promise = $client->createPipelineAsync([/* ... */]);

Creates a pipeline using a JSON pipeline definition.

Parameter Syntax

$result = $client->createPipeline([
    'ClientRequestToken' => '<string>', // REQUIRED
    'ParallelismConfiguration' => [
        'MaxParallelExecutionSteps' => <integer>, // REQUIRED
    ],
    'PipelineDefinition' => '<string>',
    'PipelineDefinitionS3Location' => [
        'Bucket' => '<string>', // REQUIRED
        'ObjectKey' => '<string>', // REQUIRED
        'VersionId' => '<string>',
    ],
    'PipelineDescription' => '<string>',
    'PipelineDisplayName' => '<string>',
    'PipelineName' => '<string>', // REQUIRED
    'RoleArn' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
ClientRequestToken
Required: Yes
Type: string

A unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than one time.

ParallelismConfiguration
Type: ParallelismConfiguration structure

This is the configuration that controls the parallelism of the pipeline. If specified, it applies to all runs of this pipeline by default.

PipelineDefinition
Type: string

The JSON pipeline definition of the pipeline.

PipelineDefinitionS3Location

The location of the pipeline definition stored in Amazon S3. If specified, SageMaker will retrieve the pipeline definition from this location.

PipelineDescription
Type: string

A description of the pipeline.

PipelineDisplayName
Type: string

The display name of the pipeline.

PipelineName
Required: Yes
Type: string

The name of the pipeline.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the role used by the pipeline to access and create resources.

Tags
Type: Array of Tag structures

A list of tags to apply to the created pipeline.

Result Syntax

[
    'PipelineArn' => '<string>',
]

Result Details

Members
PipelineArn
Type: string

The Amazon Resource Name (ARN) of the created pipeline.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

CreatePresignedDomainUrl

$result = $client->createPresignedDomainUrl([/* ... */]);
$promise = $client->createPresignedDomainUrlAsync([/* ... */]);

Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to the domain, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System volume. This operation can only be called when the authentication mode equals IAM.

The IAM role or user passed to this API defines the permissions to access the app. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the app.

You can restrict access to this API and to the URL that it returns to a list of IP addresses, Amazon VPCs or Amazon VPC Endpoints that you specify. For more information, see Connect to Amazon SageMaker AI Studio Through an Interface VPC Endpoint .

  • The URL that you get from a call to CreatePresignedDomainUrl has a default timeout of 5 minutes. You can configure this value using ExpiresInSeconds. If you try to use the URL after the timeout limit expires, you are directed to the Amazon Web Services console sign-in page.

  • The JupyterLab session default expiration time is 12 hours. You can configure this value using SessionExpirationDurationInSeconds.

Parameter Syntax

$result = $client->createPresignedDomainUrl([
    'DomainId' => '<string>', // REQUIRED
    'ExpiresInSeconds' => <integer>,
    'LandingUri' => '<string>',
    'SessionExpirationDurationInSeconds' => <integer>,
    'SpaceName' => '<string>',
    'UserProfileName' => '<string>', // REQUIRED
]);

Parameter Details

Members
DomainId
Required: Yes
Type: string

The domain ID.

ExpiresInSeconds
Type: int

The number of seconds until the pre-signed URL expires. This value defaults to 300.

LandingUri
Type: string

The landing page that the user is directed to when accessing the presigned URL. Using this value, users can access Studio or Studio Classic, even if it is not the default experience for the domain. The supported values are:

  • studio::relative/path: Directs users to the relative path in Studio.

  • app:JupyterServer:relative/path: Directs users to the relative path in the Studio Classic application.

  • app:JupyterLab:relative/path: Directs users to the relative path in the JupyterLab application.

  • app:RStudioServerPro:relative/path: Directs users to the relative path in the RStudio application.

  • app:CodeEditor:relative/path: Directs users to the relative path in the Code Editor, based on Code-OSS, Visual Studio Code - Open Source application.

  • app:Canvas:relative/path: Directs users to the relative path in the Canvas application.

SessionExpirationDurationInSeconds
Type: int

The session expiration duration in seconds. This value defaults to 43200.

SpaceName
Type: string

The name of the space.

UserProfileName
Required: Yes
Type: string

The name of the UserProfile to sign-in as.

Result Syntax

[
    'AuthorizedUrl' => '<string>',
]

Result Details

Members
AuthorizedUrl
Type: string

The presigned URL.

Errors

ResourceNotFound:

Resource being access is not found.

CreatePresignedMlflowTrackingServerUrl

$result = $client->createPresignedMlflowTrackingServerUrl([/* ... */]);
$promise = $client->createPresignedMlflowTrackingServerUrlAsync([/* ... */]);

Returns a presigned URL that you can use to connect to the MLflow UI attached to your tracking server. For more information, see Launch the MLflow UI using a presigned URL.

Parameter Syntax

$result = $client->createPresignedMlflowTrackingServerUrl([
    'ExpiresInSeconds' => <integer>,
    'SessionExpirationDurationInSeconds' => <integer>,
    'TrackingServerName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ExpiresInSeconds
Type: int

The duration in seconds that your presigned URL is valid. The presigned URL can be used only once.

SessionExpirationDurationInSeconds
Type: int

The duration in seconds that your MLflow UI session is valid.

TrackingServerName
Required: Yes
Type: string

The name of the tracking server to connect to your MLflow UI.

Result Syntax

[
    'AuthorizedUrl' => '<string>',
]

Result Details

Members
AuthorizedUrl
Type: string

A presigned URL with an authorization token.

Errors

ResourceNotFound:

Resource being access is not found.

CreatePresignedNotebookInstanceUrl

$result = $client->createPresignedNotebookInstanceUrl([/* ... */]);
$promise = $client->createPresignedNotebookInstanceUrlAsync([/* ... */]);

Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the SageMaker AI console, when you choose Open next to a notebook instance, SageMaker AI opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page.

The IAM role or user used to call this API defines the permissions to access the notebook instance. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance.

You can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. Use the NotIpAddress condition operator and the aws:SourceIP condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see Limit Access to a Notebook Instance by IP Address.

The URL that you get from a call to CreatePresignedNotebookInstanceUrl is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the Amazon Web Services console sign-in page.

Parameter Syntax

$result = $client->createPresignedNotebookInstanceUrl([
    'NotebookInstanceName' => '<string>', // REQUIRED
    'SessionExpirationDurationInSeconds' => <integer>,
]);

Parameter Details

Members
NotebookInstanceName
Required: Yes
Type: string

The name of the notebook instance.

SessionExpirationDurationInSeconds
Type: int

The duration of the session, in seconds. The default is 12 hours.

Result Syntax

[
    'AuthorizedUrl' => '<string>',
]

Result Details

Members
AuthorizedUrl
Type: string

A JSON object that contains the URL string.

Errors

There are no errors described for this operation.

CreateProcessingJob

$result = $client->createProcessingJob([/* ... */]);
$promise = $client->createProcessingJobAsync([/* ... */]);

Creates a processing job.

Parameter Syntax

$result = $client->createProcessingJob([
    'AppSpecification' => [ // REQUIRED
        'ContainerArguments' => ['<string>', ...],
        'ContainerEntrypoint' => ['<string>', ...],
        'ImageUri' => '<string>', // REQUIRED
    ],
    'Environment' => ['<string>', ...],
    'ExperimentConfig' => [
        'ExperimentName' => '<string>',
        'RunName' => '<string>',
        'TrialComponentDisplayName' => '<string>',
        'TrialName' => '<string>',
    ],
    'NetworkConfig' => [
        'EnableInterContainerTrafficEncryption' => true || false,
        'EnableNetworkIsolation' => true || false,
        'VpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...], // REQUIRED
            'Subnets' => ['<string>', ...], // REQUIRED
        ],
    ],
    'ProcessingInputs' => [
        [
            'AppManaged' => true || false,
            'DatasetDefinition' => [
                'AthenaDatasetDefinition' => [
                    'Catalog' => '<string>', // REQUIRED
                    'Database' => '<string>', // REQUIRED
                    'KmsKeyId' => '<string>',
                    'OutputCompression' => 'GZIP|SNAPPY|ZLIB',
                    'OutputFormat' => 'PARQUET|ORC|AVRO|JSON|TEXTFILE', // REQUIRED
                    'OutputS3Uri' => '<string>', // REQUIRED
                    'QueryString' => '<string>', // REQUIRED
                    'WorkGroup' => '<string>',
                ],
                'DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                'InputMode' => 'Pipe|File',
                'LocalPath' => '<string>',
                'RedshiftDatasetDefinition' => [
                    'ClusterId' => '<string>', // REQUIRED
                    'ClusterRoleArn' => '<string>', // REQUIRED
                    'Database' => '<string>', // REQUIRED
                    'DbUser' => '<string>', // REQUIRED
                    'KmsKeyId' => '<string>',
                    'OutputCompression' => 'None|GZIP|BZIP2|ZSTD|SNAPPY',
                    'OutputFormat' => 'PARQUET|CSV', // REQUIRED
                    'OutputS3Uri' => '<string>', // REQUIRED
                    'QueryString' => '<string>', // REQUIRED
                ],
            ],
            'InputName' => '<string>', // REQUIRED
            'S3Input' => [
                'LocalPath' => '<string>',
                'S3CompressionType' => 'None|Gzip',
                'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                'S3DataType' => 'ManifestFile|S3Prefix', // REQUIRED
                'S3InputMode' => 'Pipe|File',
                'S3Uri' => '<string>', // REQUIRED
            ],
        ],
        // ...
    ],
    'ProcessingJobName' => '<string>', // REQUIRED
    'ProcessingOutputConfig' => [
        'KmsKeyId' => '<string>',
        'Outputs' => [ // REQUIRED
            [
                'AppManaged' => true || false,
                'FeatureStoreOutput' => [
                    'FeatureGroupName' => '<string>', // REQUIRED
                ],
                'OutputName' => '<string>', // REQUIRED
                'S3Output' => [
                    'LocalPath' => '<string>',
                    'S3UploadMode' => 'Continuous|EndOfJob', // REQUIRED
                    'S3Uri' => '<string>', // REQUIRED
                ],
            ],
            // ...
        ],
    ],
    'ProcessingResources' => [ // REQUIRED
        'ClusterConfig' => [ // REQUIRED
            'InstanceCount' => <integer>, // REQUIRED
            'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge', // REQUIRED
            'VolumeKmsKeyId' => '<string>',
            'VolumeSizeInGB' => <integer>, // REQUIRED
        ],
    ],
    'RoleArn' => '<string>', // REQUIRED
    'StoppingCondition' => [
        'MaxRuntimeInSeconds' => <integer>, // REQUIRED
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
AppSpecification
Required: Yes
Type: AppSpecification structure

Configures the processing job to run a specified Docker container image.

Environment
Type: Associative array of custom strings keys (ProcessingEnvironmentKey) to strings

The environment variables to set in the Docker container. Up to 100 key and values entries in the map are supported.

ExperimentConfig
Type: ExperimentConfig structure

Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

NetworkConfig
Type: NetworkConfig structure

Networking options for a processing job, such as whether to allow inbound and outbound network calls to and from processing containers, and the VPC subnets and security groups to use for VPC-enabled processing jobs.

ProcessingInputs
Type: Array of ProcessingInput structures

An array of inputs configuring the data to download into the processing container.

ProcessingJobName
Required: Yes
Type: string

The name of the processing job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

ProcessingOutputConfig
Type: ProcessingOutputConfig structure

Output configuration for the processing job.

ProcessingResources
Required: Yes
Type: ProcessingResources structure

Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

StoppingCondition
Type: ProcessingStoppingCondition structure

The time limit for how long the processing job is allowed to run.

Tags
Type: Array of Tag structures

(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.

Result Syntax

[
    'ProcessingJobArn' => '<string>',
]

Result Details

Members
ProcessingJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the processing job.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceNotFound:

Resource being access is not found.

CreateProject

$result = $client->createProject([/* ... */]);
$promise = $client->createProjectAsync([/* ... */]);

Creates a machine learning (ML) project that can contain one or more templates that set up an ML pipeline from training to deploying an approved model.

Parameter Syntax

$result = $client->createProject([
    'ProjectDescription' => '<string>',
    'ProjectName' => '<string>', // REQUIRED
    'ServiceCatalogProvisioningDetails' => [ // REQUIRED
        'PathId' => '<string>',
        'ProductId' => '<string>', // REQUIRED
        'ProvisioningArtifactId' => '<string>',
        'ProvisioningParameters' => [
            [
                'Key' => '<string>',
                'Value' => '<string>',
            ],
            // ...
        ],
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
ProjectDescription
Type: string

A description for the project.

ProjectName
Required: Yes
Type: string

The name of the project.

ServiceCatalogProvisioningDetails
Required: Yes
Type: ServiceCatalogProvisioningDetails structure

The product ID and provisioning artifact ID to provision a service catalog. The provisioning artifact ID will default to the latest provisioning artifact ID of the product, if you don't provide the provisioning artifact ID. For more information, see What is Amazon Web Services Service Catalog.

Tags
Type: Array of Tag structures

An array of key-value pairs that you want to use to organize and track your Amazon Web Services resource costs. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.

Result Syntax

[
    'ProjectArn' => '<string>',
    'ProjectId' => '<string>',
]

Result Details

Members
ProjectArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the project.

ProjectId
Required: Yes
Type: string

The ID of the new project.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateSpace

$result = $client->createSpace([/* ... */]);
$promise = $client->createSpaceAsync([/* ... */]);

Creates a private space or a space used for real time collaboration in a domain.

Parameter Syntax

$result = $client->createSpace([
    'DomainId' => '<string>', // REQUIRED
    'OwnershipSettings' => [
        'OwnerUserProfileName' => '<string>', // REQUIRED
    ],
    'SpaceDisplayName' => '<string>',
    'SpaceName' => '<string>', // REQUIRED
    'SpaceSettings' => [
        'AppType' => 'JupyterServer|KernelGateway|DetailedProfiler|TensorBoard|CodeEditor|JupyterLab|RStudioServerPro|RSessionGateway|Canvas',
        'CodeEditorAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
        'CustomFileSystems' => [
            [
                'EFSFileSystem' => [
                    'FileSystemId' => '<string>', // REQUIRED
                ],
                'FSxLustreFileSystem' => [
                    'FileSystemId' => '<string>', // REQUIRED
                ],
            ],
            // ...
        ],
        'JupyterLabAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
        'JupyterServerAppSettings' => [
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'KernelGatewayAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'SpaceStorageSettings' => [
            'EbsStorageSettings' => [
                'EbsVolumeSizeInGb' => <integer>, // REQUIRED
            ],
        ],
    ],
    'SpaceSharingSettings' => [
        'SharingType' => 'Private|Shared', // REQUIRED
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
DomainId
Required: Yes
Type: string

The ID of the associated domain.

OwnershipSettings
Type: OwnershipSettings structure

A collection of ownership settings.

SpaceDisplayName
Type: string

The name of the space that appears in the SageMaker Studio UI.

SpaceName
Required: Yes
Type: string

The name of the space.

SpaceSettings
Type: SpaceSettings structure

A collection of space settings.

SpaceSharingSettings
Type: SpaceSharingSettings structure

A collection of space sharing settings.

Tags
Type: Array of Tag structures

Tags to associated with the space. Each tag consists of a key and an optional value. Tag keys must be unique for each resource. Tags are searchable using the Search API.

Result Syntax

[
    'SpaceArn' => '<string>',
]

Result Details

Members
SpaceArn
Type: string

The space's Amazon Resource Name (ARN).

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceInUse:

Resource being accessed is in use.

CreateStudioLifecycleConfig

$result = $client->createStudioLifecycleConfig([/* ... */]);
$promise = $client->createStudioLifecycleConfigAsync([/* ... */]);

Creates a new Amazon SageMaker AI Studio Lifecycle Configuration.

Parameter Syntax

$result = $client->createStudioLifecycleConfig([
    'StudioLifecycleConfigAppType' => 'JupyterServer|KernelGateway|CodeEditor|JupyterLab', // REQUIRED
    'StudioLifecycleConfigContent' => '<string>', // REQUIRED
    'StudioLifecycleConfigName' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
StudioLifecycleConfigAppType
Required: Yes
Type: string

The App type that the Lifecycle Configuration is attached to.

StudioLifecycleConfigContent
Required: Yes
Type: string

The content of your Amazon SageMaker AI Studio Lifecycle Configuration script. This content must be base64 encoded.

StudioLifecycleConfigName
Required: Yes
Type: string

The name of the Amazon SageMaker AI Studio Lifecycle Configuration to create.

Tags
Type: Array of Tag structures

Tags to be associated with the Lifecycle Configuration. Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the Search API.

Result Syntax

[
    'StudioLifecycleConfigArn' => '<string>',
]

Result Details

Members
StudioLifecycleConfigArn
Type: string

The ARN of your created Lifecycle Configuration.

Errors

ResourceInUse:

Resource being accessed is in use.

CreateTrainingJob

$result = $client->createTrainingJob([/* ... */]);
$promise = $client->createTrainingJobAsync([/* ... */]);

Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify.

If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference.

In the request body, you provide the following:

  • AlgorithmSpecification - Identifies the training algorithm to use.

  • HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms.

    Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.

  • InputDataConfig - Describes the input required by the training job and the Amazon S3, EFS, or FSx location where it is stored.

  • OutputDataConfig - Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training.

  • ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance.

  • EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training.

  • RoleArn - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training.

  • StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long a managed spot training job has to complete.

  • Environment - The environment variables to set in the Docker container.

  • RetryStrategy - The number of times to retry the job when the job fails due to an InternalServerError.

For more information about SageMaker, see How It Works.

Parameter Syntax

$result = $client->createTrainingJob([
    'AlgorithmSpecification' => [ // REQUIRED
        'AlgorithmName' => '<string>',
        'ContainerArguments' => ['<string>', ...],
        'ContainerEntrypoint' => ['<string>', ...],
        'EnableSageMakerMetricsTimeSeries' => true || false,
        'MetricDefinitions' => [
            [
                'Name' => '<string>', // REQUIRED
                'Regex' => '<string>', // REQUIRED
            ],
            // ...
        ],
        'TrainingImage' => '<string>',
        'TrainingImageConfig' => [
            'TrainingRepositoryAccessMode' => 'Platform|Vpc', // REQUIRED
            'TrainingRepositoryAuthConfig' => [
                'TrainingRepositoryCredentialsProviderArn' => '<string>', // REQUIRED
            ],
        ],
        'TrainingInputMode' => 'Pipe|File|FastFile', // REQUIRED
    ],
    'CheckpointConfig' => [
        'LocalPath' => '<string>',
        'S3Uri' => '<string>', // REQUIRED
    ],
    'DebugHookConfig' => [
        'CollectionConfigurations' => [
            [
                'CollectionName' => '<string>',
                'CollectionParameters' => ['<string>', ...],
            ],
            // ...
        ],
        'HookParameters' => ['<string>', ...],
        'LocalPath' => '<string>',
        'S3OutputPath' => '<string>', // REQUIRED
    ],
    'DebugRuleConfigurations' => [
        [
            'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge',
            'LocalPath' => '<string>',
            'RuleConfigurationName' => '<string>', // REQUIRED
            'RuleEvaluatorImage' => '<string>', // REQUIRED
            'RuleParameters' => ['<string>', ...],
            'S3OutputPath' => '<string>',
            'VolumeSizeInGB' => <integer>,
        ],
        // ...
    ],
    'EnableInterContainerTrafficEncryption' => true || false,
    'EnableManagedSpotTraining' => true || false,
    'EnableNetworkIsolation' => true || false,
    'Environment' => ['<string>', ...],
    'ExperimentConfig' => [
        'ExperimentName' => '<string>',
        'RunName' => '<string>',
        'TrialComponentDisplayName' => '<string>',
        'TrialName' => '<string>',
    ],
    'HyperParameters' => ['<string>', ...],
    'InfraCheckConfig' => [
        'EnableInfraCheck' => true || false,
    ],
    'InputDataConfig' => [
        [
            'ChannelName' => '<string>', // REQUIRED
            'CompressionType' => 'None|Gzip',
            'ContentType' => '<string>',
            'DataSource' => [ // REQUIRED
                'FileSystemDataSource' => [
                    'DirectoryPath' => '<string>', // REQUIRED
                    'FileSystemAccessMode' => 'rw|ro', // REQUIRED
                    'FileSystemId' => '<string>', // REQUIRED
                    'FileSystemType' => 'EFS|FSxLustre', // REQUIRED
                ],
                'S3DataSource' => [
                    'AttributeNames' => ['<string>', ...],
                    'InstanceGroupNames' => ['<string>', ...],
                    'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                    'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile', // REQUIRED
                    'S3Uri' => '<string>', // REQUIRED
                ],
            ],
            'InputMode' => 'Pipe|File|FastFile',
            'RecordWrapperType' => 'None|RecordIO',
            'ShuffleConfig' => [
                'Seed' => <integer>, // REQUIRED
            ],
        ],
        // ...
    ],
    'OutputDataConfig' => [ // REQUIRED
        'CompressionType' => 'GZIP|NONE',
        'KmsKeyId' => '<string>',
        'S3OutputPath' => '<string>', // REQUIRED
    ],
    'ProfilerConfig' => [
        'DisableProfiler' => true || false,
        'ProfilingIntervalInMilliseconds' => <integer>,
        'ProfilingParameters' => ['<string>', ...],
        'S3OutputPath' => '<string>',
    ],
    'ProfilerRuleConfigurations' => [
        [
            'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge',
            'LocalPath' => '<string>',
            'RuleConfigurationName' => '<string>', // REQUIRED
            'RuleEvaluatorImage' => '<string>', // REQUIRED
            'RuleParameters' => ['<string>', ...],
            'S3OutputPath' => '<string>',
            'VolumeSizeInGB' => <integer>,
        ],
        // ...
    ],
    'RemoteDebugConfig' => [
        'EnableRemoteDebug' => true || false,
    ],
    'ResourceConfig' => [ // REQUIRED
        'InstanceCount' => <integer>,
        'InstanceGroups' => [
            [
                'InstanceCount' => <integer>, // REQUIRED
                'InstanceGroupName' => '<string>', // REQUIRED
                'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge', // REQUIRED
            ],
            // ...
        ],
        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
        'KeepAlivePeriodInSeconds' => <integer>,
        'TrainingPlanArn' => '<string>',
        'VolumeKmsKeyId' => '<string>',
        'VolumeSizeInGB' => <integer>, // REQUIRED
    ],
    'RetryStrategy' => [
        'MaximumRetryAttempts' => <integer>, // REQUIRED
    ],
    'RoleArn' => '<string>', // REQUIRED
    'SessionChainingConfig' => [
        'EnableSessionTagChaining' => true || false,
    ],
    'StoppingCondition' => [ // REQUIRED
        'MaxPendingTimeInSeconds' => <integer>,
        'MaxRuntimeInSeconds' => <integer>,
        'MaxWaitTimeInSeconds' => <integer>,
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'TensorBoardOutputConfig' => [
        'LocalPath' => '<string>',
        'S3OutputPath' => '<string>', // REQUIRED
    ],
    'TrainingJobName' => '<string>', // REQUIRED
    'VpcConfig' => [
        'SecurityGroupIds' => ['<string>', ...], // REQUIRED
        'Subnets' => ['<string>', ...], // REQUIRED
    ],
]);

Parameter Details

Members
AlgorithmSpecification
Required: Yes
Type: AlgorithmSpecification structure

The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by SageMaker, see Algorithms. For information about providing your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.

CheckpointConfig
Type: CheckpointConfig structure

Contains information about the output location for managed spot training checkpoint data.

DebugHookConfig
Type: DebugHookConfig structure

Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the DebugHookConfig parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

DebugRuleConfigurations
Type: Array of DebugRuleConfiguration structures

Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.

EnableInterContainerTrafficEncryption
Type: boolean

To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see Protect Communications Between ML Compute Instances in a Distributed Training Job.

EnableManagedSpotTraining
Type: boolean

To train models using managed spot training, choose True. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.

The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.

EnableNetworkIsolation
Type: boolean

Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

Environment
Type: Associative array of custom strings keys (TrainingEnvironmentKey) to strings

The environment variables to set in the Docker container.

ExperimentConfig
Type: ExperimentConfig structure

Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

HyperParameters
Type: Associative array of custom strings keys (HyperParameterKey) to strings

Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms.

You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the Length Constraint.

Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.

InfraCheckConfig
Type: InfraCheckConfig structure

Contains information about the infrastructure health check configuration for the training job.

InputDataConfig
Type: Array of Channel structures

An array of Channel objects. Each channel is a named input source. InputDataConfig describes the input data and its location.

Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, training_data and validation_data. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.

Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.

Your input must be in the same Amazon Web Services region as your training job.

OutputDataConfig
Required: Yes
Type: OutputDataConfig structure

Specifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts.

ProfilerConfig
Type: ProfilerConfig structure

Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.

ProfilerRuleConfigurations
Type: Array of ProfilerRuleConfiguration structures

Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.

RemoteDebugConfig
Type: RemoteDebugConfig structure

Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging.

ResourceConfig
Required: Yes
Type: ResourceConfig structure

The resources, including the ML compute instances and ML storage volumes, to use for model training.

ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want SageMaker to use the ML storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.

RetryStrategy
Type: RetryStrategy structure

The number of times to retry the job when the job fails due to an InternalServerError.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf.

During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see SageMaker Roles.

To be able to pass this role to SageMaker, the caller of this API must have the iam:PassRole permission.

SessionChainingConfig
Type: SessionChainingConfig structure

Contains information about attribute-based access control (ABAC) for the training job.

StoppingCondition
Required: Yes
Type: StoppingCondition structure

Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.

Tags
Type: Array of Tag structures

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

TensorBoardOutputConfig
Type: TensorBoardOutputConfig structure

Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.

TrainingJobName
Required: Yes
Type: string

The name of the training job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.

VpcConfig
Type: VpcConfig structure

A VpcConfig object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

Result Syntax

[
    'TrainingJobArn' => '<string>',
]

Result Details

Members
TrainingJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the training job.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceNotFound:

Resource being access is not found.

CreateTrainingPlan

$result = $client->createTrainingPlan([/* ... */]);
$promise = $client->createTrainingPlanAsync([/* ... */]);

Creates a new training plan in SageMaker to reserve compute capacity.

Amazon SageMaker Training Plan is a capability within SageMaker that allows customers to reserve and manage GPU capacity for large-scale AI model training. It provides a way to secure predictable access to computational resources within specific timelines and budgets, without the need to manage underlying infrastructure.

How it works

Plans can be created for specific resources such as SageMaker Training Jobs or SageMaker HyperPod clusters, automatically provisioning resources, setting up infrastructure, executing workloads, and handling infrastructure failures.

Plan creation workflow

  • Users search for available plan offerings based on their requirements (e.g., instance type, count, start time, duration) using the SearchTrainingPlanOfferings API operation.

  • They create a plan that best matches their needs using the ID of the plan offering they want to use.

  • After successful upfront payment, the plan's status becomes Scheduled.

  • The plan can be used to:

    • Queue training jobs.

    • Allocate to an instance group of a SageMaker HyperPod cluster.

  • When the plan start date arrives, it becomes Active. Based on available reserved capacity:

    • Training jobs are launched.

    • Instance groups are provisioned.

Plan composition

A plan can consist of one or more Reserved Capacities, each defined by a specific instance type, quantity, Availability Zone, duration, and start and end times. For more information about Reserved Capacity, see ReservedCapacitySummary .

Parameter Syntax

$result = $client->createTrainingPlan([
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'TrainingPlanName' => '<string>', // REQUIRED
    'TrainingPlanOfferingId' => '<string>', // REQUIRED
]);

Parameter Details

Members
Tags
Type: Array of Tag structures

An array of key-value pairs to apply to this training plan.

TrainingPlanName
Required: Yes
Type: string

The name of the training plan to create.

TrainingPlanOfferingId
Required: Yes
Type: string

The unique identifier of the training plan offering to use for creating this plan.

Result Syntax

[
    'TrainingPlanArn' => '<string>',
]

Result Details

Members
TrainingPlanArn
Required: Yes
Type: string

The Amazon Resource Name (ARN); of the created training plan.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceNotFound:

Resource being access is not found.

ResourceInUse:

Resource being accessed is in use.

CreateTransformJob

$result = $client->createTransformJob([/* ... */]);
$promise = $client->createTransformJobAsync([/* ... */]);

Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify.

To perform batch transformations, you create a transform job and use the data that you have readily available.

In the request body, you provide the following:

  • TransformJobName - Identifies the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.

  • ModelName - Identifies the model to use. ModelName must be the name of an existing Amazon SageMaker model in the same Amazon Web Services Region and Amazon Web Services account. For information on creating a model, see CreateModel.

  • TransformInput - Describes the dataset to be transformed and the Amazon S3 location where it is stored.

  • TransformOutput - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

  • TransformResources - Identifies the ML compute instances for the transform job.

For more information about how batch transformation works, see Batch Transform.

Parameter Syntax

$result = $client->createTransformJob([
    'BatchStrategy' => 'MultiRecord|SingleRecord',
    'DataCaptureConfig' => [
        'DestinationS3Uri' => '<string>', // REQUIRED
        'GenerateInferenceId' => true || false,
        'KmsKeyId' => '<string>',
    ],
    'DataProcessing' => [
        'InputFilter' => '<string>',
        'JoinSource' => 'Input|None',
        'OutputFilter' => '<string>',
    ],
    'Environment' => ['<string>', ...],
    'ExperimentConfig' => [
        'ExperimentName' => '<string>',
        'RunName' => '<string>',
        'TrialComponentDisplayName' => '<string>',
        'TrialName' => '<string>',
    ],
    'MaxConcurrentTransforms' => <integer>,
    'MaxPayloadInMB' => <integer>,
    'ModelClientConfig' => [
        'InvocationsMaxRetries' => <integer>,
        'InvocationsTimeoutInSeconds' => <integer>,
    ],
    'ModelName' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'TransformInput' => [ // REQUIRED
        'CompressionType' => 'None|Gzip',
        'ContentType' => '<string>',
        'DataSource' => [ // REQUIRED
            'S3DataSource' => [ // REQUIRED
                'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile', // REQUIRED
                'S3Uri' => '<string>', // REQUIRED
            ],
        ],
        'SplitType' => 'None|Line|RecordIO|TFRecord',
    ],
    'TransformJobName' => '<string>', // REQUIRED
    'TransformOutput' => [ // REQUIRED
        'Accept' => '<string>',
        'AssembleWith' => 'None|Line',
        'KmsKeyId' => '<string>',
        'S3OutputPath' => '<string>', // REQUIRED
    ],
    'TransformResources' => [ // REQUIRED
        'InstanceCount' => <integer>, // REQUIRED
        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge', // REQUIRED
        'VolumeKmsKeyId' => '<string>',
    ],
]);

Parameter Details

Members
BatchStrategy
Type: string

Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.

To enable the batch strategy, you must set the SplitType property to Line, RecordIO, or TFRecord.

To use only one record when making an HTTP invocation request to a container, set BatchStrategy to SingleRecord and SplitType to Line.

To fit as many records in a mini-batch as can fit within the MaxPayloadInMB limit, set BatchStrategy to MultiRecord and SplitType to Line.

DataCaptureConfig
Type: BatchDataCaptureConfig structure

Configuration to control how SageMaker captures inference data.

DataProcessing
Type: DataProcessing structure

The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.

Environment
Type: Associative array of custom strings keys (TransformEnvironmentKey) to strings

The environment variables to set in the Docker container. Don't include any sensitive data in your environment variables. We support up to 16 key and values entries in the map.

ExperimentConfig
Type: ExperimentConfig structure

Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

MaxConcurrentTransforms
Type: int

The maximum number of parallel requests that can be sent to each instance in a transform job. If MaxConcurrentTransforms is set to 0 or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is 1. For more information on execution-parameters, see How Containers Serve Requests. For built-in algorithms, you don't need to set a value for MaxConcurrentTransforms.

MaxPayloadInMB
Type: int

The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in MaxPayloadInMB must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is 6 MB.

The value of MaxPayloadInMB cannot be greater than 100 MB. If you specify the MaxConcurrentTransforms parameter, the value of (MaxConcurrentTransforms * MaxPayloadInMB) also cannot exceed 100 MB.

For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to 0. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.

ModelClientConfig
Type: ModelClientConfig structure

Configures the timeout and maximum number of retries for processing a transform job invocation.

ModelName
Required: Yes
Type: string

The name of the model that you want to use for the transform job. ModelName must be the name of an existing Amazon SageMaker model within an Amazon Web Services Region in an Amazon Web Services account.

Tags
Type: Array of Tag structures

(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.

TransformInput
Required: Yes
Type: TransformInput structure

Describes the input source and the way the transform job consumes it.

TransformJobName
Required: Yes
Type: string

The name of the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.

TransformOutput
Required: Yes
Type: TransformOutput structure

Describes the results of the transform job.

TransformResources
Required: Yes
Type: TransformResources structure

Describes the resources, including ML instance types and ML instance count, to use for the transform job.

Result Syntax

[
    'TransformJobArn' => '<string>',
]

Result Details

Members
TransformJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the transform job.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceNotFound:

Resource being access is not found.

CreateTrial

$result = $client->createTrial([/* ... */]);
$promise = $client->createTrialAsync([/* ... */]);

Creates an SageMaker trial. A trial is a set of steps called trial components that produce a machine learning model. A trial is part of a single SageMaker experiment.

When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK.

You can add tags to a trial and then use the Search API to search for the tags.

To get a list of all your trials, call the ListTrials API. To view a trial's properties, call the DescribeTrial API. To create a trial component, call the CreateTrialComponent API.

Parameter Syntax

$result = $client->createTrial([
    'DisplayName' => '<string>',
    'ExperimentName' => '<string>', // REQUIRED
    'MetadataProperties' => [
        'CommitId' => '<string>',
        'GeneratedBy' => '<string>',
        'ProjectId' => '<string>',
        'Repository' => '<string>',
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'TrialName' => '<string>', // REQUIRED
]);

Parameter Details

Members
DisplayName
Type: string

The name of the trial as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialName is displayed.

ExperimentName
Required: Yes
Type: string

The name of the experiment to associate the trial with.

MetadataProperties
Type: MetadataProperties structure

Metadata properties of the tracking entity, trial, or trial component.

Tags
Type: Array of Tag structures

A list of tags to associate with the trial. You can use Search API to search on the tags.

TrialName
Required: Yes
Type: string

The name of the trial. The name must be unique in your Amazon Web Services account and is not case-sensitive.

Result Syntax

[
    'TrialArn' => '<string>',
]

Result Details

Members
TrialArn
Type: string

The Amazon Resource Name (ARN) of the trial.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateTrialComponent

$result = $client->createTrialComponent([/* ... */]);
$promise = $client->createTrialComponentAsync([/* ... */]);

Creates a trial component, which is a stage of a machine learning trial. A trial is composed of one or more trial components. A trial component can be used in multiple trials.

Trial components include pre-processing jobs, training jobs, and batch transform jobs.

When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK.

You can add tags to a trial component and then use the Search API to search for the tags.

Parameter Syntax

$result = $client->createTrialComponent([
    'DisplayName' => '<string>',
    'EndTime' => <integer || string || DateTime>,
    'InputArtifacts' => [
        '<TrialComponentKey128>' => [
            'MediaType' => '<string>',
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'MetadataProperties' => [
        'CommitId' => '<string>',
        'GeneratedBy' => '<string>',
        'ProjectId' => '<string>',
        'Repository' => '<string>',
    ],
    'OutputArtifacts' => [
        '<TrialComponentKey128>' => [
            'MediaType' => '<string>',
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'Parameters' => [
        '<TrialComponentKey320>' => [
            'NumberValue' => <float>,
            'StringValue' => '<string>',
        ],
        // ...
    ],
    'StartTime' => <integer || string || DateTime>,
    'Status' => [
        'Message' => '<string>',
        'PrimaryStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'TrialComponentName' => '<string>', // REQUIRED
]);

Parameter Details

Members
DisplayName
Type: string

The name of the component as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialComponentName is displayed.

EndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component ended.

InputArtifacts
Type: Associative array of custom strings keys (TrialComponentKey128) to TrialComponentArtifact structures

The input artifacts for the component. Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types.

MetadataProperties
Type: MetadataProperties structure

Metadata properties of the tracking entity, trial, or trial component.

OutputArtifacts
Type: Associative array of custom strings keys (TrialComponentKey128) to TrialComponentArtifact structures

The output artifacts for the component. Examples of output artifacts are metrics, snapshots, logs, and images.

Parameters
Type: Associative array of custom strings keys (TrialComponentKey320) to TrialComponentParameterValue structures

The hyperparameters for the component.

StartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component started.

Status
Type: TrialComponentStatus structure

The status of the component. States include:

  • InProgress

  • Completed

  • Failed

Tags
Type: Array of Tag structures

A list of tags to associate with the component. You can use Search API to search on the tags.

TrialComponentName
Required: Yes
Type: string

The name of the component. The name must be unique in your Amazon Web Services account and is not case-sensitive.

Result Syntax

[
    'TrialComponentArn' => '<string>',
]

Result Details

Members
TrialComponentArn
Type: string

The Amazon Resource Name (ARN) of the trial component.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

CreateUserProfile

$result = $client->createUserProfile([/* ... */]);
$promise = $client->createUserProfileAsync([/* ... */]);

Creates a user profile. A user profile represents a single user within a domain, and is the main way to reference a "person" for the purposes of sharing, reporting, and other user-oriented features. This entity is created when a user onboards to a domain. If an administrator invites a person by email or imports them from IAM Identity Center, a user profile is automatically created. A user profile is the primary holder of settings for an individual user and has a reference to the user's private Amazon Elastic File System home directory.

Parameter Syntax

$result = $client->createUserProfile([
    'DomainId' => '<string>', // REQUIRED
    'SingleSignOnUserIdentifier' => '<string>',
    'SingleSignOnUserValue' => '<string>',
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'UserProfileName' => '<string>', // REQUIRED
    'UserSettings' => [
        'AutoMountHomeEFS' => 'Enabled|Disabled|DefaultAsDomain',
        'CanvasAppSettings' => [
            'DirectDeploySettings' => [
                'Status' => 'ENABLED|DISABLED',
            ],
            'EmrServerlessSettings' => [
                'ExecutionRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'GenerativeAiSettings' => [
                'AmazonBedrockRoleArn' => '<string>',
            ],
            'IdentityProviderOAuthSettings' => [
                [
                    'DataSourceName' => 'SalesforceGenie|Snowflake',
                    'SecretArn' => '<string>',
                    'Status' => 'ENABLED|DISABLED',
                ],
                // ...
            ],
            'KendraSettings' => [
                'Status' => 'ENABLED|DISABLED',
            ],
            'ModelRegisterSettings' => [
                'CrossAccountModelRegisterRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'TimeSeriesForecastingSettings' => [
                'AmazonForecastRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'WorkspaceSettings' => [
                'S3ArtifactPath' => '<string>',
                'S3KmsKeyId' => '<string>',
            ],
        ],
        'CodeEditorAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                    'LifecycleManagement' => 'ENABLED|DISABLED',
                    'MaxIdleTimeoutInMinutes' => <integer>,
                    'MinIdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'BuiltInLifecycleConfigArn' => '<string>',
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'CustomFileSystemConfigs' => [
            [
                'EFSFileSystemConfig' => [
                    'FileSystemId' => '<string>', // REQUIRED
                    'FileSystemPath' => '<string>',
                ],
                'FSxLustreFileSystemConfig' => [
                    'FileSystemId' => '<string>', // REQUIRED
                    'FileSystemPath' => '<string>',
                ],
            ],
            // ...
        ],
        'CustomPosixUserConfig' => [
            'Gid' => <integer>, // REQUIRED
            'Uid' => <integer>, // REQUIRED
        ],
        'DefaultLandingUri' => '<string>',
        'ExecutionRole' => '<string>',
        'JupyterLabAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                    'LifecycleManagement' => 'ENABLED|DISABLED',
                    'MaxIdleTimeoutInMinutes' => <integer>,
                    'MinIdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'BuiltInLifecycleConfigArn' => '<string>',
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'EmrSettings' => [
                'AssumableRoleArns' => ['<string>', ...],
                'ExecutionRoleArns' => ['<string>', ...],
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'JupyterServerAppSettings' => [
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'KernelGatewayAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'RSessionAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
        'RStudioServerProAppSettings' => [
            'AccessStatus' => 'ENABLED|DISABLED',
            'UserGroup' => 'R_STUDIO_ADMIN|R_STUDIO_USER',
        ],
        'SecurityGroups' => ['<string>', ...],
        'SharingSettings' => [
            'NotebookOutputOption' => 'Allowed|Disabled',
            'S3KmsKeyId' => '<string>',
            'S3OutputPath' => '<string>',
        ],
        'SpaceStorageSettings' => [
            'DefaultEbsStorageSettings' => [
                'DefaultEbsVolumeSizeInGb' => <integer>, // REQUIRED
                'MaximumEbsVolumeSizeInGb' => <integer>, // REQUIRED
            ],
        ],
        'StudioWebPortal' => 'ENABLED|DISABLED',
        'StudioWebPortalSettings' => [
            'HiddenAppTypes' => ['<string>', ...],
            'HiddenInstanceTypes' => ['<string>', ...],
            'HiddenMlTools' => ['<string>', ...],
            'HiddenSageMakerImageVersionAliases' => [
                [
                    'SageMakerImageName' => 'sagemaker_distribution',
                    'VersionAliases' => ['<string>', ...],
                ],
                // ...
            ],
        ],
        'TensorBoardAppSettings' => [
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
    ],
]);

Parameter Details

Members
DomainId
Required: Yes
Type: string

The ID of the associated Domain.

SingleSignOnUserIdentifier
Type: string

A specifier for the type of value specified in SingleSignOnUserValue. Currently, the only supported value is "UserName". If the Domain's AuthMode is IAM Identity Center, this field is required. If the Domain's AuthMode is not IAM Identity Center, this field cannot be specified.

SingleSignOnUserValue
Type: string

The username of the associated Amazon Web Services Single Sign-On User for this UserProfile. If the Domain's AuthMode is IAM Identity Center, this field is required, and must match a valid username of a user in your directory. If the Domain's AuthMode is not IAM Identity Center, this field cannot be specified.

Tags
Type: Array of Tag structures

Each tag consists of a key and an optional value. Tag keys must be unique per resource.

Tags that you specify for the User Profile are also added to all Apps that the User Profile launches.

UserProfileName
Required: Yes
Type: string

A name for the UserProfile. This value is not case sensitive.

UserSettings
Type: UserSettings structure

A collection of settings.

Result Syntax

[
    'UserProfileArn' => '<string>',
]

Result Details

Members
UserProfileArn
Type: string

The user profile Amazon Resource Name (ARN).

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceInUse:

Resource being accessed is in use.

CreateWorkforce

$result = $client->createWorkforce([/* ... */]);
$promise = $client->createWorkforceAsync([/* ... */]);

Use this operation to create a workforce. This operation will return an error if a workforce already exists in the Amazon Web Services Region that you specify. You can only create one workforce in each Amazon Web Services Region per Amazon Web Services account.

If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use the DeleteWorkforce API operation to delete the existing workforce and then use CreateWorkforce to create a new workforce.

To create a private workforce using Amazon Cognito, you must specify a Cognito user pool in CognitoConfig. You can also create an Amazon Cognito workforce using the Amazon SageMaker console. For more information, see Create a Private Workforce (Amazon Cognito).

To create a private workforce using your own OIDC Identity Provider (IdP), specify your IdP configuration in OidcConfig. Your OIDC IdP must support groups because groups are used by Ground Truth and Amazon A2I to create work teams. For more information, see Create a Private Workforce (OIDC IdP).

Parameter Syntax

$result = $client->createWorkforce([
    'CognitoConfig' => [
        'ClientId' => '<string>', // REQUIRED
        'UserPool' => '<string>', // REQUIRED
    ],
    'OidcConfig' => [
        'AuthenticationRequestExtraParams' => ['<string>', ...],
        'AuthorizationEndpoint' => '<string>', // REQUIRED
        'ClientId' => '<string>', // REQUIRED
        'ClientSecret' => '<string>', // REQUIRED
        'Issuer' => '<string>', // REQUIRED
        'JwksUri' => '<string>', // REQUIRED
        'LogoutEndpoint' => '<string>', // REQUIRED
        'Scope' => '<string>',
        'TokenEndpoint' => '<string>', // REQUIRED
        'UserInfoEndpoint' => '<string>', // REQUIRED
    ],
    'SourceIpConfig' => [
        'Cidrs' => ['<string>', ...], // REQUIRED
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'WorkforceName' => '<string>', // REQUIRED
    'WorkforceVpcConfig' => [
        'SecurityGroupIds' => ['<string>', ...],
        'Subnets' => ['<string>', ...],
        'VpcId' => '<string>',
    ],
]);

Parameter Details

Members
CognitoConfig
Type: CognitoConfig structure

Use this parameter to configure an Amazon Cognito private workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool.

Do not use OidcConfig if you specify values for CognitoConfig.

OidcConfig
Type: OidcConfig structure

Use this parameter to configure a private workforce using your own OIDC Identity Provider.

Do not use CognitoConfig if you specify values for OidcConfig.

SourceIpConfig
Type: SourceIpConfig structure

A list of IP address ranges (CIDRs). Used to create an allow list of IP addresses for a private workforce. Workers will only be able to log in to their worker portal from an IP address within this range. By default, a workforce isn't restricted to specific IP addresses.

Tags
Type: Array of Tag structures

An array of key-value pairs that contain metadata to help you categorize and organize our workforce. Each tag consists of a key and a value, both of which you define.

WorkforceName
Required: Yes
Type: string

The name of the private workforce.

WorkforceVpcConfig
Type: WorkforceVpcConfigRequest structure

Use this parameter to configure a workforce using VPC.

Result Syntax

[
    'WorkforceArn' => '<string>',
]

Result Details

Members
WorkforceArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the workforce.

Errors

There are no errors described for this operation.

CreateWorkteam

$result = $client->createWorkteam([/* ... */]);
$promise = $client->createWorkteamAsync([/* ... */]);

Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team.

You cannot create more than 25 work teams in an account and region.

Parameter Syntax

$result = $client->createWorkteam([
    'Description' => '<string>', // REQUIRED
    'MemberDefinitions' => [ // REQUIRED
        [
            'CognitoMemberDefinition' => [
                'ClientId' => '<string>', // REQUIRED
                'UserGroup' => '<string>', // REQUIRED
                'UserPool' => '<string>', // REQUIRED
            ],
            'OidcMemberDefinition' => [
                'Groups' => ['<string>', ...],
            ],
        ],
        // ...
    ],
    'NotificationConfiguration' => [
        'NotificationTopicArn' => '<string>',
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'WorkerAccessConfiguration' => [
        'S3Presign' => [
            'IamPolicyConstraints' => [
                'SourceIp' => 'Enabled|Disabled',
                'VpcSourceIp' => 'Enabled|Disabled',
            ],
        ],
    ],
    'WorkforceName' => '<string>',
    'WorkteamName' => '<string>', // REQUIRED
]);

Parameter Details

Members
Description
Required: Yes
Type: string

A description of the work team.

MemberDefinitions
Required: Yes
Type: Array of MemberDefinition structures

A list of MemberDefinition objects that contains objects that identify the workers that make up the work team.

Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use CognitoMemberDefinition. For workforces created using your own OIDC identity provider (IdP) use OidcMemberDefinition. Do not provide input for both of these parameters in a single request.

For workforces created using Amazon Cognito, private work teams correspond to Amazon Cognito user groups within the user pool used to create a workforce. All of the CognitoMemberDefinition objects that make up the member definition must have the same ClientId and UserPool values. To add a Amazon Cognito user group to an existing worker pool, see Adding groups to a User Pool. For more information about user pools, see Amazon Cognito User Pools.

For workforces created using your own OIDC IdP, specify the user groups that you want to include in your private work team in OidcMemberDefinition by listing those groups in Groups.

NotificationConfiguration
Type: NotificationConfiguration structure

Configures notification of workers regarding available or expiring work items.

Tags
Type: Array of Tag structures

An array of key-value pairs.

For more information, see Resource Tag and Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.

WorkerAccessConfiguration
Type: WorkerAccessConfiguration structure

Use this optional parameter to constrain access to an Amazon S3 resource based on the IP address using supported IAM global condition keys. The Amazon S3 resource is accessed in the worker portal using a Amazon S3 presigned URL.

WorkforceName
Type: string

The name of the workforce.

WorkteamName
Required: Yes
Type: string

The name of the work team. Use this name to identify the work team.

Result Syntax

[
    'WorkteamArn' => '<string>',
]

Result Details

Members
WorkteamArn
Type: string

The Amazon Resource Name (ARN) of the work team. You can use this ARN to identify the work team.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

DeleteAction

$result = $client->deleteAction([/* ... */]);
$promise = $client->deleteActionAsync([/* ... */]);

Deletes an action.

Parameter Syntax

$result = $client->deleteAction([
    'ActionName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ActionName
Required: Yes
Type: string

The name of the action to delete.

Result Syntax

[
    'ActionArn' => '<string>',
]

Result Details

Members
ActionArn
Type: string

The Amazon Resource Name (ARN) of the action.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteAlgorithm

$result = $client->deleteAlgorithm([/* ... */]);
$promise = $client->deleteAlgorithmAsync([/* ... */]);

Removes the specified algorithm from your account.

Parameter Syntax

$result = $client->deleteAlgorithm([
    'AlgorithmName' => '<string>', // REQUIRED
]);

Parameter Details

Members
AlgorithmName
Required: Yes
Type: string

The name of the algorithm to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

DeleteApp

$result = $client->deleteApp([/* ... */]);
$promise = $client->deleteAppAsync([/* ... */]);

Used to stop and delete an app.

Parameter Syntax

$result = $client->deleteApp([
    'AppName' => '<string>', // REQUIRED
    'AppType' => 'JupyterServer|KernelGateway|DetailedProfiler|TensorBoard|CodeEditor|JupyterLab|RStudioServerPro|RSessionGateway|Canvas', // REQUIRED
    'DomainId' => '<string>', // REQUIRED
    'SpaceName' => '<string>',
    'UserProfileName' => '<string>',
]);

Parameter Details

Members
AppName
Required: Yes
Type: string

The name of the app.

AppType
Required: Yes
Type: string

The type of app.

DomainId
Required: Yes
Type: string

The domain ID.

SpaceName
Type: string

The name of the space. If this value is not set, then UserProfileName must be set.

UserProfileName
Type: string

The user profile name. If this value is not set, then SpaceName must be set.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceNotFound:

Resource being access is not found.

DeleteAppImageConfig

$result = $client->deleteAppImageConfig([/* ... */]);
$promise = $client->deleteAppImageConfigAsync([/* ... */]);

Deletes an AppImageConfig.

Parameter Syntax

$result = $client->deleteAppImageConfig([
    'AppImageConfigName' => '<string>', // REQUIRED
]);

Parameter Details

Members
AppImageConfigName
Required: Yes
Type: string

The name of the AppImageConfig to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteArtifact

$result = $client->deleteArtifact([/* ... */]);
$promise = $client->deleteArtifactAsync([/* ... */]);

Deletes an artifact. Either ArtifactArn or Source must be specified.

Parameter Syntax

$result = $client->deleteArtifact([
    'ArtifactArn' => '<string>',
    'Source' => [
        'SourceTypes' => [
            [
                'SourceIdType' => 'MD5Hash|S3ETag|S3Version|Custom', // REQUIRED
                'Value' => '<string>', // REQUIRED
            ],
            // ...
        ],
        'SourceUri' => '<string>', // REQUIRED
    ],
]);

Parameter Details

Members
ArtifactArn
Type: string

The Amazon Resource Name (ARN) of the artifact to delete.

Source
Type: ArtifactSource structure

The URI of the source.

Result Syntax

[
    'ArtifactArn' => '<string>',
]

Result Details

Members
ArtifactArn
Type: string

The Amazon Resource Name (ARN) of the artifact.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteAssociation

$result = $client->deleteAssociation([/* ... */]);
$promise = $client->deleteAssociationAsync([/* ... */]);

Deletes an association.

Parameter Syntax

$result = $client->deleteAssociation([
    'DestinationArn' => '<string>', // REQUIRED
    'SourceArn' => '<string>', // REQUIRED
]);

Parameter Details

Members
DestinationArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the destination.

SourceArn
Required: Yes
Type: string

The ARN of the source.

Result Syntax

[
    'DestinationArn' => '<string>',
    'SourceArn' => '<string>',
]

Result Details

Members
DestinationArn
Type: string

The Amazon Resource Name (ARN) of the destination.

SourceArn
Type: string

The ARN of the source.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteCluster

$result = $client->deleteCluster([/* ... */]);
$promise = $client->deleteClusterAsync([/* ... */]);

Delete a SageMaker HyperPod cluster.

Parameter Syntax

$result = $client->deleteCluster([
    'ClusterName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ClusterName
Required: Yes
Type: string

The string name or the Amazon Resource Name (ARN) of the SageMaker HyperPod cluster to delete.

Result Syntax

[
    'ClusterArn' => '<string>',
]

Result Details

Members
ClusterArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the SageMaker HyperPod cluster to delete.

Errors

ResourceNotFound:

Resource being access is not found.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

DeleteClusterSchedulerConfig

$result = $client->deleteClusterSchedulerConfig([/* ... */]);
$promise = $client->deleteClusterSchedulerConfigAsync([/* ... */]);

Deletes the cluster policy of the cluster.

Parameter Syntax

$result = $client->deleteClusterSchedulerConfig([
    'ClusterSchedulerConfigId' => '<string>', // REQUIRED
]);

Parameter Details

Members
ClusterSchedulerConfigId
Required: Yes
Type: string

ID of the cluster policy.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteCodeRepository

$result = $client->deleteCodeRepository([/* ... */]);
$promise = $client->deleteCodeRepositoryAsync([/* ... */]);

Deletes the specified Git repository from your account.

Parameter Syntax

$result = $client->deleteCodeRepository([
    'CodeRepositoryName' => '<string>', // REQUIRED
]);

Parameter Details

Members
CodeRepositoryName
Required: Yes
Type: string

The name of the Git repository to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

DeleteCompilationJob

$result = $client->deleteCompilationJob([/* ... */]);
$promise = $client->deleteCompilationJobAsync([/* ... */]);

Deletes the specified compilation job. This action deletes only the compilation job resource in Amazon SageMaker AI. It doesn't delete other resources that are related to that job, such as the model artifacts that the job creates, the compilation logs in CloudWatch, the compiled model, or the IAM role.

You can delete a compilation job only if its current status is COMPLETED, FAILED, or STOPPED. If the job status is STARTING or INPROGRESS, stop the job, and then delete it after its status becomes STOPPED.

Parameter Syntax

$result = $client->deleteCompilationJob([
    'CompilationJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
CompilationJobName
Required: Yes
Type: string

The name of the compilation job to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteComputeQuota

$result = $client->deleteComputeQuota([/* ... */]);
$promise = $client->deleteComputeQuotaAsync([/* ... */]);

Deletes the compute allocation from the cluster.

Parameter Syntax

$result = $client->deleteComputeQuota([
    'ComputeQuotaId' => '<string>', // REQUIRED
]);

Parameter Details

Members
ComputeQuotaId
Required: Yes
Type: string

ID of the compute allocation definition.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteContext

$result = $client->deleteContext([/* ... */]);
$promise = $client->deleteContextAsync([/* ... */]);

Deletes an context.

Parameter Syntax

$result = $client->deleteContext([
    'ContextName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ContextName
Required: Yes
Type: string

The name of the context to delete.

Result Syntax

[
    'ContextArn' => '<string>',
]

Result Details

Members
ContextArn
Type: string

The Amazon Resource Name (ARN) of the context.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteDataQualityJobDefinition

$result = $client->deleteDataQualityJobDefinition([/* ... */]);
$promise = $client->deleteDataQualityJobDefinitionAsync([/* ... */]);

Deletes a data quality monitoring job definition.

Parameter Syntax

$result = $client->deleteDataQualityJobDefinition([
    'JobDefinitionName' => '<string>', // REQUIRED
]);

Parameter Details

Members
JobDefinitionName
Required: Yes
Type: string

The name of the data quality monitoring job definition to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteDeviceFleet

$result = $client->deleteDeviceFleet([/* ... */]);
$promise = $client->deleteDeviceFleetAsync([/* ... */]);

Deletes a fleet.

Parameter Syntax

$result = $client->deleteDeviceFleet([
    'DeviceFleetName' => '<string>', // REQUIRED
]);

Parameter Details

Members
DeviceFleetName
Required: Yes
Type: string

The name of the fleet to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceInUse:

Resource being accessed is in use.

DeleteDomain

$result = $client->deleteDomain([/* ... */]);
$promise = $client->deleteDomainAsync([/* ... */]);

Used to delete a domain. If you onboarded with IAM mode, you will need to delete your domain to onboard again using IAM Identity Center. Use with caution. All of the members of the domain will lose access to their EFS volume, including data, notebooks, and other artifacts.

Parameter Syntax

$result = $client->deleteDomain([
    'DomainId' => '<string>', // REQUIRED
    'RetentionPolicy' => [
        'HomeEfsFileSystem' => 'Retain|Delete',
    ],
]);

Parameter Details

Members
DomainId
Required: Yes
Type: string

The domain ID.

RetentionPolicy
Type: RetentionPolicy structure

The retention policy for this domain, which specifies whether resources will be retained after the Domain is deleted. By default, all resources are retained (not automatically deleted).

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceNotFound:

Resource being access is not found.

DeleteEdgeDeploymentPlan

$result = $client->deleteEdgeDeploymentPlan([/* ... */]);
$promise = $client->deleteEdgeDeploymentPlanAsync([/* ... */]);

Deletes an edge deployment plan if (and only if) all the stages in the plan are inactive or there are no stages in the plan.

Parameter Syntax

$result = $client->deleteEdgeDeploymentPlan([
    'EdgeDeploymentPlanName' => '<string>', // REQUIRED
]);

Parameter Details

Members
EdgeDeploymentPlanName
Required: Yes
Type: string

The name of the edge deployment plan to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceInUse:

Resource being accessed is in use.

DeleteEdgeDeploymentStage

$result = $client->deleteEdgeDeploymentStage([/* ... */]);
$promise = $client->deleteEdgeDeploymentStageAsync([/* ... */]);

Delete a stage in an edge deployment plan if (and only if) the stage is inactive.

Parameter Syntax

$result = $client->deleteEdgeDeploymentStage([
    'EdgeDeploymentPlanName' => '<string>', // REQUIRED
    'StageName' => '<string>', // REQUIRED
]);

Parameter Details

Members
EdgeDeploymentPlanName
Required: Yes
Type: string

The name of the edge deployment plan from which the stage will be deleted.

StageName
Required: Yes
Type: string

The name of the stage.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceInUse:

Resource being accessed is in use.

DeleteEndpoint

$result = $client->deleteEndpoint([/* ... */]);
$promise = $client->deleteEndpointAsync([/* ... */]);

Deletes an endpoint. SageMaker frees up all of the resources that were deployed when the endpoint was created.

SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the RevokeGrant API call.

When you delete your endpoint, SageMaker asynchronously deletes associated endpoint resources such as KMS key grants. You might still see these resources in your account for a few minutes after deleting your endpoint. Do not delete or revoke the permissions for your ExecutionRoleArn , otherwise SageMaker cannot delete these resources.

Parameter Syntax

$result = $client->deleteEndpoint([
    'EndpointName' => '<string>', // REQUIRED
]);

Parameter Details

Members
EndpointName
Required: Yes
Type: string

The name of the endpoint that you want to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

DeleteEndpointConfig

$result = $client->deleteEndpointConfig([/* ... */]);
$promise = $client->deleteEndpointConfigAsync([/* ... */]);

Deletes an endpoint configuration. The DeleteEndpointConfig API deletes only the specified configuration. It does not delete endpoints created using the configuration.

You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. If you delete the EndpointConfig of an endpoint that is active or being created or updated you may lose visibility into the instance type the endpoint is using. The endpoint must be deleted in order to stop incurring charges.

Parameter Syntax

$result = $client->deleteEndpointConfig([
    'EndpointConfigName' => '<string>', // REQUIRED
]);

Parameter Details

Members
EndpointConfigName
Required: Yes
Type: string

The name of the endpoint configuration that you want to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

DeleteExperiment

$result = $client->deleteExperiment([/* ... */]);
$promise = $client->deleteExperimentAsync([/* ... */]);

Deletes an SageMaker experiment. All trials associated with the experiment must be deleted first. Use the ListTrials API to get a list of the trials associated with the experiment.

Parameter Syntax

$result = $client->deleteExperiment([
    'ExperimentName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ExperimentName
Required: Yes
Type: string

The name of the experiment to delete.

Result Syntax

[
    'ExperimentArn' => '<string>',
]

Result Details

Members
ExperimentArn
Type: string

The Amazon Resource Name (ARN) of the experiment that is being deleted.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteFeatureGroup

$result = $client->deleteFeatureGroup([/* ... */]);
$promise = $client->deleteFeatureGroupAsync([/* ... */]);

Delete the FeatureGroup and any data that was written to the OnlineStore of the FeatureGroup. Data cannot be accessed from the OnlineStore immediately after DeleteFeatureGroup is called.

Data written into the OfflineStore will not be deleted. The Amazon Web Services Glue database and tables that are automatically created for your OfflineStore are not deleted.

Note that it can take approximately 10-15 minutes to delete an OnlineStore FeatureGroup with the InMemory StorageType.

Parameter Syntax

$result = $client->deleteFeatureGroup([
    'FeatureGroupName' => '<string>', // REQUIRED
]);

Parameter Details

Members
FeatureGroupName
Required: Yes
Type: string

The name of the FeatureGroup you want to delete. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteFlowDefinition

$result = $client->deleteFlowDefinition([/* ... */]);
$promise = $client->deleteFlowDefinitionAsync([/* ... */]);

Deletes the specified flow definition.

Parameter Syntax

$result = $client->deleteFlowDefinition([
    'FlowDefinitionName' => '<string>', // REQUIRED
]);

Parameter Details

Members
FlowDefinitionName
Required: Yes
Type: string

The name of the flow definition you are deleting.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceNotFound:

Resource being access is not found.

DeleteHub

$result = $client->deleteHub([/* ... */]);
$promise = $client->deleteHubAsync([/* ... */]);

Delete a hub.

Parameter Syntax

$result = $client->deleteHub([
    'HubName' => '<string>', // REQUIRED
]);

Parameter Details

Members
HubName
Required: Yes
Type: string

The name of the hub to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceNotFound:

Resource being access is not found.

DeleteHubContent

$result = $client->deleteHubContent([/* ... */]);
$promise = $client->deleteHubContentAsync([/* ... */]);

Delete the contents of a hub.

Parameter Syntax

$result = $client->deleteHubContent([
    'HubContentName' => '<string>', // REQUIRED
    'HubContentType' => 'Model|Notebook|ModelReference', // REQUIRED
    'HubContentVersion' => '<string>', // REQUIRED
    'HubName' => '<string>', // REQUIRED
]);

Parameter Details

Members
HubContentName
Required: Yes
Type: string

The name of the content that you want to delete from a hub.

HubContentType
Required: Yes
Type: string

The type of content that you want to delete from a hub.

HubContentVersion
Required: Yes
Type: string

The version of the content that you want to delete from a hub.

HubName
Required: Yes
Type: string

The name of the hub that you want to delete content in.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceNotFound:

Resource being access is not found.

DeleteHubContentReference

$result = $client->deleteHubContentReference([/* ... */]);
$promise = $client->deleteHubContentReferenceAsync([/* ... */]);

Delete a hub content reference in order to remove a model from a private hub.

Parameter Syntax

$result = $client->deleteHubContentReference([
    'HubContentName' => '<string>', // REQUIRED
    'HubContentType' => 'Model|Notebook|ModelReference', // REQUIRED
    'HubName' => '<string>', // REQUIRED
]);

Parameter Details

Members
HubContentName
Required: Yes
Type: string

The name of the hub content to delete.

HubContentType
Required: Yes
Type: string

The type of hub content reference to delete. The only supported type of hub content reference to delete is ModelReference.

HubName
Required: Yes
Type: string

The name of the hub to delete the hub content reference from.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteHumanTaskUi

$result = $client->deleteHumanTaskUi([/* ... */]);
$promise = $client->deleteHumanTaskUiAsync([/* ... */]);

Use this operation to delete a human task user interface (worker task template).

To see a list of human task user interfaces (work task templates) in your account, use ListHumanTaskUis. When you delete a worker task template, it no longer appears when you call ListHumanTaskUis.

Parameter Syntax

$result = $client->deleteHumanTaskUi([
    'HumanTaskUiName' => '<string>', // REQUIRED
]);

Parameter Details

Members
HumanTaskUiName
Required: Yes
Type: string

The name of the human task user interface (work task template) you want to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteHyperParameterTuningJob

$result = $client->deleteHyperParameterTuningJob([/* ... */]);
$promise = $client->deleteHyperParameterTuningJobAsync([/* ... */]);

Deletes a hyperparameter tuning job. The DeleteHyperParameterTuningJob API deletes only the tuning job entry that was created in SageMaker when you called the CreateHyperParameterTuningJob API. It does not delete training jobs, artifacts, or the IAM role that you specified when creating the model.

Parameter Syntax

$result = $client->deleteHyperParameterTuningJob([
    'HyperParameterTuningJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
HyperParameterTuningJobName
Required: Yes
Type: string

The name of the hyperparameter tuning job that you want to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

DeleteImage

$result = $client->deleteImage([/* ... */]);
$promise = $client->deleteImageAsync([/* ... */]);

Deletes a SageMaker AI image and all versions of the image. The container images aren't deleted.

Parameter Syntax

$result = $client->deleteImage([
    'ImageName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ImageName
Required: Yes
Type: string

The name of the image to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceNotFound:

Resource being access is not found.

DeleteImageVersion

$result = $client->deleteImageVersion([/* ... */]);
$promise = $client->deleteImageVersionAsync([/* ... */]);

Deletes a version of a SageMaker AI image. The container image the version represents isn't deleted.

Parameter Syntax

$result = $client->deleteImageVersion([
    'Alias' => '<string>',
    'ImageName' => '<string>', // REQUIRED
    'Version' => <integer>,
]);

Parameter Details

Members
Alias
Type: string

The alias of the image to delete.

ImageName
Required: Yes
Type: string

The name of the image to delete.

Version
Type: int

The version to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceNotFound:

Resource being access is not found.

DeleteInferenceComponent

$result = $client->deleteInferenceComponent([/* ... */]);
$promise = $client->deleteInferenceComponentAsync([/* ... */]);

Deletes an inference component.

Parameter Syntax

$result = $client->deleteInferenceComponent([
    'InferenceComponentName' => '<string>', // REQUIRED
]);

Parameter Details

Members
InferenceComponentName
Required: Yes
Type: string

The name of the inference component to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

DeleteInferenceExperiment

$result = $client->deleteInferenceExperiment([/* ... */]);
$promise = $client->deleteInferenceExperimentAsync([/* ... */]);

Deletes an inference experiment.

This operation does not delete your endpoint, variants, or any underlying resources. This operation only deletes the metadata of your experiment.

Parameter Syntax

$result = $client->deleteInferenceExperiment([
    'Name' => '<string>', // REQUIRED
]);

Parameter Details

Members
Name
Required: Yes
Type: string

The name of the inference experiment you want to delete.

Result Syntax

[
    'InferenceExperimentArn' => '<string>',
]

Result Details

Members
InferenceExperimentArn
Required: Yes
Type: string

The ARN of the deleted inference experiment.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

ResourceNotFound:

Resource being access is not found.

DeleteMlflowTrackingServer

$result = $client->deleteMlflowTrackingServer([/* ... */]);
$promise = $client->deleteMlflowTrackingServerAsync([/* ... */]);

Deletes an MLflow Tracking Server. For more information, see Clean up MLflow resources.

Parameter Syntax

$result = $client->deleteMlflowTrackingServer([
    'TrackingServerName' => '<string>', // REQUIRED
]);

Parameter Details

Members
TrackingServerName
Required: Yes
Type: string

The name of the the tracking server to delete.

Result Syntax

[
    'TrackingServerArn' => '<string>',
]

Result Details

Members
TrackingServerArn
Type: string

A TrackingServerArn object, the ARN of the tracking server that is deleted if successfully found.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteModel

$result = $client->deleteModel([/* ... */]);
$promise = $client->deleteModelAsync([/* ... */]);

Deletes a model. The DeleteModel API deletes only the model entry that was created in SageMaker when you called the CreateModel API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model.

Parameter Syntax

$result = $client->deleteModel([
    'ModelName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ModelName
Required: Yes
Type: string

The name of the model to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

DeleteModelBiasJobDefinition

$result = $client->deleteModelBiasJobDefinition([/* ... */]);
$promise = $client->deleteModelBiasJobDefinitionAsync([/* ... */]);

Deletes an Amazon SageMaker AI model bias job definition.

Parameter Syntax

$result = $client->deleteModelBiasJobDefinition([
    'JobDefinitionName' => '<string>', // REQUIRED
]);

Parameter Details

Members
JobDefinitionName
Required: Yes
Type: string

The name of the model bias job definition to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteModelCard

$result = $client->deleteModelCard([/* ... */]);
$promise = $client->deleteModelCardAsync([/* ... */]);

Deletes an Amazon SageMaker Model Card.

Parameter Syntax

$result = $client->deleteModelCard([
    'ModelCardName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ModelCardName
Required: Yes
Type: string

The name of the model card to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

DeleteModelExplainabilityJobDefinition

$result = $client->deleteModelExplainabilityJobDefinition([/* ... */]);
$promise = $client->deleteModelExplainabilityJobDefinitionAsync([/* ... */]);

Deletes an Amazon SageMaker AI model explainability job definition.

Parameter Syntax

$result = $client->deleteModelExplainabilityJobDefinition([
    'JobDefinitionName' => '<string>', // REQUIRED
]);

Parameter Details

Members
JobDefinitionName
Required: Yes
Type: string

The name of the model explainability job definition to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteModelPackage

$result = $client->deleteModelPackage([/* ... */]);
$promise = $client->deleteModelPackageAsync([/* ... */]);

Deletes a model package.

A model package is used to create SageMaker models or list on Amazon Web Services Marketplace. Buyers can subscribe to model packages listed on Amazon Web Services Marketplace to create models in SageMaker.

Parameter Syntax

$result = $client->deleteModelPackage([
    'ModelPackageName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ModelPackageName
Required: Yes
Type: string

The name or Amazon Resource Name (ARN) of the model package to delete.

When you specify a name, the name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

DeleteModelPackageGroup

$result = $client->deleteModelPackageGroup([/* ... */]);
$promise = $client->deleteModelPackageGroupAsync([/* ... */]);

Deletes the specified model group.

Parameter Syntax

$result = $client->deleteModelPackageGroup([
    'ModelPackageGroupName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ModelPackageGroupName
Required: Yes
Type: string

The name of the model group to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

DeleteModelPackageGroupPolicy

$result = $client->deleteModelPackageGroupPolicy([/* ... */]);
$promise = $client->deleteModelPackageGroupPolicyAsync([/* ... */]);

Deletes a model group resource policy.

Parameter Syntax

$result = $client->deleteModelPackageGroupPolicy([
    'ModelPackageGroupName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ModelPackageGroupName
Required: Yes
Type: string

The name of the model group for which to delete the policy.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

DeleteModelQualityJobDefinition

$result = $client->deleteModelQualityJobDefinition([/* ... */]);
$promise = $client->deleteModelQualityJobDefinitionAsync([/* ... */]);

Deletes the secified model quality monitoring job definition.

Parameter Syntax

$result = $client->deleteModelQualityJobDefinition([
    'JobDefinitionName' => '<string>', // REQUIRED
]);

Parameter Details

Members
JobDefinitionName
Required: Yes
Type: string

The name of the model quality monitoring job definition to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteMonitoringSchedule

$result = $client->deleteMonitoringSchedule([/* ... */]);
$promise = $client->deleteMonitoringScheduleAsync([/* ... */]);

Deletes a monitoring schedule. Also stops the schedule had not already been stopped. This does not delete the job execution history of the monitoring schedule.

Parameter Syntax

$result = $client->deleteMonitoringSchedule([
    'MonitoringScheduleName' => '<string>', // REQUIRED
]);

Parameter Details

Members
MonitoringScheduleName
Required: Yes
Type: string

The name of the monitoring schedule to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteNotebookInstance

$result = $client->deleteNotebookInstance([/* ... */]);
$promise = $client->deleteNotebookInstanceAsync([/* ... */]);

Deletes an SageMaker AI notebook instance. Before you can delete a notebook instance, you must call the StopNotebookInstance API.

When you delete a notebook instance, you lose all of your data. SageMaker AI removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance.

Parameter Syntax

$result = $client->deleteNotebookInstance([
    'NotebookInstanceName' => '<string>', // REQUIRED
]);

Parameter Details

Members
NotebookInstanceName
Required: Yes
Type: string

The name of the SageMaker AI notebook instance to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

DeleteNotebookInstanceLifecycleConfig

$result = $client->deleteNotebookInstanceLifecycleConfig([/* ... */]);
$promise = $client->deleteNotebookInstanceLifecycleConfigAsync([/* ... */]);

Deletes a notebook instance lifecycle configuration.

Parameter Syntax

$result = $client->deleteNotebookInstanceLifecycleConfig([
    'NotebookInstanceLifecycleConfigName' => '<string>', // REQUIRED
]);

Parameter Details

Members
NotebookInstanceLifecycleConfigName
Required: Yes
Type: string

The name of the lifecycle configuration to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

DeleteOptimizationJob

$result = $client->deleteOptimizationJob([/* ... */]);
$promise = $client->deleteOptimizationJobAsync([/* ... */]);

Deletes an optimization job.

Parameter Syntax

$result = $client->deleteOptimizationJob([
    'OptimizationJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
OptimizationJobName
Required: Yes
Type: string

The name that you assigned to the optimization job.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

DeletePartnerApp

$result = $client->deletePartnerApp([/* ... */]);
$promise = $client->deletePartnerAppAsync([/* ... */]);

Deletes a SageMaker Partner AI App.

Parameter Syntax

$result = $client->deletePartnerApp([
    'Arn' => '<string>', // REQUIRED
    'ClientToken' => '<string>',
]);

Parameter Details

Members
Arn
Required: Yes
Type: string

The ARN of the SageMaker Partner AI App to delete.

ClientToken
Type: string

A unique token that guarantees that the call to this API is idempotent.

Result Syntax

[
    'Arn' => '<string>',
]

Result Details

Members
Arn
Type: string

The ARN of the SageMaker Partner AI App that was deleted.

Errors

ResourceNotFound:

Resource being access is not found.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

DeletePipeline

$result = $client->deletePipeline([/* ... */]);
$promise = $client->deletePipelineAsync([/* ... */]);

Deletes a pipeline if there are no running instances of the pipeline. To delete a pipeline, you must stop all running instances of the pipeline using the StopPipelineExecution API. When you delete a pipeline, all instances of the pipeline are deleted.

Parameter Syntax

$result = $client->deletePipeline([
    'ClientRequestToken' => '<string>', // REQUIRED
    'PipelineName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ClientRequestToken
Required: Yes
Type: string

A unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than one time.

PipelineName
Required: Yes
Type: string

The name of the pipeline to delete.

Result Syntax

[
    'PipelineArn' => '<string>',
]

Result Details

Members
PipelineArn
Type: string

The Amazon Resource Name (ARN) of the pipeline to delete.

Errors

ResourceNotFound:

Resource being access is not found.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

DeleteProject

$result = $client->deleteProject([/* ... */]);
$promise = $client->deleteProjectAsync([/* ... */]);

Delete the specified project.

Parameter Syntax

$result = $client->deleteProject([
    'ProjectName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ProjectName
Required: Yes
Type: string

The name of the project to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

DeleteSpace

$result = $client->deleteSpace([/* ... */]);
$promise = $client->deleteSpaceAsync([/* ... */]);

Used to delete a space.

Parameter Syntax

$result = $client->deleteSpace([
    'DomainId' => '<string>', // REQUIRED
    'SpaceName' => '<string>', // REQUIRED
]);

Parameter Details

Members
DomainId
Required: Yes
Type: string

The ID of the associated domain.

SpaceName
Required: Yes
Type: string

The name of the space.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceNotFound:

Resource being access is not found.

DeleteStudioLifecycleConfig

$result = $client->deleteStudioLifecycleConfig([/* ... */]);
$promise = $client->deleteStudioLifecycleConfigAsync([/* ... */]);

Deletes the Amazon SageMaker AI Studio Lifecycle Configuration. In order to delete the Lifecycle Configuration, there must be no running apps using the Lifecycle Configuration. You must also remove the Lifecycle Configuration from UserSettings in all Domains and UserProfiles.

Parameter Syntax

$result = $client->deleteStudioLifecycleConfig([
    'StudioLifecycleConfigName' => '<string>', // REQUIRED
]);

Parameter Details

Members
StudioLifecycleConfigName
Required: Yes
Type: string

The name of the Amazon SageMaker AI Studio Lifecycle Configuration to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceInUse:

Resource being accessed is in use.

DeleteTags

$result = $client->deleteTags([/* ... */]);
$promise = $client->deleteTagsAsync([/* ... */]);

Deletes the specified tags from an SageMaker resource.

To list a resource's tags, use the ListTags API.

When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API.

When you call this API to delete tags from a SageMaker Domain or User Profile, the deleted tags are not removed from Apps that the SageMaker Domain or User Profile launched before you called this API.

Parameter Syntax

$result = $client->deleteTags([
    'ResourceArn' => '<string>', // REQUIRED
    'TagKeys' => ['<string>', ...], // REQUIRED
]);

Parameter Details

Members
ResourceArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the resource whose tags you want to delete.

TagKeys
Required: Yes
Type: Array of strings

An array or one or more tag keys to delete.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

DeleteTrial

$result = $client->deleteTrial([/* ... */]);
$promise = $client->deleteTrialAsync([/* ... */]);

Deletes the specified trial. All trial components that make up the trial must be deleted first. Use the DescribeTrialComponent API to get the list of trial components.

Parameter Syntax

$result = $client->deleteTrial([
    'TrialName' => '<string>', // REQUIRED
]);

Parameter Details

Members
TrialName
Required: Yes
Type: string

The name of the trial to delete.

Result Syntax

[
    'TrialArn' => '<string>',
]

Result Details

Members
TrialArn
Type: string

The Amazon Resource Name (ARN) of the trial that is being deleted.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteTrialComponent

$result = $client->deleteTrialComponent([/* ... */]);
$promise = $client->deleteTrialComponentAsync([/* ... */]);

Deletes the specified trial component. A trial component must be disassociated from all trials before the trial component can be deleted. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.

Parameter Syntax

$result = $client->deleteTrialComponent([
    'TrialComponentName' => '<string>', // REQUIRED
]);

Parameter Details

Members
TrialComponentName
Required: Yes
Type: string

The name of the component to delete.

Result Syntax

[
    'TrialComponentArn' => '<string>',
]

Result Details

Members
TrialComponentArn
Type: string

The Amazon Resource Name (ARN) of the component is being deleted.

Errors

ResourceNotFound:

Resource being access is not found.

DeleteUserProfile

$result = $client->deleteUserProfile([/* ... */]);
$promise = $client->deleteUserProfileAsync([/* ... */]);

Deletes a user profile. When a user profile is deleted, the user loses access to their EFS volume, including data, notebooks, and other artifacts.

Parameter Syntax

$result = $client->deleteUserProfile([
    'DomainId' => '<string>', // REQUIRED
    'UserProfileName' => '<string>', // REQUIRED
]);

Parameter Details

Members
DomainId
Required: Yes
Type: string

The domain ID.

UserProfileName
Required: Yes
Type: string

The user profile name.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceNotFound:

Resource being access is not found.

DeleteWorkforce

$result = $client->deleteWorkforce([/* ... */]);
$promise = $client->deleteWorkforceAsync([/* ... */]);

Use this operation to delete a workforce.

If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use this operation to delete the existing workforce and then use CreateWorkforce to create a new workforce.

If a private workforce contains one or more work teams, you must use the DeleteWorkteam operation to delete all work teams before you delete the workforce. If you try to delete a workforce that contains one or more work teams, you will receive a ResourceInUse error.

Parameter Syntax

$result = $client->deleteWorkforce([
    'WorkforceName' => '<string>', // REQUIRED
]);

Parameter Details

Members
WorkforceName
Required: Yes
Type: string

The name of the workforce.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

DeleteWorkteam

$result = $client->deleteWorkteam([/* ... */]);
$promise = $client->deleteWorkteamAsync([/* ... */]);

Deletes an existing work team. This operation can't be undone.

Parameter Syntax

$result = $client->deleteWorkteam([
    'WorkteamName' => '<string>', // REQUIRED
]);

Parameter Details

Members
WorkteamName
Required: Yes
Type: string

The name of the work team to delete.

Result Syntax

[
    'Success' => true || false,
]

Result Details

Members
Success
Required: Yes
Type: boolean

Returns true if the work team was successfully deleted; otherwise, returns false.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

DeregisterDevices

$result = $client->deregisterDevices([/* ... */]);
$promise = $client->deregisterDevicesAsync([/* ... */]);

Deregisters the specified devices. After you deregister a device, you will need to re-register the devices.

Parameter Syntax

$result = $client->deregisterDevices([
    'DeviceFleetName' => '<string>', // REQUIRED
    'DeviceNames' => ['<string>', ...], // REQUIRED
]);

Parameter Details

Members
DeviceFleetName
Required: Yes
Type: string

The name of the fleet the devices belong to.

DeviceNames
Required: Yes
Type: Array of strings

The unique IDs of the devices.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

DescribeAction

$result = $client->describeAction([/* ... */]);
$promise = $client->describeActionAsync([/* ... */]);

Describes an action.

Parameter Syntax

$result = $client->describeAction([
    'ActionName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ActionName
Required: Yes
Type: string

The name of the action to describe.

Result Syntax

[
    'ActionArn' => '<string>',
    'ActionName' => '<string>',
    'ActionType' => '<string>',
    'CreatedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'Description' => '<string>',
    'LastModifiedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
    'LineageGroupArn' => '<string>',
    'MetadataProperties' => [
        'CommitId' => '<string>',
        'GeneratedBy' => '<string>',
        'ProjectId' => '<string>',
        'Repository' => '<string>',
    ],
    'Properties' => ['<string>', ...],
    'Source' => [
        'SourceId' => '<string>',
        'SourceType' => '<string>',
        'SourceUri' => '<string>',
    ],
    'Status' => 'Unknown|InProgress|Completed|Failed|Stopping|Stopped',
]

Result Details

Members
ActionArn
Type: string

The Amazon Resource Name (ARN) of the action.

ActionName
Type: string

The name of the action.

ActionType
Type: string

The type of the action.

CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the action was created.

Description
Type: string

The description of the action.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the action was last modified.

LineageGroupArn
Type: string

The Amazon Resource Name (ARN) of the lineage group.

MetadataProperties
Type: MetadataProperties structure

Metadata properties of the tracking entity, trial, or trial component.

Properties
Type: Associative array of custom strings keys (StringParameterValue) to strings

A list of the action's properties.

Source
Type: ActionSource structure

The source of the action.

Status
Type: string

The status of the action.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeAlgorithm

$result = $client->describeAlgorithm([/* ... */]);
$promise = $client->describeAlgorithmAsync([/* ... */]);

Returns a description of the specified algorithm that is in your account.

Parameter Syntax

$result = $client->describeAlgorithm([
    'AlgorithmName' => '<string>', // REQUIRED
]);

Parameter Details

Members
AlgorithmName
Required: Yes
Type: string

The name of the algorithm to describe.

Result Syntax

[
    'AlgorithmArn' => '<string>',
    'AlgorithmDescription' => '<string>',
    'AlgorithmName' => '<string>',
    'AlgorithmStatus' => 'Pending|InProgress|Completed|Failed|Deleting',
    'AlgorithmStatusDetails' => [
        'ImageScanStatuses' => [
            [
                'FailureReason' => '<string>',
                'Name' => '<string>',
                'Status' => 'NotStarted|InProgress|Completed|Failed',
            ],
            // ...
        ],
        'ValidationStatuses' => [
            [
                'FailureReason' => '<string>',
                'Name' => '<string>',
                'Status' => 'NotStarted|InProgress|Completed|Failed',
            ],
            // ...
        ],
    ],
    'CertifyForMarketplace' => true || false,
    'CreationTime' => <DateTime>,
    'InferenceSpecification' => [
        'Containers' => [
            [
                'AdditionalS3DataSource' => [
                    'CompressionType' => 'None|Gzip',
                    'ETag' => '<string>',
                    'S3DataType' => 'S3Object|S3Prefix',
                    'S3Uri' => '<string>',
                ],
                'ContainerHostname' => '<string>',
                'Environment' => ['<string>', ...],
                'Framework' => '<string>',
                'FrameworkVersion' => '<string>',
                'Image' => '<string>',
                'ImageDigest' => '<string>',
                'ModelDataETag' => '<string>',
                'ModelDataSource' => [
                    'S3DataSource' => [
                        'CompressionType' => 'None|Gzip',
                        'ETag' => '<string>',
                        'HubAccessConfig' => [
                            'HubContentArn' => '<string>',
                        ],
                        'ManifestEtag' => '<string>',
                        'ManifestS3Uri' => '<string>',
                        'ModelAccessConfig' => [
                            'AcceptEula' => true || false,
                        ],
                        'S3DataType' => 'S3Prefix|S3Object',
                        'S3Uri' => '<string>',
                    ],
                ],
                'ModelDataUrl' => '<string>',
                'ModelInput' => [
                    'DataInputConfig' => '<string>',
                ],
                'NearestModelName' => '<string>',
                'ProductId' => '<string>',
            ],
            // ...
        ],
        'SupportedContentTypes' => ['<string>', ...],
        'SupportedRealtimeInferenceInstanceTypes' => ['<string>', ...],
        'SupportedResponseMIMETypes' => ['<string>', ...],
        'SupportedTransformInstanceTypes' => ['<string>', ...],
    ],
    'ProductId' => '<string>',
    'TrainingSpecification' => [
        'AdditionalS3DataSource' => [
            'CompressionType' => 'None|Gzip',
            'ETag' => '<string>',
            'S3DataType' => 'S3Object|S3Prefix',
            'S3Uri' => '<string>',
        ],
        'MetricDefinitions' => [
            [
                'Name' => '<string>',
                'Regex' => '<string>',
            ],
            // ...
        ],
        'SupportedHyperParameters' => [
            [
                'DefaultValue' => '<string>',
                'Description' => '<string>',
                'IsRequired' => true || false,
                'IsTunable' => true || false,
                'Name' => '<string>',
                'Range' => [
                    'CategoricalParameterRangeSpecification' => [
                        'Values' => ['<string>', ...],
                    ],
                    'ContinuousParameterRangeSpecification' => [
                        'MaxValue' => '<string>',
                        'MinValue' => '<string>',
                    ],
                    'IntegerParameterRangeSpecification' => [
                        'MaxValue' => '<string>',
                        'MinValue' => '<string>',
                    ],
                ],
                'Type' => 'Integer|Continuous|Categorical|FreeText',
            ],
            // ...
        ],
        'SupportedTrainingInstanceTypes' => ['<string>', ...],
        'SupportedTuningJobObjectiveMetrics' => [
            [
                'MetricName' => '<string>',
                'Type' => 'Maximize|Minimize',
            ],
            // ...
        ],
        'SupportsDistributedTraining' => true || false,
        'TrainingChannels' => [
            [
                'Description' => '<string>',
                'IsRequired' => true || false,
                'Name' => '<string>',
                'SupportedCompressionTypes' => ['<string>', ...],
                'SupportedContentTypes' => ['<string>', ...],
                'SupportedInputModes' => ['<string>', ...],
            ],
            // ...
        ],
        'TrainingImage' => '<string>',
        'TrainingImageDigest' => '<string>',
    ],
    'ValidationSpecification' => [
        'ValidationProfiles' => [
            [
                'ProfileName' => '<string>',
                'TrainingJobDefinition' => [
                    'HyperParameters' => ['<string>', ...],
                    'InputDataConfig' => [
                        [
                            'ChannelName' => '<string>',
                            'CompressionType' => 'None|Gzip',
                            'ContentType' => '<string>',
                            'DataSource' => [
                                'FileSystemDataSource' => [
                                    'DirectoryPath' => '<string>',
                                    'FileSystemAccessMode' => 'rw|ro',
                                    'FileSystemId' => '<string>',
                                    'FileSystemType' => 'EFS|FSxLustre',
                                ],
                                'S3DataSource' => [
                                    'AttributeNames' => ['<string>', ...],
                                    'InstanceGroupNames' => ['<string>', ...],
                                    'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                                    'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile',
                                    'S3Uri' => '<string>',
                                ],
                            ],
                            'InputMode' => 'Pipe|File|FastFile',
                            'RecordWrapperType' => 'None|RecordIO',
                            'ShuffleConfig' => [
                                'Seed' => <integer>,
                            ],
                        ],
                        // ...
                    ],
                    'OutputDataConfig' => [
                        'CompressionType' => 'GZIP|NONE',
                        'KmsKeyId' => '<string>',
                        'S3OutputPath' => '<string>',
                    ],
                    'ResourceConfig' => [
                        'InstanceCount' => <integer>,
                        'InstanceGroups' => [
                            [
                                'InstanceCount' => <integer>,
                                'InstanceGroupName' => '<string>',
                                'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                            ],
                            // ...
                        ],
                        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                        'KeepAlivePeriodInSeconds' => <integer>,
                        'TrainingPlanArn' => '<string>',
                        'VolumeKmsKeyId' => '<string>',
                        'VolumeSizeInGB' => <integer>,
                    ],
                    'StoppingCondition' => [
                        'MaxPendingTimeInSeconds' => <integer>,
                        'MaxRuntimeInSeconds' => <integer>,
                        'MaxWaitTimeInSeconds' => <integer>,
                    ],
                    'TrainingInputMode' => 'Pipe|File|FastFile',
                ],
                'TransformJobDefinition' => [
                    'BatchStrategy' => 'MultiRecord|SingleRecord',
                    'Environment' => ['<string>', ...],
                    'MaxConcurrentTransforms' => <integer>,
                    'MaxPayloadInMB' => <integer>,
                    'TransformInput' => [
                        'CompressionType' => 'None|Gzip',
                        'ContentType' => '<string>',
                        'DataSource' => [
                            'S3DataSource' => [
                                'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile',
                                'S3Uri' => '<string>',
                            ],
                        ],
                        'SplitType' => 'None|Line|RecordIO|TFRecord',
                    ],
                    'TransformOutput' => [
                        'Accept' => '<string>',
                        'AssembleWith' => 'None|Line',
                        'KmsKeyId' => '<string>',
                        'S3OutputPath' => '<string>',
                    ],
                    'TransformResources' => [
                        'InstanceCount' => <integer>,
                        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge',
                        'VolumeKmsKeyId' => '<string>',
                    ],
                ],
            ],
            // ...
        ],
        'ValidationRole' => '<string>',
    ],
]

Result Details

Members
AlgorithmArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the algorithm.

AlgorithmDescription
Type: string

A brief summary about the algorithm.

AlgorithmName
Required: Yes
Type: string

The name of the algorithm being described.

AlgorithmStatus
Required: Yes
Type: string

The current status of the algorithm.

AlgorithmStatusDetails
Required: Yes
Type: AlgorithmStatusDetails structure

Details about the current status of the algorithm.

CertifyForMarketplace
Type: boolean

Whether the algorithm is certified to be listed in Amazon Web Services Marketplace.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp specifying when the algorithm was created.

InferenceSpecification
Type: InferenceSpecification structure

Details about inference jobs that the algorithm runs.

ProductId
Type: string

The product identifier of the algorithm.

TrainingSpecification
Required: Yes
Type: TrainingSpecification structure

Details about training jobs run by this algorithm.

ValidationSpecification

Details about configurations for one or more training jobs that SageMaker runs to test the algorithm.

Errors

There are no errors described for this operation.

DescribeApp

$result = $client->describeApp([/* ... */]);
$promise = $client->describeAppAsync([/* ... */]);

Describes the app.

Parameter Syntax

$result = $client->describeApp([
    'AppName' => '<string>', // REQUIRED
    'AppType' => 'JupyterServer|KernelGateway|DetailedProfiler|TensorBoard|CodeEditor|JupyterLab|RStudioServerPro|RSessionGateway|Canvas', // REQUIRED
    'DomainId' => '<string>', // REQUIRED
    'SpaceName' => '<string>',
    'UserProfileName' => '<string>',
]);

Parameter Details

Members
AppName
Required: Yes
Type: string

The name of the app.

AppType
Required: Yes
Type: string

The type of app.

DomainId
Required: Yes
Type: string

The domain ID.

SpaceName
Type: string

The name of the space.

UserProfileName
Type: string

The user profile name. If this value is not set, then SpaceName must be set.

Result Syntax

[
    'AppArn' => '<string>',
    'AppName' => '<string>',
    'AppType' => 'JupyterServer|KernelGateway|DetailedProfiler|TensorBoard|CodeEditor|JupyterLab|RStudioServerPro|RSessionGateway|Canvas',
    'BuiltInLifecycleConfigArn' => '<string>',
    'CreationTime' => <DateTime>,
    'DomainId' => '<string>',
    'FailureReason' => '<string>',
    'LastHealthCheckTimestamp' => <DateTime>,
    'LastUserActivityTimestamp' => <DateTime>,
    'ResourceSpec' => [
        'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
        'LifecycleConfigArn' => '<string>',
        'SageMakerImageArn' => '<string>',
        'SageMakerImageVersionAlias' => '<string>',
        'SageMakerImageVersionArn' => '<string>',
    ],
    'SpaceName' => '<string>',
    'Status' => 'Deleted|Deleting|Failed|InService|Pending',
    'UserProfileName' => '<string>',
]

Result Details

Members
AppArn
Type: string

The Amazon Resource Name (ARN) of the app.

AppName
Type: string

The name of the app.

AppType
Type: string

The type of app.

BuiltInLifecycleConfigArn
Type: string

The lifecycle configuration that runs before the default lifecycle configuration

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time of the application.

After an application has been shut down for 24 hours, SageMaker AI deletes all metadata for the application. To be considered an update and retain application metadata, applications must be restarted within 24 hours after the previous application has been shut down. After this time window, creation of an application is considered a new application rather than an update of the previous application.

DomainId
Type: string

The domain ID.

FailureReason
Type: string

The failure reason.

LastHealthCheckTimestamp
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp of the last health check.

LastUserActivityTimestamp
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp of the last user's activity. LastUserActivityTimestamp is also updated when SageMaker AI performs health checks without user activity. As a result, this value is set to the same value as LastHealthCheckTimestamp.

ResourceSpec
Type: ResourceSpec structure

The instance type and the Amazon Resource Name (ARN) of the SageMaker AI image created on the instance.

SpaceName
Type: string

The name of the space. If this value is not set, then UserProfileName must be set.

Status
Type: string

The status.

UserProfileName
Type: string

The user profile name.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeAppImageConfig

$result = $client->describeAppImageConfig([/* ... */]);
$promise = $client->describeAppImageConfigAsync([/* ... */]);

Describes an AppImageConfig.

Parameter Syntax

$result = $client->describeAppImageConfig([
    'AppImageConfigName' => '<string>', // REQUIRED
]);

Parameter Details

Members
AppImageConfigName
Required: Yes
Type: string

The name of the AppImageConfig to describe.

Result Syntax

[
    'AppImageConfigArn' => '<string>',
    'AppImageConfigName' => '<string>',
    'CodeEditorAppImageConfig' => [
        'ContainerConfig' => [
            'ContainerArguments' => ['<string>', ...],
            'ContainerEntrypoint' => ['<string>', ...],
            'ContainerEnvironmentVariables' => ['<string>', ...],
        ],
        'FileSystemConfig' => [
            'DefaultGid' => <integer>,
            'DefaultUid' => <integer>,
            'MountPath' => '<string>',
        ],
    ],
    'CreationTime' => <DateTime>,
    'JupyterLabAppImageConfig' => [
        'ContainerConfig' => [
            'ContainerArguments' => ['<string>', ...],
            'ContainerEntrypoint' => ['<string>', ...],
            'ContainerEnvironmentVariables' => ['<string>', ...],
        ],
        'FileSystemConfig' => [
            'DefaultGid' => <integer>,
            'DefaultUid' => <integer>,
            'MountPath' => '<string>',
        ],
    ],
    'KernelGatewayImageConfig' => [
        'FileSystemConfig' => [
            'DefaultGid' => <integer>,
            'DefaultUid' => <integer>,
            'MountPath' => '<string>',
        ],
        'KernelSpecs' => [
            [
                'DisplayName' => '<string>',
                'Name' => '<string>',
            ],
            // ...
        ],
    ],
    'LastModifiedTime' => <DateTime>,
]

Result Details

Members
AppImageConfigArn
Type: string

The ARN of the AppImageConfig.

AppImageConfigName
Type: string

The name of the AppImageConfig.

CodeEditorAppImageConfig
Type: CodeEditorAppImageConfig structure

The configuration of the Code Editor app.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the AppImageConfig was created.

JupyterLabAppImageConfig
Type: JupyterLabAppImageConfig structure

The configuration of the JupyterLab app.

KernelGatewayImageConfig
Type: KernelGatewayImageConfig structure

The configuration of a KernelGateway app.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the AppImageConfig was last modified.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeArtifact

$result = $client->describeArtifact([/* ... */]);
$promise = $client->describeArtifactAsync([/* ... */]);

Describes an artifact.

Parameter Syntax

$result = $client->describeArtifact([
    'ArtifactArn' => '<string>', // REQUIRED
]);

Parameter Details

Members
ArtifactArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the artifact to describe.

Result Syntax

[
    'ArtifactArn' => '<string>',
    'ArtifactName' => '<string>',
    'ArtifactType' => '<string>',
    'CreatedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'LastModifiedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
    'LineageGroupArn' => '<string>',
    'MetadataProperties' => [
        'CommitId' => '<string>',
        'GeneratedBy' => '<string>',
        'ProjectId' => '<string>',
        'Repository' => '<string>',
    ],
    'Properties' => ['<string>', ...],
    'Source' => [
        'SourceTypes' => [
            [
                'SourceIdType' => 'MD5Hash|S3ETag|S3Version|Custom',
                'Value' => '<string>',
            ],
            // ...
        ],
        'SourceUri' => '<string>',
    ],
]

Result Details

Members
ArtifactArn
Type: string

The Amazon Resource Name (ARN) of the artifact.

ArtifactName
Type: string

The name of the artifact.

ArtifactType
Type: string

The type of the artifact.

CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the artifact was created.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the artifact was last modified.

LineageGroupArn
Type: string

The Amazon Resource Name (ARN) of the lineage group.

MetadataProperties
Type: MetadataProperties structure

Metadata properties of the tracking entity, trial, or trial component.

Properties
Type: Associative array of custom strings keys (StringParameterValue) to strings

A list of the artifact's properties.

Source
Type: ArtifactSource structure

The source of the artifact.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeAutoMLJob

$result = $client->describeAutoMLJob([/* ... */]);
$promise = $client->describeAutoMLJobAsync([/* ... */]);

Returns information about an AutoML job created by calling CreateAutoMLJob.

AutoML jobs created by calling CreateAutoMLJobV2 cannot be described by DescribeAutoMLJob.

Parameter Syntax

$result = $client->describeAutoMLJob([
    'AutoMLJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
AutoMLJobName
Required: Yes
Type: string

Requests information about an AutoML job using its unique name.

Result Syntax

[
    'AutoMLJobArn' => '<string>',
    'AutoMLJobArtifacts' => [
        'CandidateDefinitionNotebookLocation' => '<string>',
        'DataExplorationNotebookLocation' => '<string>',
    ],
    'AutoMLJobConfig' => [
        'CandidateGenerationConfig' => [
            'AlgorithmsConfig' => [
                [
                    'AutoMLAlgorithms' => ['<string>', ...],
                ],
                // ...
            ],
            'FeatureSpecificationS3Uri' => '<string>',
        ],
        'CompletionCriteria' => [
            'MaxAutoMLJobRuntimeInSeconds' => <integer>,
            'MaxCandidates' => <integer>,
            'MaxRuntimePerTrainingJobInSeconds' => <integer>,
        ],
        'DataSplitConfig' => [
            'ValidationFraction' => <float>,
        ],
        'Mode' => 'AUTO|ENSEMBLING|HYPERPARAMETER_TUNING',
        'SecurityConfig' => [
            'EnableInterContainerTrafficEncryption' => true || false,
            'VolumeKmsKeyId' => '<string>',
            'VpcConfig' => [
                'SecurityGroupIds' => ['<string>', ...],
                'Subnets' => ['<string>', ...],
            ],
        ],
    ],
    'AutoMLJobName' => '<string>',
    'AutoMLJobObjective' => [
        'MetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|BalancedAccuracy|R2|Recall|RecallMacro|Precision|PrecisionMacro|MAE|MAPE|MASE|WAPE|AverageWeightedQuantileLoss',
    ],
    'AutoMLJobSecondaryStatus' => 'Starting|MaxCandidatesReached|Failed|Stopped|MaxAutoMLJobRuntimeReached|Stopping|CandidateDefinitionsGenerated|Completed|ExplainabilityError|DeployingModel|ModelDeploymentError|GeneratingModelInsightsReport|ModelInsightsError|AnalyzingData|FeatureEngineering|ModelTuning|GeneratingExplainabilityReport|TrainingModels|PreTraining',
    'AutoMLJobStatus' => 'Completed|InProgress|Failed|Stopped|Stopping',
    'BestCandidate' => [
        'CandidateName' => '<string>',
        'CandidateProperties' => [
            'CandidateArtifactLocations' => [
                'BacktestResults' => '<string>',
                'Explainability' => '<string>',
                'ModelInsights' => '<string>',
            ],
            'CandidateMetrics' => [
                [
                    'MetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|BalancedAccuracy|R2|Recall|RecallMacro|Precision|PrecisionMacro|MAE|MAPE|MASE|WAPE|AverageWeightedQuantileLoss',
                    'Set' => 'Train|Validation|Test',
                    'StandardMetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|MAE|R2|BalancedAccuracy|Precision|PrecisionMacro|Recall|RecallMacro|LogLoss|InferenceLatency|MAPE|MASE|WAPE|AverageWeightedQuantileLoss|Rouge1|Rouge2|RougeL|RougeLSum|Perplexity|ValidationLoss|TrainingLoss',
                    'Value' => <float>,
                ],
                // ...
            ],
        ],
        'CandidateStatus' => 'Completed|InProgress|Failed|Stopped|Stopping',
        'CandidateSteps' => [
            [
                'CandidateStepArn' => '<string>',
                'CandidateStepName' => '<string>',
                'CandidateStepType' => 'AWS::SageMaker::TrainingJob|AWS::SageMaker::TransformJob|AWS::SageMaker::ProcessingJob',
            ],
            // ...
        ],
        'CreationTime' => <DateTime>,
        'EndTime' => <DateTime>,
        'FailureReason' => '<string>',
        'FinalAutoMLJobObjectiveMetric' => [
            'MetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|BalancedAccuracy|R2|Recall|RecallMacro|Precision|PrecisionMacro|MAE|MAPE|MASE|WAPE|AverageWeightedQuantileLoss',
            'StandardMetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|BalancedAccuracy|R2|Recall|RecallMacro|Precision|PrecisionMacro|MAE|MAPE|MASE|WAPE|AverageWeightedQuantileLoss',
            'Type' => 'Maximize|Minimize',
            'Value' => <float>,
        ],
        'InferenceContainerDefinitions' => [
            '<AutoMLProcessingUnit>' => [
                [
                    'Environment' => ['<string>', ...],
                    'Image' => '<string>',
                    'ModelDataUrl' => '<string>',
                ],
                // ...
            ],
            // ...
        ],
        'InferenceContainers' => [
            [
                'Environment' => ['<string>', ...],
                'Image' => '<string>',
                'ModelDataUrl' => '<string>',
            ],
            // ...
        ],
        'LastModifiedTime' => <DateTime>,
        'ObjectiveStatus' => 'Succeeded|Pending|Failed',
    ],
    'CreationTime' => <DateTime>,
    'EndTime' => <DateTime>,
    'FailureReason' => '<string>',
    'GenerateCandidateDefinitionsOnly' => true || false,
    'InputDataConfig' => [
        [
            'ChannelType' => 'training|validation',
            'CompressionType' => 'None|Gzip',
            'ContentType' => '<string>',
            'DataSource' => [
                'S3DataSource' => [
                    'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile',
                    'S3Uri' => '<string>',
                ],
            ],
            'SampleWeightAttributeName' => '<string>',
            'TargetAttributeName' => '<string>',
        ],
        // ...
    ],
    'LastModifiedTime' => <DateTime>,
    'ModelDeployConfig' => [
        'AutoGenerateEndpointName' => true || false,
        'EndpointName' => '<string>',
    ],
    'ModelDeployResult' => [
        'EndpointName' => '<string>',
    ],
    'OutputDataConfig' => [
        'KmsKeyId' => '<string>',
        'S3OutputPath' => '<string>',
    ],
    'PartialFailureReasons' => [
        [
            'PartialFailureMessage' => '<string>',
        ],
        // ...
    ],
    'ProblemType' => 'BinaryClassification|MulticlassClassification|Regression',
    'ResolvedAttributes' => [
        'AutoMLJobObjective' => [
            'MetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|BalancedAccuracy|R2|Recall|RecallMacro|Precision|PrecisionMacro|MAE|MAPE|MASE|WAPE|AverageWeightedQuantileLoss',
        ],
        'CompletionCriteria' => [
            'MaxAutoMLJobRuntimeInSeconds' => <integer>,
            'MaxCandidates' => <integer>,
            'MaxRuntimePerTrainingJobInSeconds' => <integer>,
        ],
        'ProblemType' => 'BinaryClassification|MulticlassClassification|Regression',
    ],
    'RoleArn' => '<string>',
]

Result Details

Members
AutoMLJobArn
Required: Yes
Type: string

Returns the ARN of the AutoML job.

AutoMLJobArtifacts
Type: AutoMLJobArtifacts structure

Returns information on the job's artifacts found in AutoMLJobArtifacts.

AutoMLJobConfig
Type: AutoMLJobConfig structure

Returns the configuration for the AutoML job.

AutoMLJobName
Required: Yes
Type: string

Returns the name of the AutoML job.

AutoMLJobObjective
Type: AutoMLJobObjective structure

Returns the job's objective.

AutoMLJobSecondaryStatus
Required: Yes
Type: string

Returns the secondary status of the AutoML job.

AutoMLJobStatus
Required: Yes
Type: string

Returns the status of the AutoML job.

BestCandidate
Type: AutoMLCandidate structure

The best model candidate selected by SageMaker AI Autopilot using both the best objective metric and lowest InferenceLatency for an experiment.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

Returns the creation time of the AutoML job.

EndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Returns the end time of the AutoML job.

FailureReason
Type: string

Returns the failure reason for an AutoML job, when applicable.

GenerateCandidateDefinitionsOnly
Type: boolean

Indicates whether the output for an AutoML job generates candidate definitions only.

InputDataConfig
Required: Yes
Type: Array of AutoMLChannel structures

Returns the input data configuration for the AutoML job.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

Returns the job's last modified time.

ModelDeployConfig
Type: ModelDeployConfig structure

Indicates whether the model was deployed automatically to an endpoint and the name of that endpoint if deployed automatically.

ModelDeployResult
Type: ModelDeployResult structure

Provides information about endpoint for the model deployment.

OutputDataConfig
Required: Yes
Type: AutoMLOutputDataConfig structure

Returns the job's output data config.

PartialFailureReasons
Type: Array of AutoMLPartialFailureReason structures

Returns a list of reasons for partial failures within an AutoML job.

ProblemType
Type: string

Returns the job's problem type.

ResolvedAttributes
Type: ResolvedAttributes structure

Contains ProblemType, AutoMLJobObjective, and CompletionCriteria. If you do not provide these values, they are inferred.

RoleArn
Required: Yes
Type: string

The ARN of the IAM role that has read permission to the input data location and write permission to the output data location in Amazon S3.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeAutoMLJobV2

$result = $client->describeAutoMLJobV2([/* ... */]);
$promise = $client->describeAutoMLJobV2Async([/* ... */]);

Returns information about an AutoML job created by calling CreateAutoMLJobV2 or CreateAutoMLJob.

Parameter Syntax

$result = $client->describeAutoMLJobV2([
    'AutoMLJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
AutoMLJobName
Required: Yes
Type: string

Requests information about an AutoML job V2 using its unique name.

Result Syntax

[
    'AutoMLComputeConfig' => [
        'EmrServerlessComputeConfig' => [
            'ExecutionRoleARN' => '<string>',
        ],
    ],
    'AutoMLJobArn' => '<string>',
    'AutoMLJobArtifacts' => [
        'CandidateDefinitionNotebookLocation' => '<string>',
        'DataExplorationNotebookLocation' => '<string>',
    ],
    'AutoMLJobInputDataConfig' => [
        [
            'ChannelType' => 'training|validation',
            'CompressionType' => 'None|Gzip',
            'ContentType' => '<string>',
            'DataSource' => [
                'S3DataSource' => [
                    'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile',
                    'S3Uri' => '<string>',
                ],
            ],
        ],
        // ...
    ],
    'AutoMLJobName' => '<string>',
    'AutoMLJobObjective' => [
        'MetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|BalancedAccuracy|R2|Recall|RecallMacro|Precision|PrecisionMacro|MAE|MAPE|MASE|WAPE|AverageWeightedQuantileLoss',
    ],
    'AutoMLJobSecondaryStatus' => 'Starting|MaxCandidatesReached|Failed|Stopped|MaxAutoMLJobRuntimeReached|Stopping|CandidateDefinitionsGenerated|Completed|ExplainabilityError|DeployingModel|ModelDeploymentError|GeneratingModelInsightsReport|ModelInsightsError|AnalyzingData|FeatureEngineering|ModelTuning|GeneratingExplainabilityReport|TrainingModels|PreTraining',
    'AutoMLJobStatus' => 'Completed|InProgress|Failed|Stopped|Stopping',
    'AutoMLProblemTypeConfig' => [
        'ImageClassificationJobConfig' => [
            'CompletionCriteria' => [
                'MaxAutoMLJobRuntimeInSeconds' => <integer>,
                'MaxCandidates' => <integer>,
                'MaxRuntimePerTrainingJobInSeconds' => <integer>,
            ],
        ],
        'TabularJobConfig' => [
            'CandidateGenerationConfig' => [
                'AlgorithmsConfig' => [
                    [
                        'AutoMLAlgorithms' => ['<string>', ...],
                    ],
                    // ...
                ],
            ],
            'CompletionCriteria' => [
                'MaxAutoMLJobRuntimeInSeconds' => <integer>,
                'MaxCandidates' => <integer>,
                'MaxRuntimePerTrainingJobInSeconds' => <integer>,
            ],
            'FeatureSpecificationS3Uri' => '<string>',
            'GenerateCandidateDefinitionsOnly' => true || false,
            'Mode' => 'AUTO|ENSEMBLING|HYPERPARAMETER_TUNING',
            'ProblemType' => 'BinaryClassification|MulticlassClassification|Regression',
            'SampleWeightAttributeName' => '<string>',
            'TargetAttributeName' => '<string>',
        ],
        'TextClassificationJobConfig' => [
            'CompletionCriteria' => [
                'MaxAutoMLJobRuntimeInSeconds' => <integer>,
                'MaxCandidates' => <integer>,
                'MaxRuntimePerTrainingJobInSeconds' => <integer>,
            ],
            'ContentColumn' => '<string>',
            'TargetLabelColumn' => '<string>',
        ],
        'TextGenerationJobConfig' => [
            'BaseModelName' => '<string>',
            'CompletionCriteria' => [
                'MaxAutoMLJobRuntimeInSeconds' => <integer>,
                'MaxCandidates' => <integer>,
                'MaxRuntimePerTrainingJobInSeconds' => <integer>,
            ],
            'ModelAccessConfig' => [
                'AcceptEula' => true || false,
            ],
            'TextGenerationHyperParameters' => ['<string>', ...],
        ],
        'TimeSeriesForecastingJobConfig' => [
            'CandidateGenerationConfig' => [
                'AlgorithmsConfig' => [
                    [
                        'AutoMLAlgorithms' => ['<string>', ...],
                    ],
                    // ...
                ],
            ],
            'CompletionCriteria' => [
                'MaxAutoMLJobRuntimeInSeconds' => <integer>,
                'MaxCandidates' => <integer>,
                'MaxRuntimePerTrainingJobInSeconds' => <integer>,
            ],
            'FeatureSpecificationS3Uri' => '<string>',
            'ForecastFrequency' => '<string>',
            'ForecastHorizon' => <integer>,
            'ForecastQuantiles' => ['<string>', ...],
            'HolidayConfig' => [
                [
                    'CountryCode' => '<string>',
                ],
                // ...
            ],
            'TimeSeriesConfig' => [
                'GroupingAttributeNames' => ['<string>', ...],
                'ItemIdentifierAttributeName' => '<string>',
                'TargetAttributeName' => '<string>',
                'TimestampAttributeName' => '<string>',
            ],
            'Transformations' => [
                'Aggregation' => ['<string>', ...],
                'Filling' => [
                    '<TransformationAttributeName>' => ['<string>', ...],
                    // ...
                ],
            ],
        ],
    ],
    'AutoMLProblemTypeConfigName' => 'ImageClassification|TextClassification|TimeSeriesForecasting|Tabular|TextGeneration',
    'BestCandidate' => [
        'CandidateName' => '<string>',
        'CandidateProperties' => [
            'CandidateArtifactLocations' => [
                'BacktestResults' => '<string>',
                'Explainability' => '<string>',
                'ModelInsights' => '<string>',
            ],
            'CandidateMetrics' => [
                [
                    'MetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|BalancedAccuracy|R2|Recall|RecallMacro|Precision|PrecisionMacro|MAE|MAPE|MASE|WAPE|AverageWeightedQuantileLoss',
                    'Set' => 'Train|Validation|Test',
                    'StandardMetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|MAE|R2|BalancedAccuracy|Precision|PrecisionMacro|Recall|RecallMacro|LogLoss|InferenceLatency|MAPE|MASE|WAPE|AverageWeightedQuantileLoss|Rouge1|Rouge2|RougeL|RougeLSum|Perplexity|ValidationLoss|TrainingLoss',
                    'Value' => <float>,
                ],
                // ...
            ],
        ],
        'CandidateStatus' => 'Completed|InProgress|Failed|Stopped|Stopping',
        'CandidateSteps' => [
            [
                'CandidateStepArn' => '<string>',
                'CandidateStepName' => '<string>',
                'CandidateStepType' => 'AWS::SageMaker::TrainingJob|AWS::SageMaker::TransformJob|AWS::SageMaker::ProcessingJob',
            ],
            // ...
        ],
        'CreationTime' => <DateTime>,
        'EndTime' => <DateTime>,
        'FailureReason' => '<string>',
        'FinalAutoMLJobObjectiveMetric' => [
            'MetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|BalancedAccuracy|R2|Recall|RecallMacro|Precision|PrecisionMacro|MAE|MAPE|MASE|WAPE|AverageWeightedQuantileLoss',
            'StandardMetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|BalancedAccuracy|R2|Recall|RecallMacro|Precision|PrecisionMacro|MAE|MAPE|MASE|WAPE|AverageWeightedQuantileLoss',
            'Type' => 'Maximize|Minimize',
            'Value' => <float>,
        ],
        'InferenceContainerDefinitions' => [
            '<AutoMLProcessingUnit>' => [
                [
                    'Environment' => ['<string>', ...],
                    'Image' => '<string>',
                    'ModelDataUrl' => '<string>',
                ],
                // ...
            ],
            // ...
        ],
        'InferenceContainers' => [
            [
                'Environment' => ['<string>', ...],
                'Image' => '<string>',
                'ModelDataUrl' => '<string>',
            ],
            // ...
        ],
        'LastModifiedTime' => <DateTime>,
        'ObjectiveStatus' => 'Succeeded|Pending|Failed',
    ],
    'CreationTime' => <DateTime>,
    'DataSplitConfig' => [
        'ValidationFraction' => <float>,
    ],
    'EndTime' => <DateTime>,
    'FailureReason' => '<string>',
    'LastModifiedTime' => <DateTime>,
    'ModelDeployConfig' => [
        'AutoGenerateEndpointName' => true || false,
        'EndpointName' => '<string>',
    ],
    'ModelDeployResult' => [
        'EndpointName' => '<string>',
    ],
    'OutputDataConfig' => [
        'KmsKeyId' => '<string>',
        'S3OutputPath' => '<string>',
    ],
    'PartialFailureReasons' => [
        [
            'PartialFailureMessage' => '<string>',
        ],
        // ...
    ],
    'ResolvedAttributes' => [
        'AutoMLJobObjective' => [
            'MetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|BalancedAccuracy|R2|Recall|RecallMacro|Precision|PrecisionMacro|MAE|MAPE|MASE|WAPE|AverageWeightedQuantileLoss',
        ],
        'AutoMLProblemTypeResolvedAttributes' => [
            'TabularResolvedAttributes' => [
                'ProblemType' => 'BinaryClassification|MulticlassClassification|Regression',
            ],
            'TextGenerationResolvedAttributes' => [
                'BaseModelName' => '<string>',
            ],
        ],
        'CompletionCriteria' => [
            'MaxAutoMLJobRuntimeInSeconds' => <integer>,
            'MaxCandidates' => <integer>,
            'MaxRuntimePerTrainingJobInSeconds' => <integer>,
        ],
    ],
    'RoleArn' => '<string>',
    'SecurityConfig' => [
        'EnableInterContainerTrafficEncryption' => true || false,
        'VolumeKmsKeyId' => '<string>',
        'VpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...],
            'Subnets' => ['<string>', ...],
        ],
    ],
]

Result Details

Members
AutoMLComputeConfig
Type: AutoMLComputeConfig structure

The compute configuration used for the AutoML job V2.

AutoMLJobArn
Required: Yes
Type: string

Returns the Amazon Resource Name (ARN) of the AutoML job V2.

AutoMLJobArtifacts
Type: AutoMLJobArtifacts structure

The artifacts that are generated during an AutoML job.

AutoMLJobInputDataConfig
Required: Yes
Type: Array of AutoMLJobChannel structures

Returns an array of channel objects describing the input data and their location.

AutoMLJobName
Required: Yes
Type: string

Returns the name of the AutoML job V2.

AutoMLJobObjective
Type: AutoMLJobObjective structure

Returns the job's objective.

AutoMLJobSecondaryStatus
Required: Yes
Type: string

Returns the secondary status of the AutoML job V2.

AutoMLJobStatus
Required: Yes
Type: string

Returns the status of the AutoML job V2.

AutoMLProblemTypeConfig
Type: AutoMLProblemTypeConfig structure

Returns the configuration settings of the problem type set for the AutoML job V2.

AutoMLProblemTypeConfigName
Type: string

Returns the name of the problem type configuration set for the AutoML job V2.

BestCandidate
Type: AutoMLCandidate structure

Information about the candidate produced by an AutoML training job V2, including its status, steps, and other properties.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

Returns the creation time of the AutoML job V2.

DataSplitConfig
Type: AutoMLDataSplitConfig structure

Returns the configuration settings of how the data are split into train and validation datasets.

EndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Returns the end time of the AutoML job V2.

FailureReason
Type: string

Returns the reason for the failure of the AutoML job V2, when applicable.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

Returns the job's last modified time.

ModelDeployConfig
Type: ModelDeployConfig structure

Indicates whether the model was deployed automatically to an endpoint and the name of that endpoint if deployed automatically.

ModelDeployResult
Type: ModelDeployResult structure

Provides information about endpoint for the model deployment.

OutputDataConfig
Required: Yes
Type: AutoMLOutputDataConfig structure

Returns the job's output data config.

PartialFailureReasons
Type: Array of AutoMLPartialFailureReason structures

Returns a list of reasons for partial failures within an AutoML job V2.

ResolvedAttributes
Type: AutoMLResolvedAttributes structure

Returns the resolved attributes used by the AutoML job V2.

RoleArn
Required: Yes
Type: string

The ARN of the IAM role that has read permission to the input data location and write permission to the output data location in Amazon S3.

SecurityConfig
Type: AutoMLSecurityConfig structure

Returns the security configuration for traffic encryption or Amazon VPC settings.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeCluster

$result = $client->describeCluster([/* ... */]);
$promise = $client->describeClusterAsync([/* ... */]);

Retrieves information of a SageMaker HyperPod cluster.

Parameter Syntax

$result = $client->describeCluster([
    'ClusterName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ClusterName
Required: Yes
Type: string

The string name or the Amazon Resource Name (ARN) of the SageMaker HyperPod cluster.

Result Syntax

[
    'ClusterArn' => '<string>',
    'ClusterName' => '<string>',
    'ClusterStatus' => 'Creating|Deleting|Failed|InService|RollingBack|SystemUpdating|Updating',
    'CreationTime' => <DateTime>,
    'FailureMessage' => '<string>',
    'InstanceGroups' => [
        [
            'CurrentCount' => <integer>,
            'ExecutionRole' => '<string>',
            'InstanceGroupName' => '<string>',
            'InstanceStorageConfigs' => [
                [
                    'EbsVolumeConfig' => [
                        'VolumeSizeInGB' => <integer>,
                    ],
                ],
                // ...
            ],
            'InstanceType' => 'ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.c5n.large|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.gr6.4xlarge|ml.gr6.8xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.trn2.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge',
            'LifeCycleConfig' => [
                'OnCreate' => '<string>',
                'SourceS3Uri' => '<string>',
            ],
            'OnStartDeepHealthChecks' => ['<string>', ...],
            'OverrideVpcConfig' => [
                'SecurityGroupIds' => ['<string>', ...],
                'Subnets' => ['<string>', ...],
            ],
            'Status' => 'InService|Creating|Updating|Failed|Degraded|SystemUpdating|Deleting',
            'TargetCount' => <integer>,
            'ThreadsPerCore' => <integer>,
            'TrainingPlanArn' => '<string>',
            'TrainingPlanStatus' => '<string>',
        ],
        // ...
    ],
    'NodeRecovery' => 'Automatic|None',
    'Orchestrator' => [
        'Eks' => [
            'ClusterArn' => '<string>',
        ],
    ],
    'VpcConfig' => [
        'SecurityGroupIds' => ['<string>', ...],
        'Subnets' => ['<string>', ...],
    ],
]

Result Details

Members
ClusterArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the SageMaker HyperPod cluster.

ClusterName
Type: string

The name of the SageMaker HyperPod cluster.

ClusterStatus
Required: Yes
Type: string

The status of the SageMaker HyperPod cluster.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the SageMaker Cluster is created.

FailureMessage
Type: string

The failure message of the SageMaker HyperPod cluster.

InstanceGroups
Required: Yes
Type: Array of ClusterInstanceGroupDetails structures

The instance groups of the SageMaker HyperPod cluster.

NodeRecovery
Type: string

The node recovery mode configured for the SageMaker HyperPod cluster.

Orchestrator
Type: ClusterOrchestrator structure

The type of orchestrator used for the SageMaker HyperPod cluster.

VpcConfig
Type: VpcConfig structure

Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeClusterNode

$result = $client->describeClusterNode([/* ... */]);
$promise = $client->describeClusterNodeAsync([/* ... */]);

Retrieves information of a node (also called a instance interchangeably) of a SageMaker HyperPod cluster.

Parameter Syntax

$result = $client->describeClusterNode([
    'ClusterName' => '<string>', // REQUIRED
    'NodeId' => '<string>', // REQUIRED
]);

Parameter Details

Members
ClusterName
Required: Yes
Type: string

The string name or the Amazon Resource Name (ARN) of the SageMaker HyperPod cluster in which the node is.

NodeId
Required: Yes
Type: string

The ID of the SageMaker HyperPod cluster node.

Result Syntax

[
    'NodeDetails' => [
        'InstanceGroupName' => '<string>',
        'InstanceId' => '<string>',
        'InstanceStatus' => [
            'Message' => '<string>',
            'Status' => 'Running|Failure|Pending|ShuttingDown|SystemUpdating|DeepHealthCheckInProgress',
        ],
        'InstanceStorageConfigs' => [
            [
                'EbsVolumeConfig' => [
                    'VolumeSizeInGB' => <integer>,
                ],
            ],
            // ...
        ],
        'InstanceType' => 'ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.c5n.large|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.gr6.4xlarge|ml.gr6.8xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.trn2.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge',
        'LaunchTime' => <DateTime>,
        'LifeCycleConfig' => [
            'OnCreate' => '<string>',
            'SourceS3Uri' => '<string>',
        ],
        'OverrideVpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...],
            'Subnets' => ['<string>', ...],
        ],
        'Placement' => [
            'AvailabilityZone' => '<string>',
            'AvailabilityZoneId' => '<string>',
        ],
        'PrivateDnsHostname' => '<string>',
        'PrivatePrimaryIp' => '<string>',
        'PrivatePrimaryIpv6' => '<string>',
        'ThreadsPerCore' => <integer>,
    ],
]

Result Details

Members
NodeDetails
Required: Yes
Type: ClusterNodeDetails structure

The details of the SageMaker HyperPod cluster node.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeClusterSchedulerConfig

$result = $client->describeClusterSchedulerConfig([/* ... */]);
$promise = $client->describeClusterSchedulerConfigAsync([/* ... */]);

Description of the cluster policy. This policy is used for task prioritization and fair-share allocation. This helps prioritize critical workloads and distributes idle compute across entities.

Parameter Syntax

$result = $client->describeClusterSchedulerConfig([
    'ClusterSchedulerConfigId' => '<string>', // REQUIRED
    'ClusterSchedulerConfigVersion' => <integer>,
]);

Parameter Details

Members
ClusterSchedulerConfigId
Required: Yes
Type: string

ID of the cluster policy.

ClusterSchedulerConfigVersion
Type: int

Version of the cluster policy.

Result Syntax

[
    'ClusterArn' => '<string>',
    'ClusterSchedulerConfigArn' => '<string>',
    'ClusterSchedulerConfigId' => '<string>',
    'ClusterSchedulerConfigVersion' => <integer>,
    'CreatedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'Description' => '<string>',
    'FailureReason' => '<string>',
    'LastModifiedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
    'Name' => '<string>',
    'SchedulerConfig' => [
        'FairShare' => 'Enabled|Disabled',
        'PriorityClasses' => [
            [
                'Name' => '<string>',
                'Weight' => <integer>,
            ],
            // ...
        ],
    ],
    'Status' => 'Creating|CreateFailed|CreateRollbackFailed|Created|Updating|UpdateFailed|UpdateRollbackFailed|Updated|Deleting|DeleteFailed|DeleteRollbackFailed|Deleted',
]

Result Details

Members
ClusterArn
Type: string

ARN of the cluster where the cluster policy is applied.

ClusterSchedulerConfigArn
Required: Yes
Type: string

ARN of the cluster policy.

ClusterSchedulerConfigId
Required: Yes
Type: string

ID of the cluster policy.

ClusterSchedulerConfigVersion
Required: Yes
Type: int

Version of the cluster policy.

CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

Creation time of the cluster policy.

Description
Type: string

Description of the cluster policy.

FailureReason
Type: string

Failure reason of the cluster policy.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Last modified time of the cluster policy.

Name
Required: Yes
Type: string

Name of the cluster policy.

SchedulerConfig
Type: SchedulerConfig structure

Cluster policy configuration. This policy is used for task prioritization and fair-share allocation. This helps prioritize critical workloads and distributes idle compute across entities.

Status
Required: Yes
Type: string

Status of the cluster policy.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeCodeRepository

$result = $client->describeCodeRepository([/* ... */]);
$promise = $client->describeCodeRepositoryAsync([/* ... */]);

Gets details about the specified Git repository.

Parameter Syntax

$result = $client->describeCodeRepository([
    'CodeRepositoryName' => '<string>', // REQUIRED
]);

Parameter Details

Members
CodeRepositoryName
Required: Yes
Type: string

The name of the Git repository to describe.

Result Syntax

[
    'CodeRepositoryArn' => '<string>',
    'CodeRepositoryName' => '<string>',
    'CreationTime' => <DateTime>,
    'GitConfig' => [
        'Branch' => '<string>',
        'RepositoryUrl' => '<string>',
        'SecretArn' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
]

Result Details

Members
CodeRepositoryArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the Git repository.

CodeRepositoryName
Required: Yes
Type: string

The name of the Git repository.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the repository was created.

GitConfig
Type: GitConfig structure

Configuration details about the repository, including the URL where the repository is located, the default branch, and the Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the repository.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the repository was last changed.

Errors

There are no errors described for this operation.

DescribeCompilationJob

$result = $client->describeCompilationJob([/* ... */]);
$promise = $client->describeCompilationJobAsync([/* ... */]);

Returns information about a model compilation job.

To create a model compilation job, use CreateCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.

Parameter Syntax

$result = $client->describeCompilationJob([
    'CompilationJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
CompilationJobName
Required: Yes
Type: string

The name of the model compilation job that you want information about.

Result Syntax

[
    'CompilationEndTime' => <DateTime>,
    'CompilationJobArn' => '<string>',
    'CompilationJobName' => '<string>',
    'CompilationJobStatus' => 'INPROGRESS|COMPLETED|FAILED|STARTING|STOPPING|STOPPED',
    'CompilationStartTime' => <DateTime>,
    'CreationTime' => <DateTime>,
    'DerivedInformation' => [
        'DerivedDataInputConfig' => '<string>',
    ],
    'FailureReason' => '<string>',
    'InferenceImage' => '<string>',
    'InputConfig' => [
        'DataInputConfig' => '<string>',
        'Framework' => 'TENSORFLOW|KERAS|MXNET|ONNX|PYTORCH|XGBOOST|TFLITE|DARKNET|SKLEARN',
        'FrameworkVersion' => '<string>',
        'S3Uri' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
    'ModelArtifacts' => [
        'S3ModelArtifacts' => '<string>',
    ],
    'ModelDigests' => [
        'ArtifactDigest' => '<string>',
    ],
    'ModelPackageVersionArn' => '<string>',
    'OutputConfig' => [
        'CompilerOptions' => '<string>',
        'KmsKeyId' => '<string>',
        'S3OutputLocation' => '<string>',
        'TargetDevice' => 'lambda|ml_m4|ml_m5|ml_m6g|ml_c4|ml_c5|ml_c6g|ml_p2|ml_p3|ml_g4dn|ml_inf1|ml_inf2|ml_trn1|ml_eia2|jetson_tx1|jetson_tx2|jetson_nano|jetson_xavier|rasp3b|rasp4b|imx8qm|deeplens|rk3399|rk3288|aisage|sbe_c|qcs605|qcs603|sitara_am57x|amba_cv2|amba_cv22|amba_cv25|x86_win32|x86_win64|coreml|jacinto_tda4vm|imx8mplus',
        'TargetPlatform' => [
            'Accelerator' => 'INTEL_GRAPHICS|MALI|NVIDIA|NNA',
            'Arch' => 'X86_64|X86|ARM64|ARM_EABI|ARM_EABIHF',
            'Os' => 'ANDROID|LINUX',
        ],
    ],
    'RoleArn' => '<string>',
    'StoppingCondition' => [
        'MaxPendingTimeInSeconds' => <integer>,
        'MaxRuntimeInSeconds' => <integer>,
        'MaxWaitTimeInSeconds' => <integer>,
    ],
    'VpcConfig' => [
        'SecurityGroupIds' => ['<string>', ...],
        'Subnets' => ['<string>', ...],
    ],
]

Result Details

Members
CompilationEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the model compilation job on a compilation job instance ended. For a successful or stopped job, this is when the job's model artifacts have finished uploading. For a failed job, this is when Amazon SageMaker AI detected that the job failed.

CompilationJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model compilation job.

CompilationJobName
Required: Yes
Type: string

The name of the model compilation job.

CompilationJobStatus
Required: Yes
Type: string

The status of the model compilation job.

CompilationStartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the model compilation job started the CompilationJob instances.

You are billed for the time between this timestamp and the timestamp in the CompilationEndTime field. In Amazon CloudWatch Logs, the start time might be later than this time. That's because it takes time to download the compilation job, which depends on the size of the compilation job container.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the model compilation job was created.

DerivedInformation
Type: DerivedInformation structure

Information that SageMaker Neo automatically derived about the model.

FailureReason
Required: Yes
Type: string

If a model compilation job failed, the reason it failed.

InferenceImage
Type: string

The inference image to use when compiling a model. Specify an image only if the target device is a cloud instance.

InputConfig
Required: Yes
Type: InputConfig structure

Information about the location in Amazon S3 of the input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the status of the model compilation job was last modified.

ModelArtifacts
Required: Yes
Type: ModelArtifacts structure

Information about the location in Amazon S3 that has been configured for storing the model artifacts used in the compilation job.

ModelDigests
Type: ModelDigests structure

Provides a BLAKE2 hash value that identifies the compiled model artifacts in Amazon S3.

ModelPackageVersionArn
Type: string

The Amazon Resource Name (ARN) of the versioned model package that was provided to SageMaker Neo when you initiated a compilation job.

OutputConfig
Required: Yes
Type: OutputConfig structure

Information about the output location for the compiled model and the target device that the model runs on.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI assumes to perform the model compilation job.

StoppingCondition
Required: Yes
Type: StoppingCondition structure

Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker AI ends the compilation job. Use this API to cap model training costs.

VpcConfig
Type: NeoVpcConfig structure

A VpcConfig object that specifies the VPC that you want your compilation job to connect to. Control access to your models by configuring the VPC. For more information, see Protect Compilation Jobs by Using an Amazon Virtual Private Cloud.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeComputeQuota

$result = $client->describeComputeQuota([/* ... */]);
$promise = $client->describeComputeQuotaAsync([/* ... */]);

Description of the compute allocation definition.

Parameter Syntax

$result = $client->describeComputeQuota([
    'ComputeQuotaId' => '<string>', // REQUIRED
    'ComputeQuotaVersion' => <integer>,
]);

Parameter Details

Members
ComputeQuotaId
Required: Yes
Type: string

ID of the compute allocation definition.

ComputeQuotaVersion
Type: int

Version of the compute allocation definition.

Result Syntax

[
    'ActivationState' => 'Enabled|Disabled',
    'ClusterArn' => '<string>',
    'ComputeQuotaArn' => '<string>',
    'ComputeQuotaConfig' => [
        'ComputeQuotaResources' => [
            [
                'Count' => <integer>,
                'InstanceType' => 'ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.c5n.large|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.gr6.4xlarge|ml.gr6.8xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.trn2.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge',
            ],
            // ...
        ],
        'PreemptTeamTasks' => 'Never|LowerPriority',
        'ResourceSharingConfig' => [
            'BorrowLimit' => <integer>,
            'Strategy' => 'Lend|DontLend|LendAndBorrow',
        ],
    ],
    'ComputeQuotaId' => '<string>',
    'ComputeQuotaTarget' => [
        'FairShareWeight' => <integer>,
        'TeamName' => '<string>',
    ],
    'ComputeQuotaVersion' => <integer>,
    'CreatedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'Description' => '<string>',
    'FailureReason' => '<string>',
    'LastModifiedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
    'Name' => '<string>',
    'Status' => 'Creating|CreateFailed|CreateRollbackFailed|Created|Updating|UpdateFailed|UpdateRollbackFailed|Updated|Deleting|DeleteFailed|DeleteRollbackFailed|Deleted',
]

Result Details

Members
ActivationState
Type: string

The state of the compute allocation being described. Use to enable or disable compute allocation.

Default is Enabled.

ClusterArn
Type: string

ARN of the cluster.

ComputeQuotaArn
Required: Yes
Type: string

ARN of the compute allocation definition.

ComputeQuotaConfig
Type: ComputeQuotaConfig structure

Configuration of the compute allocation definition. This includes the resource sharing option, and the setting to preempt low priority tasks.

ComputeQuotaId
Required: Yes
Type: string

ID of the compute allocation definition.

ComputeQuotaTarget
Required: Yes
Type: ComputeQuotaTarget structure

The target entity to allocate compute resources to.

ComputeQuotaVersion
Required: Yes
Type: int

Version of the compute allocation definition.

CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

Creation time of the compute allocation configuration.

Description
Type: string

Description of the compute allocation definition.

FailureReason
Type: string

Failure reason of the compute allocation definition.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Last modified time of the compute allocation configuration.

Name
Required: Yes
Type: string

Name of the compute allocation definition.

Status
Required: Yes
Type: string

Status of the compute allocation definition.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeContext

$result = $client->describeContext([/* ... */]);
$promise = $client->describeContextAsync([/* ... */]);

Describes a context.

Parameter Syntax

$result = $client->describeContext([
    'ContextName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ContextName
Required: Yes
Type: string

The name of the context to describe.

Result Syntax

[
    'ContextArn' => '<string>',
    'ContextName' => '<string>',
    'ContextType' => '<string>',
    'CreatedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'Description' => '<string>',
    'LastModifiedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
    'LineageGroupArn' => '<string>',
    'Properties' => ['<string>', ...],
    'Source' => [
        'SourceId' => '<string>',
        'SourceType' => '<string>',
        'SourceUri' => '<string>',
    ],
]

Result Details

Members
ContextArn
Type: string

The Amazon Resource Name (ARN) of the context.

ContextName
Type: string

The name of the context.

ContextType
Type: string

The type of the context.

CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the context was created.

Description
Type: string

The description of the context.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the context was last modified.

LineageGroupArn
Type: string

The Amazon Resource Name (ARN) of the lineage group.

Properties
Type: Associative array of custom strings keys (StringParameterValue) to strings

A list of the context's properties.

Source
Type: ContextSource structure

The source of the context.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeDataQualityJobDefinition

$result = $client->describeDataQualityJobDefinition([/* ... */]);
$promise = $client->describeDataQualityJobDefinitionAsync([/* ... */]);

Gets the details of a data quality monitoring job definition.

Parameter Syntax

$result = $client->describeDataQualityJobDefinition([
    'JobDefinitionName' => '<string>', // REQUIRED
]);

Parameter Details

Members
JobDefinitionName
Required: Yes
Type: string

The name of the data quality monitoring job definition to describe.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'DataQualityAppSpecification' => [
        'ContainerArguments' => ['<string>', ...],
        'ContainerEntrypoint' => ['<string>', ...],
        'Environment' => ['<string>', ...],
        'ImageUri' => '<string>',
        'PostAnalyticsProcessorSourceUri' => '<string>',
        'RecordPreprocessorSourceUri' => '<string>',
    ],
    'DataQualityBaselineConfig' => [
        'BaseliningJobName' => '<string>',
        'ConstraintsResource' => [
            'S3Uri' => '<string>',
        ],
        'StatisticsResource' => [
            'S3Uri' => '<string>',
        ],
    ],
    'DataQualityJobInput' => [
        'BatchTransformInput' => [
            'DataCapturedDestinationS3Uri' => '<string>',
            'DatasetFormat' => [
                'Csv' => [
                    'Header' => true || false,
                ],
                'Json' => [
                    'Line' => true || false,
                ],
                'Parquet' => [
                ],
            ],
            'EndTimeOffset' => '<string>',
            'ExcludeFeaturesAttribute' => '<string>',
            'FeaturesAttribute' => '<string>',
            'InferenceAttribute' => '<string>',
            'LocalPath' => '<string>',
            'ProbabilityAttribute' => '<string>',
            'ProbabilityThresholdAttribute' => <float>,
            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
            'S3InputMode' => 'Pipe|File',
            'StartTimeOffset' => '<string>',
        ],
        'EndpointInput' => [
            'EndTimeOffset' => '<string>',
            'EndpointName' => '<string>',
            'ExcludeFeaturesAttribute' => '<string>',
            'FeaturesAttribute' => '<string>',
            'InferenceAttribute' => '<string>',
            'LocalPath' => '<string>',
            'ProbabilityAttribute' => '<string>',
            'ProbabilityThresholdAttribute' => <float>,
            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
            'S3InputMode' => 'Pipe|File',
            'StartTimeOffset' => '<string>',
        ],
    ],
    'DataQualityJobOutputConfig' => [
        'KmsKeyId' => '<string>',
        'MonitoringOutputs' => [
            [
                'S3Output' => [
                    'LocalPath' => '<string>',
                    'S3UploadMode' => 'Continuous|EndOfJob',
                    'S3Uri' => '<string>',
                ],
            ],
            // ...
        ],
    ],
    'JobDefinitionArn' => '<string>',
    'JobDefinitionName' => '<string>',
    'JobResources' => [
        'ClusterConfig' => [
            'InstanceCount' => <integer>,
            'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge',
            'VolumeKmsKeyId' => '<string>',
            'VolumeSizeInGB' => <integer>,
        ],
    ],
    'NetworkConfig' => [
        'EnableInterContainerTrafficEncryption' => true || false,
        'EnableNetworkIsolation' => true || false,
        'VpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...],
            'Subnets' => ['<string>', ...],
        ],
    ],
    'RoleArn' => '<string>',
    'StoppingCondition' => [
        'MaxRuntimeInSeconds' => <integer>,
    ],
]

Result Details

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the data quality monitoring job definition was created.

DataQualityAppSpecification
Required: Yes
Type: DataQualityAppSpecification structure

Information about the container that runs the data quality monitoring job.

DataQualityBaselineConfig
Type: DataQualityBaselineConfig structure

The constraints and baselines for the data quality monitoring job definition.

DataQualityJobInput
Required: Yes
Type: DataQualityJobInput structure

The list of inputs for the data quality monitoring job. Currently endpoints are supported.

DataQualityJobOutputConfig
Required: Yes
Type: MonitoringOutputConfig structure

The output configuration for monitoring jobs.

JobDefinitionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the data quality monitoring job definition.

JobDefinitionName
Required: Yes
Type: string

The name of the data quality monitoring job definition.

JobResources
Required: Yes
Type: MonitoringResources structure

Identifies the resources to deploy for a monitoring job.

NetworkConfig
Type: MonitoringNetworkConfig structure

The networking configuration for the data quality monitoring job.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.

StoppingCondition
Type: MonitoringStoppingCondition structure

A time limit for how long the monitoring job is allowed to run before stopping.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeDevice

$result = $client->describeDevice([/* ... */]);
$promise = $client->describeDeviceAsync([/* ... */]);

Describes the device.

Parameter Syntax

$result = $client->describeDevice([
    'DeviceFleetName' => '<string>', // REQUIRED
    'DeviceName' => '<string>', // REQUIRED
    'NextToken' => '<string>',
]);

Parameter Details

Members
DeviceFleetName
Required: Yes
Type: string

The name of the fleet the devices belong to.

DeviceName
Required: Yes
Type: string

The unique ID of the device.

NextToken
Type: string

Next token of device description.

Result Syntax

[
    'AgentVersion' => '<string>',
    'Description' => '<string>',
    'DeviceArn' => '<string>',
    'DeviceFleetName' => '<string>',
    'DeviceName' => '<string>',
    'IotThingName' => '<string>',
    'LatestHeartbeat' => <DateTime>,
    'MaxModels' => <integer>,
    'Models' => [
        [
            'LatestInference' => <DateTime>,
            'LatestSampleTime' => <DateTime>,
            'ModelName' => '<string>',
            'ModelVersion' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
    'RegistrationTime' => <DateTime>,
]

Result Details

Members
AgentVersion
Type: string

Edge Manager agent version.

Description
Type: string

A description of the device.

DeviceArn
Type: string

The Amazon Resource Name (ARN) of the device.

DeviceFleetName
Required: Yes
Type: string

The name of the fleet the device belongs to.

DeviceName
Required: Yes
Type: string

The unique identifier of the device.

IotThingName
Type: string

The Amazon Web Services Internet of Things (IoT) object thing name associated with the device.

LatestHeartbeat
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last heartbeat received from the device.

MaxModels
Type: int

The maximum number of models.

Models
Type: Array of EdgeModel structures

Models on the device.

NextToken
Type: string

The response from the last list when returning a list large enough to need tokening.

RegistrationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp of the last registration or de-reregistration.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeDeviceFleet

$result = $client->describeDeviceFleet([/* ... */]);
$promise = $client->describeDeviceFleetAsync([/* ... */]);

A description of the fleet the device belongs to.

Parameter Syntax

$result = $client->describeDeviceFleet([
    'DeviceFleetName' => '<string>', // REQUIRED
]);

Parameter Details

Members
DeviceFleetName
Required: Yes
Type: string

The name of the fleet.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'Description' => '<string>',
    'DeviceFleetArn' => '<string>',
    'DeviceFleetName' => '<string>',
    'IotRoleAlias' => '<string>',
    'LastModifiedTime' => <DateTime>,
    'OutputConfig' => [
        'KmsKeyId' => '<string>',
        'PresetDeploymentConfig' => '<string>',
        'PresetDeploymentType' => 'GreengrassV2Component',
        'S3OutputLocation' => '<string>',
    ],
    'RoleArn' => '<string>',
]

Result Details

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

Timestamp of when the device fleet was created.

Description
Type: string

A description of the fleet.

DeviceFleetArn
Required: Yes
Type: string

The The Amazon Resource Name (ARN) of the fleet.

DeviceFleetName
Required: Yes
Type: string

The name of the fleet.

IotRoleAlias
Type: string

The Amazon Resource Name (ARN) alias created in Amazon Web Services Internet of Things (IoT).

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

Timestamp of when the device fleet was last updated.

OutputConfig
Required: Yes
Type: EdgeOutputConfig structure

The output configuration for storing sampled data.

RoleArn
Type: string

The Amazon Resource Name (ARN) that has access to Amazon Web Services Internet of Things (IoT).

Errors

ResourceNotFound:

Resource being access is not found.

DescribeDomain

$result = $client->describeDomain([/* ... */]);
$promise = $client->describeDomainAsync([/* ... */]);

The description of the domain.

Parameter Syntax

$result = $client->describeDomain([
    'DomainId' => '<string>', // REQUIRED
]);

Parameter Details

Members
DomainId
Required: Yes
Type: string

The domain ID.

Result Syntax

[
    'AppNetworkAccessType' => 'PublicInternetOnly|VpcOnly',
    'AppSecurityGroupManagement' => 'Service|Customer',
    'AuthMode' => 'SSO|IAM',
    'CreationTime' => <DateTime>,
    'DefaultSpaceSettings' => [
        'CustomFileSystemConfigs' => [
            [
                'EFSFileSystemConfig' => [
                    'FileSystemId' => '<string>',
                    'FileSystemPath' => '<string>',
                ],
                'FSxLustreFileSystemConfig' => [
                    'FileSystemId' => '<string>',
                    'FileSystemPath' => '<string>',
                ],
            ],
            // ...
        ],
        'CustomPosixUserConfig' => [
            'Gid' => <integer>,
            'Uid' => <integer>,
        ],
        'ExecutionRole' => '<string>',
        'JupyterLabAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                    'LifecycleManagement' => 'ENABLED|DISABLED',
                    'MaxIdleTimeoutInMinutes' => <integer>,
                    'MinIdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'BuiltInLifecycleConfigArn' => '<string>',
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>',
                ],
                // ...
            ],
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>',
                    'ImageName' => '<string>',
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'EmrSettings' => [
                'AssumableRoleArns' => ['<string>', ...],
                'ExecutionRoleArns' => ['<string>', ...],
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'JupyterServerAppSettings' => [
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>',
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'KernelGatewayAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>',
                    'ImageName' => '<string>',
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'SecurityGroups' => ['<string>', ...],
        'SpaceStorageSettings' => [
            'DefaultEbsStorageSettings' => [
                'DefaultEbsVolumeSizeInGb' => <integer>,
                'MaximumEbsVolumeSizeInGb' => <integer>,
            ],
        ],
    ],
    'DefaultUserSettings' => [
        'AutoMountHomeEFS' => 'Enabled|Disabled|DefaultAsDomain',
        'CanvasAppSettings' => [
            'DirectDeploySettings' => [
                'Status' => 'ENABLED|DISABLED',
            ],
            'EmrServerlessSettings' => [
                'ExecutionRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'GenerativeAiSettings' => [
                'AmazonBedrockRoleArn' => '<string>',
            ],
            'IdentityProviderOAuthSettings' => [
                [
                    'DataSourceName' => 'SalesforceGenie|Snowflake',
                    'SecretArn' => '<string>',
                    'Status' => 'ENABLED|DISABLED',
                ],
                // ...
            ],
            'KendraSettings' => [
                'Status' => 'ENABLED|DISABLED',
            ],
            'ModelRegisterSettings' => [
                'CrossAccountModelRegisterRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'TimeSeriesForecastingSettings' => [
                'AmazonForecastRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'WorkspaceSettings' => [
                'S3ArtifactPath' => '<string>',
                'S3KmsKeyId' => '<string>',
            ],
        ],
        'CodeEditorAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                    'LifecycleManagement' => 'ENABLED|DISABLED',
                    'MaxIdleTimeoutInMinutes' => <integer>,
                    'MinIdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'BuiltInLifecycleConfigArn' => '<string>',
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>',
                    'ImageName' => '<string>',
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'CustomFileSystemConfigs' => [
            [
                'EFSFileSystemConfig' => [
                    'FileSystemId' => '<string>',
                    'FileSystemPath' => '<string>',
                ],
                'FSxLustreFileSystemConfig' => [
                    'FileSystemId' => '<string>',
                    'FileSystemPath' => '<string>',
                ],
            ],
            // ...
        ],
        'CustomPosixUserConfig' => [
            'Gid' => <integer>,
            'Uid' => <integer>,
        ],
        'DefaultLandingUri' => '<string>',
        'ExecutionRole' => '<string>',
        'JupyterLabAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                    'LifecycleManagement' => 'ENABLED|DISABLED',
                    'MaxIdleTimeoutInMinutes' => <integer>,
                    'MinIdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'BuiltInLifecycleConfigArn' => '<string>',
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>',
                ],
                // ...
            ],
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>',
                    'ImageName' => '<string>',
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'EmrSettings' => [
                'AssumableRoleArns' => ['<string>', ...],
                'ExecutionRoleArns' => ['<string>', ...],
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'JupyterServerAppSettings' => [
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>',
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'KernelGatewayAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>',
                    'ImageName' => '<string>',
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'RSessionAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>',
                    'ImageName' => '<string>',
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
        'RStudioServerProAppSettings' => [
            'AccessStatus' => 'ENABLED|DISABLED',
            'UserGroup' => 'R_STUDIO_ADMIN|R_STUDIO_USER',
        ],
        'SecurityGroups' => ['<string>', ...],
        'SharingSettings' => [
            'NotebookOutputOption' => 'Allowed|Disabled',
            'S3KmsKeyId' => '<string>',
            'S3OutputPath' => '<string>',
        ],
        'SpaceStorageSettings' => [
            'DefaultEbsStorageSettings' => [
                'DefaultEbsVolumeSizeInGb' => <integer>,
                'MaximumEbsVolumeSizeInGb' => <integer>,
            ],
        ],
        'StudioWebPortal' => 'ENABLED|DISABLED',
        'StudioWebPortalSettings' => [
            'HiddenAppTypes' => ['<string>', ...],
            'HiddenInstanceTypes' => ['<string>', ...],
            'HiddenMlTools' => ['<string>', ...],
            'HiddenSageMakerImageVersionAliases' => [
                [
                    'SageMakerImageName' => 'sagemaker_distribution',
                    'VersionAliases' => ['<string>', ...],
                ],
                // ...
            ],
        ],
        'TensorBoardAppSettings' => [
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
    ],
    'DomainArn' => '<string>',
    'DomainId' => '<string>',
    'DomainName' => '<string>',
    'DomainSettings' => [
        'AmazonQSettings' => [
            'QProfileArn' => '<string>',
            'Status' => 'ENABLED|DISABLED',
        ],
        'DockerSettings' => [
            'EnableDockerAccess' => 'ENABLED|DISABLED',
            'VpcOnlyTrustedAccounts' => ['<string>', ...],
        ],
        'ExecutionRoleIdentityConfig' => 'USER_PROFILE_NAME|DISABLED',
        'RStudioServerProDomainSettings' => [
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'DomainExecutionRoleArn' => '<string>',
            'RStudioConnectUrl' => '<string>',
            'RStudioPackageManagerUrl' => '<string>',
        ],
        'SecurityGroupIds' => ['<string>', ...],
    ],
    'FailureReason' => '<string>',
    'HomeEfsFileSystemId' => '<string>',
    'HomeEfsFileSystemKmsKeyId' => '<string>',
    'KmsKeyId' => '<string>',
    'LastModifiedTime' => <DateTime>,
    'SecurityGroupIdForDomainBoundary' => '<string>',
    'SingleSignOnApplicationArn' => '<string>',
    'SingleSignOnManagedApplicationInstanceId' => '<string>',
    'Status' => 'Deleting|Failed|InService|Pending|Updating|Update_Failed|Delete_Failed',
    'SubnetIds' => ['<string>', ...],
    'TagPropagation' => 'ENABLED|DISABLED',
    'Url' => '<string>',
    'VpcId' => '<string>',
]

Result Details

Members
AppNetworkAccessType
Type: string

Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly.

  • PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker AI, which allows direct internet access

  • VpcOnly - All traffic is through the specified VPC and subnets

AppSecurityGroupManagement
Type: string

The entity that creates and manages the required security groups for inter-app communication in VPCOnly mode. Required when CreateDomain.AppNetworkAccessType is VPCOnly and DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided.

AuthMode
Type: string

The domain's authentication mode.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time.

DefaultSpaceSettings
Type: DefaultSpaceSettings structure

The default settings for shared spaces that users create in the domain.

DefaultUserSettings
Type: UserSettings structure

Settings which are applied to UserProfiles in this domain if settings are not explicitly specified in a given UserProfile.

DomainArn
Type: string

The domain's Amazon Resource Name (ARN).

DomainId
Type: string

The domain ID.

DomainName
Type: string

The domain name.

DomainSettings
Type: DomainSettings structure

A collection of Domain settings.

FailureReason
Type: string

The failure reason.

HomeEfsFileSystemId
Type: string

The ID of the Amazon Elastic File System managed by this Domain.

HomeEfsFileSystemKmsKeyId
Type: string

Use KmsKeyId.

KmsKeyId
Type: string

The Amazon Web Services KMS customer managed key used to encrypt the EFS volume attached to the domain.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last modified time.

SecurityGroupIdForDomainBoundary
Type: string

The ID of the security group that authorizes traffic between the RSessionGateway apps and the RStudioServerPro app.

SingleSignOnApplicationArn
Type: string

The ARN of the application managed by SageMaker AI in IAM Identity Center. This value is only returned for domains created after October 1, 2023.

SingleSignOnManagedApplicationInstanceId
Type: string

The IAM Identity Center managed application instance ID.

Status
Type: string

The status.

SubnetIds
Type: Array of strings

The VPC subnets that the domain uses for communication.

TagPropagation
Type: string

Indicates whether custom tag propagation is supported for the domain.

Url
Type: string

The domain's URL.

VpcId
Type: string

The ID of the Amazon Virtual Private Cloud (VPC) that the domain uses for communication.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeEdgeDeploymentPlan

$result = $client->describeEdgeDeploymentPlan([/* ... */]);
$promise = $client->describeEdgeDeploymentPlanAsync([/* ... */]);

Describes an edge deployment plan with deployment status per stage.

Parameter Syntax

$result = $client->describeEdgeDeploymentPlan([
    'EdgeDeploymentPlanName' => '<string>', // REQUIRED
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
]);

Parameter Details

Members
EdgeDeploymentPlanName
Required: Yes
Type: string

The name of the deployment plan to describe.

MaxResults
Type: int

The maximum number of results to select (50 by default).

NextToken
Type: string

If the edge deployment plan has enough stages to require tokening, then this is the response from the last list of stages returned.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'DeviceFleetName' => '<string>',
    'EdgeDeploymentFailed' => <integer>,
    'EdgeDeploymentPending' => <integer>,
    'EdgeDeploymentPlanArn' => '<string>',
    'EdgeDeploymentPlanName' => '<string>',
    'EdgeDeploymentSuccess' => <integer>,
    'LastModifiedTime' => <DateTime>,
    'ModelConfigs' => [
        [
            'EdgePackagingJobName' => '<string>',
            'ModelHandle' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
    'Stages' => [
        [
            'DeploymentConfig' => [
                'FailureHandlingPolicy' => 'ROLLBACK_ON_FAILURE|DO_NOTHING',
            ],
            'DeploymentStatus' => [
                'EdgeDeploymentFailedInStage' => <integer>,
                'EdgeDeploymentPendingInStage' => <integer>,
                'EdgeDeploymentStageStartTime' => <DateTime>,
                'EdgeDeploymentStatusMessage' => '<string>',
                'EdgeDeploymentSuccessInStage' => <integer>,
                'StageStatus' => 'CREATING|READYTODEPLOY|STARTING|INPROGRESS|DEPLOYED|FAILED|STOPPING|STOPPED',
            ],
            'DeviceSelectionConfig' => [
                'DeviceNameContains' => '<string>',
                'DeviceNames' => ['<string>', ...],
                'DeviceSubsetType' => 'PERCENTAGE|SELECTION|NAMECONTAINS',
                'Percentage' => <integer>,
            ],
            'StageName' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the edge deployment plan was created.

DeviceFleetName
Required: Yes
Type: string

The device fleet used for this edge deployment plan.

EdgeDeploymentFailed
Type: int

The number of edge devices that failed the deployment.

EdgeDeploymentPending
Type: int

The number of edge devices yet to pick up deployment, or in progress.

EdgeDeploymentPlanArn
Required: Yes
Type: string

The ARN of edge deployment plan.

EdgeDeploymentPlanName
Required: Yes
Type: string

The name of the edge deployment plan.

EdgeDeploymentSuccess
Type: int

The number of edge devices with the successful deployment.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the edge deployment plan was last updated.

ModelConfigs
Required: Yes
Type: Array of EdgeDeploymentModelConfig structures

List of models associated with the edge deployment plan.

NextToken
Type: string

Token to use when calling the next set of stages in the edge deployment plan.

Stages
Required: Yes
Type: Array of DeploymentStageStatusSummary structures

List of stages in the edge deployment plan.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeEdgePackagingJob

$result = $client->describeEdgePackagingJob([/* ... */]);
$promise = $client->describeEdgePackagingJobAsync([/* ... */]);

A description of edge packaging jobs.

Parameter Syntax

$result = $client->describeEdgePackagingJob([
    'EdgePackagingJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
EdgePackagingJobName
Required: Yes
Type: string

The name of the edge packaging job.

Result Syntax

[
    'CompilationJobName' => '<string>',
    'CreationTime' => <DateTime>,
    'EdgePackagingJobArn' => '<string>',
    'EdgePackagingJobName' => '<string>',
    'EdgePackagingJobStatus' => 'STARTING|INPROGRESS|COMPLETED|FAILED|STOPPING|STOPPED',
    'EdgePackagingJobStatusMessage' => '<string>',
    'LastModifiedTime' => <DateTime>,
    'ModelArtifact' => '<string>',
    'ModelName' => '<string>',
    'ModelSignature' => '<string>',
    'ModelVersion' => '<string>',
    'OutputConfig' => [
        'KmsKeyId' => '<string>',
        'PresetDeploymentConfig' => '<string>',
        'PresetDeploymentType' => 'GreengrassV2Component',
        'S3OutputLocation' => '<string>',
    ],
    'PresetDeploymentOutput' => [
        'Artifact' => '<string>',
        'Status' => 'COMPLETED|FAILED',
        'StatusMessage' => '<string>',
        'Type' => 'GreengrassV2Component',
    ],
    'ResourceKey' => '<string>',
    'RoleArn' => '<string>',
]

Result Details

Members
CompilationJobName
Type: string

The name of the SageMaker Neo compilation job that is used to locate model artifacts that are being packaged.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp of when the packaging job was created.

EdgePackagingJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the edge packaging job.

EdgePackagingJobName
Required: Yes
Type: string

The name of the edge packaging job.

EdgePackagingJobStatus
Required: Yes
Type: string

The current status of the packaging job.

EdgePackagingJobStatusMessage
Type: string

Returns a message describing the job status and error messages.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp of when the job was last updated.

ModelArtifact
Type: string

The Amazon Simple Storage (S3) URI where model artifacts ares stored.

ModelName
Type: string

The name of the model.

ModelSignature
Type: string

The signature document of files in the model artifact.

ModelVersion
Type: string

The version of the model.

OutputConfig
Type: EdgeOutputConfig structure

The output configuration for the edge packaging job.

PresetDeploymentOutput
Type: EdgePresetDeploymentOutput structure

The output of a SageMaker Edge Manager deployable resource.

ResourceKey
Type: string

The Amazon Web Services KMS key to use when encrypting the EBS volume the job run on.

RoleArn
Type: string

The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to download and upload the model, and to contact Neo.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeEndpoint

$result = $client->describeEndpoint([/* ... */]);
$promise = $client->describeEndpointAsync([/* ... */]);

Returns the description of an endpoint.

Parameter Syntax

$result = $client->describeEndpoint([
    'EndpointName' => '<string>', // REQUIRED
]);

Parameter Details

Members
EndpointName
Required: Yes
Type: string

The name of the endpoint.

Result Syntax

[
    'AsyncInferenceConfig' => [
        'ClientConfig' => [
            'MaxConcurrentInvocationsPerInstance' => <integer>,
        ],
        'OutputConfig' => [
            'KmsKeyId' => '<string>',
            'NotificationConfig' => [
                'ErrorTopic' => '<string>',
                'IncludeInferenceResponseIn' => ['<string>', ...],
                'SuccessTopic' => '<string>',
            ],
            'S3FailurePath' => '<string>',
            'S3OutputPath' => '<string>',
        ],
    ],
    'CreationTime' => <DateTime>,
    'DataCaptureConfig' => [
        'CaptureStatus' => 'Started|Stopped',
        'CurrentSamplingPercentage' => <integer>,
        'DestinationS3Uri' => '<string>',
        'EnableCapture' => true || false,
        'KmsKeyId' => '<string>',
    ],
    'EndpointArn' => '<string>',
    'EndpointConfigName' => '<string>',
    'EndpointName' => '<string>',
    'EndpointStatus' => 'OutOfService|Creating|Updating|SystemUpdating|RollingBack|InService|Deleting|Failed|UpdateRollbackFailed',
    'ExplainerConfig' => [
        'ClarifyExplainerConfig' => [
            'EnableExplanations' => '<string>',
            'InferenceConfig' => [
                'ContentTemplate' => '<string>',
                'FeatureHeaders' => ['<string>', ...],
                'FeatureTypes' => ['<string>', ...],
                'FeaturesAttribute' => '<string>',
                'LabelAttribute' => '<string>',
                'LabelHeaders' => ['<string>', ...],
                'LabelIndex' => <integer>,
                'MaxPayloadInMB' => <integer>,
                'MaxRecordCount' => <integer>,
                'ProbabilityAttribute' => '<string>',
                'ProbabilityIndex' => <integer>,
            ],
            'ShapConfig' => [
                'NumberOfSamples' => <integer>,
                'Seed' => <integer>,
                'ShapBaselineConfig' => [
                    'MimeType' => '<string>',
                    'ShapBaseline' => '<string>',
                    'ShapBaselineUri' => '<string>',
                ],
                'TextConfig' => [
                    'Granularity' => 'token|sentence|paragraph',
                    'Language' => 'af|sq|ar|hy|eu|bn|bg|ca|zh|hr|cs|da|nl|en|et|fi|fr|de|el|gu|he|hi|hu|is|id|ga|it|kn|ky|lv|lt|lb|mk|ml|mr|ne|nb|fa|pl|pt|ro|ru|sa|sr|tn|si|sk|sl|es|sv|tl|ta|tt|te|tr|uk|ur|yo|lij|xx',
                ],
                'UseLogit' => true || false,
            ],
        ],
    ],
    'FailureReason' => '<string>',
    'LastDeploymentConfig' => [
        'AutoRollbackConfiguration' => [
            'Alarms' => [
                [
                    'AlarmName' => '<string>',
                ],
                // ...
            ],
        ],
        'BlueGreenUpdatePolicy' => [
            'MaximumExecutionTimeoutInSeconds' => <integer>,
            'TerminationWaitInSeconds' => <integer>,
            'TrafficRoutingConfiguration' => [
                'CanarySize' => [
                    'Type' => 'INSTANCE_COUNT|CAPACITY_PERCENT',
                    'Value' => <integer>,
                ],
                'LinearStepSize' => [
                    'Type' => 'INSTANCE_COUNT|CAPACITY_PERCENT',
                    'Value' => <integer>,
                ],
                'Type' => 'ALL_AT_ONCE|CANARY|LINEAR',
                'WaitIntervalInSeconds' => <integer>,
            ],
        ],
        'RollingUpdatePolicy' => [
            'MaximumBatchSize' => [
                'Type' => 'INSTANCE_COUNT|CAPACITY_PERCENT',
                'Value' => <integer>,
            ],
            'MaximumExecutionTimeoutInSeconds' => <integer>,
            'RollbackMaximumBatchSize' => [
                'Type' => 'INSTANCE_COUNT|CAPACITY_PERCENT',
                'Value' => <integer>,
            ],
            'WaitIntervalInSeconds' => <integer>,
        ],
    ],
    'LastModifiedTime' => <DateTime>,
    'PendingDeploymentSummary' => [
        'EndpointConfigName' => '<string>',
        'ProductionVariants' => [
            [
                'AcceleratorType' => 'ml.eia1.medium|ml.eia1.large|ml.eia1.xlarge|ml.eia2.medium|ml.eia2.large|ml.eia2.xlarge',
                'CurrentInstanceCount' => <integer>,
                'CurrentServerlessConfig' => [
                    'MaxConcurrency' => <integer>,
                    'MemorySizeInMB' => <integer>,
                    'ProvisionedConcurrency' => <integer>,
                ],
                'CurrentWeight' => <float>,
                'DeployedImages' => [
                    [
                        'ResolutionTime' => <DateTime>,
                        'ResolvedImage' => '<string>',
                        'SpecifiedImage' => '<string>',
                    ],
                    // ...
                ],
                'DesiredInstanceCount' => <integer>,
                'DesiredServerlessConfig' => [
                    'MaxConcurrency' => <integer>,
                    'MemorySizeInMB' => <integer>,
                    'ProvisionedConcurrency' => <integer>,
                ],
                'DesiredWeight' => <float>,
                'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.12xlarge|ml.m5d.24xlarge|ml.c4.large|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.large|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.12xlarge|ml.r5.24xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.12xlarge|ml.r5d.24xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.dl1.24xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p4d.24xlarge|ml.c7g.large|ml.c7g.xlarge|ml.c7g.2xlarge|ml.c7g.4xlarge|ml.c7g.8xlarge|ml.c7g.12xlarge|ml.c7g.16xlarge|ml.m6g.large|ml.m6g.xlarge|ml.m6g.2xlarge|ml.m6g.4xlarge|ml.m6g.8xlarge|ml.m6g.12xlarge|ml.m6g.16xlarge|ml.m6gd.large|ml.m6gd.xlarge|ml.m6gd.2xlarge|ml.m6gd.4xlarge|ml.m6gd.8xlarge|ml.m6gd.12xlarge|ml.m6gd.16xlarge|ml.c6g.large|ml.c6g.xlarge|ml.c6g.2xlarge|ml.c6g.4xlarge|ml.c6g.8xlarge|ml.c6g.12xlarge|ml.c6g.16xlarge|ml.c6gd.large|ml.c6gd.xlarge|ml.c6gd.2xlarge|ml.c6gd.4xlarge|ml.c6gd.8xlarge|ml.c6gd.12xlarge|ml.c6gd.16xlarge|ml.c6gn.large|ml.c6gn.xlarge|ml.c6gn.2xlarge|ml.c6gn.4xlarge|ml.c6gn.8xlarge|ml.c6gn.12xlarge|ml.c6gn.16xlarge|ml.r6g.large|ml.r6g.xlarge|ml.r6g.2xlarge|ml.r6g.4xlarge|ml.r6g.8xlarge|ml.r6g.12xlarge|ml.r6g.16xlarge|ml.r6gd.large|ml.r6gd.xlarge|ml.r6gd.2xlarge|ml.r6gd.4xlarge|ml.r6gd.8xlarge|ml.r6gd.12xlarge|ml.r6gd.16xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge',
                'ManagedInstanceScaling' => [
                    'MaxInstanceCount' => <integer>,
                    'MinInstanceCount' => <integer>,
                    'Status' => 'ENABLED|DISABLED',
                ],
                'RoutingConfig' => [
                    'RoutingStrategy' => 'LEAST_OUTSTANDING_REQUESTS|RANDOM',
                ],
                'VariantName' => '<string>',
                'VariantStatus' => [
                    [
                        'StartTime' => <DateTime>,
                        'Status' => 'Creating|Updating|Deleting|ActivatingTraffic|Baking',
                        'StatusMessage' => '<string>',
                    ],
                    // ...
                ],
            ],
            // ...
        ],
        'ShadowProductionVariants' => [
            [
                'AcceleratorType' => 'ml.eia1.medium|ml.eia1.large|ml.eia1.xlarge|ml.eia2.medium|ml.eia2.large|ml.eia2.xlarge',
                'CurrentInstanceCount' => <integer>,
                'CurrentServerlessConfig' => [
                    'MaxConcurrency' => <integer>,
                    'MemorySizeInMB' => <integer>,
                    'ProvisionedConcurrency' => <integer>,
                ],
                'CurrentWeight' => <float>,
                'DeployedImages' => [
                    [
                        'ResolutionTime' => <DateTime>,
                        'ResolvedImage' => '<string>',
                        'SpecifiedImage' => '<string>',
                    ],
                    // ...
                ],
                'DesiredInstanceCount' => <integer>,
                'DesiredServerlessConfig' => [
                    'MaxConcurrency' => <integer>,
                    'MemorySizeInMB' => <integer>,
                    'ProvisionedConcurrency' => <integer>,
                ],
                'DesiredWeight' => <float>,
                'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.12xlarge|ml.m5d.24xlarge|ml.c4.large|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.large|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.12xlarge|ml.r5.24xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.12xlarge|ml.r5d.24xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.dl1.24xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p4d.24xlarge|ml.c7g.large|ml.c7g.xlarge|ml.c7g.2xlarge|ml.c7g.4xlarge|ml.c7g.8xlarge|ml.c7g.12xlarge|ml.c7g.16xlarge|ml.m6g.large|ml.m6g.xlarge|ml.m6g.2xlarge|ml.m6g.4xlarge|ml.m6g.8xlarge|ml.m6g.12xlarge|ml.m6g.16xlarge|ml.m6gd.large|ml.m6gd.xlarge|ml.m6gd.2xlarge|ml.m6gd.4xlarge|ml.m6gd.8xlarge|ml.m6gd.12xlarge|ml.m6gd.16xlarge|ml.c6g.large|ml.c6g.xlarge|ml.c6g.2xlarge|ml.c6g.4xlarge|ml.c6g.8xlarge|ml.c6g.12xlarge|ml.c6g.16xlarge|ml.c6gd.large|ml.c6gd.xlarge|ml.c6gd.2xlarge|ml.c6gd.4xlarge|ml.c6gd.8xlarge|ml.c6gd.12xlarge|ml.c6gd.16xlarge|ml.c6gn.large|ml.c6gn.xlarge|ml.c6gn.2xlarge|ml.c6gn.4xlarge|ml.c6gn.8xlarge|ml.c6gn.12xlarge|ml.c6gn.16xlarge|ml.r6g.large|ml.r6g.xlarge|ml.r6g.2xlarge|ml.r6g.4xlarge|ml.r6g.8xlarge|ml.r6g.12xlarge|ml.r6g.16xlarge|ml.r6gd.large|ml.r6gd.xlarge|ml.r6gd.2xlarge|ml.r6gd.4xlarge|ml.r6gd.8xlarge|ml.r6gd.12xlarge|ml.r6gd.16xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge',
                'ManagedInstanceScaling' => [
                    'MaxInstanceCount' => <integer>,
                    'MinInstanceCount' => <integer>,
                    'Status' => 'ENABLED|DISABLED',
                ],
                'RoutingConfig' => [
                    'RoutingStrategy' => 'LEAST_OUTSTANDING_REQUESTS|RANDOM',
                ],
                'VariantName' => '<string>',
                'VariantStatus' => [
                    [
                        'StartTime' => <DateTime>,
                        'Status' => 'Creating|Updating|Deleting|ActivatingTraffic|Baking',
                        'StatusMessage' => '<string>',
                    ],
                    // ...
                ],
            ],
            // ...
        ],
        'StartTime' => <DateTime>,
    ],
    'ProductionVariants' => [
        [
            'CurrentInstanceCount' => <integer>,
            'CurrentServerlessConfig' => [
                'MaxConcurrency' => <integer>,
                'MemorySizeInMB' => <integer>,
                'ProvisionedConcurrency' => <integer>,
            ],
            'CurrentWeight' => <float>,
            'DeployedImages' => [
                [
                    'ResolutionTime' => <DateTime>,
                    'ResolvedImage' => '<string>',
                    'SpecifiedImage' => '<string>',
                ],
                // ...
            ],
            'DesiredInstanceCount' => <integer>,
            'DesiredServerlessConfig' => [
                'MaxConcurrency' => <integer>,
                'MemorySizeInMB' => <integer>,
                'ProvisionedConcurrency' => <integer>,
            ],
            'DesiredWeight' => <float>,
            'ManagedInstanceScaling' => [
                'MaxInstanceCount' => <integer>,
                'MinInstanceCount' => <integer>,
                'Status' => 'ENABLED|DISABLED',
            ],
            'RoutingConfig' => [
                'RoutingStrategy' => 'LEAST_OUTSTANDING_REQUESTS|RANDOM',
            ],
            'VariantName' => '<string>',
            'VariantStatus' => [
                [
                    'StartTime' => <DateTime>,
                    'Status' => 'Creating|Updating|Deleting|ActivatingTraffic|Baking',
                    'StatusMessage' => '<string>',
                ],
                // ...
            ],
        ],
        // ...
    ],
    'ShadowProductionVariants' => [
        [
            'CurrentInstanceCount' => <integer>,
            'CurrentServerlessConfig' => [
                'MaxConcurrency' => <integer>,
                'MemorySizeInMB' => <integer>,
                'ProvisionedConcurrency' => <integer>,
            ],
            'CurrentWeight' => <float>,
            'DeployedImages' => [
                [
                    'ResolutionTime' => <DateTime>,
                    'ResolvedImage' => '<string>',
                    'SpecifiedImage' => '<string>',
                ],
                // ...
            ],
            'DesiredInstanceCount' => <integer>,
            'DesiredServerlessConfig' => [
                'MaxConcurrency' => <integer>,
                'MemorySizeInMB' => <integer>,
                'ProvisionedConcurrency' => <integer>,
            ],
            'DesiredWeight' => <float>,
            'ManagedInstanceScaling' => [
                'MaxInstanceCount' => <integer>,
                'MinInstanceCount' => <integer>,
                'Status' => 'ENABLED|DISABLED',
            ],
            'RoutingConfig' => [
                'RoutingStrategy' => 'LEAST_OUTSTANDING_REQUESTS|RANDOM',
            ],
            'VariantName' => '<string>',
            'VariantStatus' => [
                [
                    'StartTime' => <DateTime>,
                    'Status' => 'Creating|Updating|Deleting|ActivatingTraffic|Baking',
                    'StatusMessage' => '<string>',
                ],
                // ...
            ],
        ],
        // ...
    ],
]

Result Details

Members
AsyncInferenceConfig
Type: AsyncInferenceConfig structure

Returns the description of an endpoint configuration created using the CreateEndpointConfig API.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the endpoint was created.

DataCaptureConfig
Type: DataCaptureConfigSummary structure

The currently active data capture configuration used by your Endpoint.

EndpointArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the endpoint.

EndpointConfigName
Type: string

The name of the endpoint configuration associated with this endpoint.

EndpointName
Required: Yes
Type: string

Name of the endpoint.

EndpointStatus
Required: Yes
Type: string

The status of the endpoint.

  • OutOfService: Endpoint is not available to take incoming requests.

  • Creating: CreateEndpoint is executing.

  • Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing.

  • SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.

  • RollingBack: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly.

  • InService: Endpoint is available to process incoming requests.

  • Deleting: DeleteEndpoint is executing.

  • Failed: Endpoint could not be created, updated, or re-scaled. Use the FailureReason value returned by DescribeEndpoint for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.

  • UpdateRollbackFailed: Both the rolling deployment and auto-rollback failed. Your endpoint is in service with a mix of the old and new endpoint configurations. For information about how to remedy this issue and restore the endpoint's status to InService, see Rolling Deployments.

ExplainerConfig
Type: ExplainerConfig structure

The configuration parameters for an explainer.

FailureReason
Type: string

If the status of the endpoint is Failed, the reason why it failed.

LastDeploymentConfig
Type: DeploymentConfig structure

The most recent deployment configuration for the endpoint.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the endpoint was last modified.

PendingDeploymentSummary
Type: PendingDeploymentSummary structure

Returns the summary of an in-progress deployment. This field is only returned when the endpoint is creating or updating with a new endpoint configuration.

ProductionVariants
Type: Array of ProductionVariantSummary structures

An array of ProductionVariantSummary objects, one for each model hosted behind this endpoint.

ShadowProductionVariants
Type: Array of ProductionVariantSummary structures

An array of ProductionVariantSummary objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants.

Errors

There are no errors described for this operation.

DescribeEndpointConfig

$result = $client->describeEndpointConfig([/* ... */]);
$promise = $client->describeEndpointConfigAsync([/* ... */]);

Returns the description of an endpoint configuration created using the CreateEndpointConfig API.

Parameter Syntax

$result = $client->describeEndpointConfig([
    'EndpointConfigName' => '<string>', // REQUIRED
]);

Parameter Details

Members
EndpointConfigName
Required: Yes
Type: string

The name of the endpoint configuration.

Result Syntax

[
    'AsyncInferenceConfig' => [
        'ClientConfig' => [
            'MaxConcurrentInvocationsPerInstance' => <integer>,
        ],
        'OutputConfig' => [
            'KmsKeyId' => '<string>',
            'NotificationConfig' => [
                'ErrorTopic' => '<string>',
                'IncludeInferenceResponseIn' => ['<string>', ...],
                'SuccessTopic' => '<string>',
            ],
            'S3FailurePath' => '<string>',
            'S3OutputPath' => '<string>',
        ],
    ],
    'CreationTime' => <DateTime>,
    'DataCaptureConfig' => [
        'CaptureContentTypeHeader' => [
            'CsvContentTypes' => ['<string>', ...],
            'JsonContentTypes' => ['<string>', ...],
        ],
        'CaptureOptions' => [
            [
                'CaptureMode' => 'Input|Output|InputAndOutput',
            ],
            // ...
        ],
        'DestinationS3Uri' => '<string>',
        'EnableCapture' => true || false,
        'InitialSamplingPercentage' => <integer>,
        'KmsKeyId' => '<string>',
    ],
    'EnableNetworkIsolation' => true || false,
    'EndpointConfigArn' => '<string>',
    'EndpointConfigName' => '<string>',
    'ExecutionRoleArn' => '<string>',
    'ExplainerConfig' => [
        'ClarifyExplainerConfig' => [
            'EnableExplanations' => '<string>',
            'InferenceConfig' => [
                'ContentTemplate' => '<string>',
                'FeatureHeaders' => ['<string>', ...],
                'FeatureTypes' => ['<string>', ...],
                'FeaturesAttribute' => '<string>',
                'LabelAttribute' => '<string>',
                'LabelHeaders' => ['<string>', ...],
                'LabelIndex' => <integer>,
                'MaxPayloadInMB' => <integer>,
                'MaxRecordCount' => <integer>,
                'ProbabilityAttribute' => '<string>',
                'ProbabilityIndex' => <integer>,
            ],
            'ShapConfig' => [
                'NumberOfSamples' => <integer>,
                'Seed' => <integer>,
                'ShapBaselineConfig' => [
                    'MimeType' => '<string>',
                    'ShapBaseline' => '<string>',
                    'ShapBaselineUri' => '<string>',
                ],
                'TextConfig' => [
                    'Granularity' => 'token|sentence|paragraph',
                    'Language' => 'af|sq|ar|hy|eu|bn|bg|ca|zh|hr|cs|da|nl|en|et|fi|fr|de|el|gu|he|hi|hu|is|id|ga|it|kn|ky|lv|lt|lb|mk|ml|mr|ne|nb|fa|pl|pt|ro|ru|sa|sr|tn|si|sk|sl|es|sv|tl|ta|tt|te|tr|uk|ur|yo|lij|xx',
                ],
                'UseLogit' => true || false,
            ],
        ],
    ],
    'KmsKeyId' => '<string>',
    'ProductionVariants' => [
        [
            'AcceleratorType' => 'ml.eia1.medium|ml.eia1.large|ml.eia1.xlarge|ml.eia2.medium|ml.eia2.large|ml.eia2.xlarge',
            'ContainerStartupHealthCheckTimeoutInSeconds' => <integer>,
            'CoreDumpConfig' => [
                'DestinationS3Uri' => '<string>',
                'KmsKeyId' => '<string>',
            ],
            'EnableSSMAccess' => true || false,
            'InferenceAmiVersion' => 'al2-ami-sagemaker-inference-gpu-2',
            'InitialInstanceCount' => <integer>,
            'InitialVariantWeight' => <float>,
            'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.12xlarge|ml.m5d.24xlarge|ml.c4.large|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.large|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.12xlarge|ml.r5.24xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.12xlarge|ml.r5d.24xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.dl1.24xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p4d.24xlarge|ml.c7g.large|ml.c7g.xlarge|ml.c7g.2xlarge|ml.c7g.4xlarge|ml.c7g.8xlarge|ml.c7g.12xlarge|ml.c7g.16xlarge|ml.m6g.large|ml.m6g.xlarge|ml.m6g.2xlarge|ml.m6g.4xlarge|ml.m6g.8xlarge|ml.m6g.12xlarge|ml.m6g.16xlarge|ml.m6gd.large|ml.m6gd.xlarge|ml.m6gd.2xlarge|ml.m6gd.4xlarge|ml.m6gd.8xlarge|ml.m6gd.12xlarge|ml.m6gd.16xlarge|ml.c6g.large|ml.c6g.xlarge|ml.c6g.2xlarge|ml.c6g.4xlarge|ml.c6g.8xlarge|ml.c6g.12xlarge|ml.c6g.16xlarge|ml.c6gd.large|ml.c6gd.xlarge|ml.c6gd.2xlarge|ml.c6gd.4xlarge|ml.c6gd.8xlarge|ml.c6gd.12xlarge|ml.c6gd.16xlarge|ml.c6gn.large|ml.c6gn.xlarge|ml.c6gn.2xlarge|ml.c6gn.4xlarge|ml.c6gn.8xlarge|ml.c6gn.12xlarge|ml.c6gn.16xlarge|ml.r6g.large|ml.r6g.xlarge|ml.r6g.2xlarge|ml.r6g.4xlarge|ml.r6g.8xlarge|ml.r6g.12xlarge|ml.r6g.16xlarge|ml.r6gd.large|ml.r6gd.xlarge|ml.r6gd.2xlarge|ml.r6gd.4xlarge|ml.r6gd.8xlarge|ml.r6gd.12xlarge|ml.r6gd.16xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge',
            'ManagedInstanceScaling' => [
                'MaxInstanceCount' => <integer>,
                'MinInstanceCount' => <integer>,
                'Status' => 'ENABLED|DISABLED',
            ],
            'ModelDataDownloadTimeoutInSeconds' => <integer>,
            'ModelName' => '<string>',
            'RoutingConfig' => [
                'RoutingStrategy' => 'LEAST_OUTSTANDING_REQUESTS|RANDOM',
            ],
            'ServerlessConfig' => [
                'MaxConcurrency' => <integer>,
                'MemorySizeInMB' => <integer>,
                'ProvisionedConcurrency' => <integer>,
            ],
            'VariantName' => '<string>',
            'VolumeSizeInGB' => <integer>,
        ],
        // ...
    ],
    'ShadowProductionVariants' => [
        [
            'AcceleratorType' => 'ml.eia1.medium|ml.eia1.large|ml.eia1.xlarge|ml.eia2.medium|ml.eia2.large|ml.eia2.xlarge',
            'ContainerStartupHealthCheckTimeoutInSeconds' => <integer>,
            'CoreDumpConfig' => [
                'DestinationS3Uri' => '<string>',
                'KmsKeyId' => '<string>',
            ],
            'EnableSSMAccess' => true || false,
            'InferenceAmiVersion' => 'al2-ami-sagemaker-inference-gpu-2',
            'InitialInstanceCount' => <integer>,
            'InitialVariantWeight' => <float>,
            'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.12xlarge|ml.m5d.24xlarge|ml.c4.large|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.large|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.12xlarge|ml.r5.24xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.12xlarge|ml.r5d.24xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.dl1.24xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p4d.24xlarge|ml.c7g.large|ml.c7g.xlarge|ml.c7g.2xlarge|ml.c7g.4xlarge|ml.c7g.8xlarge|ml.c7g.12xlarge|ml.c7g.16xlarge|ml.m6g.large|ml.m6g.xlarge|ml.m6g.2xlarge|ml.m6g.4xlarge|ml.m6g.8xlarge|ml.m6g.12xlarge|ml.m6g.16xlarge|ml.m6gd.large|ml.m6gd.xlarge|ml.m6gd.2xlarge|ml.m6gd.4xlarge|ml.m6gd.8xlarge|ml.m6gd.12xlarge|ml.m6gd.16xlarge|ml.c6g.large|ml.c6g.xlarge|ml.c6g.2xlarge|ml.c6g.4xlarge|ml.c6g.8xlarge|ml.c6g.12xlarge|ml.c6g.16xlarge|ml.c6gd.large|ml.c6gd.xlarge|ml.c6gd.2xlarge|ml.c6gd.4xlarge|ml.c6gd.8xlarge|ml.c6gd.12xlarge|ml.c6gd.16xlarge|ml.c6gn.large|ml.c6gn.xlarge|ml.c6gn.2xlarge|ml.c6gn.4xlarge|ml.c6gn.8xlarge|ml.c6gn.12xlarge|ml.c6gn.16xlarge|ml.r6g.large|ml.r6g.xlarge|ml.r6g.2xlarge|ml.r6g.4xlarge|ml.r6g.8xlarge|ml.r6g.12xlarge|ml.r6g.16xlarge|ml.r6gd.large|ml.r6gd.xlarge|ml.r6gd.2xlarge|ml.r6gd.4xlarge|ml.r6gd.8xlarge|ml.r6gd.12xlarge|ml.r6gd.16xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge',
            'ManagedInstanceScaling' => [
                'MaxInstanceCount' => <integer>,
                'MinInstanceCount' => <integer>,
                'Status' => 'ENABLED|DISABLED',
            ],
            'ModelDataDownloadTimeoutInSeconds' => <integer>,
            'ModelName' => '<string>',
            'RoutingConfig' => [
                'RoutingStrategy' => 'LEAST_OUTSTANDING_REQUESTS|RANDOM',
            ],
            'ServerlessConfig' => [
                'MaxConcurrency' => <integer>,
                'MemorySizeInMB' => <integer>,
                'ProvisionedConcurrency' => <integer>,
            ],
            'VariantName' => '<string>',
            'VolumeSizeInGB' => <integer>,
        ],
        // ...
    ],
    'VpcConfig' => [
        'SecurityGroupIds' => ['<string>', ...],
        'Subnets' => ['<string>', ...],
    ],
]

Result Details

Members
AsyncInferenceConfig
Type: AsyncInferenceConfig structure

Returns the description of an endpoint configuration created using the CreateEndpointConfig API.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the endpoint configuration was created.

DataCaptureConfig
Type: DataCaptureConfig structure

Configuration to control how SageMaker AI captures inference data.

EnableNetworkIsolation
Type: boolean

Indicates whether all model containers deployed to the endpoint are isolated. If they are, no inbound or outbound network calls can be made to or from the model containers.

EndpointConfigArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the endpoint configuration.

EndpointConfigName
Required: Yes
Type: string

Name of the SageMaker endpoint configuration.

ExecutionRoleArn
Type: string

The Amazon Resource Name (ARN) of the IAM role that you assigned to the endpoint configuration.

ExplainerConfig
Type: ExplainerConfig structure

The configuration parameters for an explainer.

KmsKeyId
Type: string

Amazon Web Services KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.

ProductionVariants
Required: Yes
Type: Array of ProductionVariant structures

An array of ProductionVariant objects, one for each model that you want to host at this endpoint.

ShadowProductionVariants
Type: Array of ProductionVariant structures

An array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants.

VpcConfig
Type: VpcConfig structure

Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC.

Errors

There are no errors described for this operation.

DescribeExperiment

$result = $client->describeExperiment([/* ... */]);
$promise = $client->describeExperimentAsync([/* ... */]);

Provides a list of an experiment's properties.

Parameter Syntax

$result = $client->describeExperiment([
    'ExperimentName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ExperimentName
Required: Yes
Type: string

The name of the experiment to describe.

Result Syntax

[
    'CreatedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'Description' => '<string>',
    'DisplayName' => '<string>',
    'ExperimentArn' => '<string>',
    'ExperimentName' => '<string>',
    'LastModifiedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
    'Source' => [
        'SourceArn' => '<string>',
        'SourceType' => '<string>',
    ],
]

Result Details

Members
CreatedBy
Type: UserContext structure

Who created the experiment.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the experiment was created.

Description
Type: string

The description of the experiment.

DisplayName
Type: string

The name of the experiment as displayed. If DisplayName isn't specified, ExperimentName is displayed.

ExperimentArn
Type: string

The Amazon Resource Name (ARN) of the experiment.

ExperimentName
Type: string

The name of the experiment.

LastModifiedBy
Type: UserContext structure

Who last modified the experiment.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the experiment was last modified.

Source
Type: ExperimentSource structure

The Amazon Resource Name (ARN) of the source and, optionally, the type.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeFeatureGroup

$result = $client->describeFeatureGroup([/* ... */]);
$promise = $client->describeFeatureGroupAsync([/* ... */]);

Use this operation to describe a FeatureGroup. The response includes information on the creation time, FeatureGroup name, the unique identifier for each FeatureGroup, and more.

Parameter Syntax

$result = $client->describeFeatureGroup([
    'FeatureGroupName' => '<string>', // REQUIRED
    'NextToken' => '<string>',
]);

Parameter Details

Members
FeatureGroupName
Required: Yes
Type: string

The name or Amazon Resource Name (ARN) of the FeatureGroup you want described.

NextToken
Type: string

A token to resume pagination of the list of Features (FeatureDefinitions). 2,500 Features are returned by default.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'Description' => '<string>',
    'EventTimeFeatureName' => '<string>',
    'FailureReason' => '<string>',
    'FeatureDefinitions' => [
        [
            'CollectionConfig' => [
                'VectorConfig' => [
                    'Dimension' => <integer>,
                ],
            ],
            'CollectionType' => 'List|Set|Vector',
            'FeatureName' => '<string>',
            'FeatureType' => 'Integral|Fractional|String',
        ],
        // ...
    ],
    'FeatureGroupArn' => '<string>',
    'FeatureGroupName' => '<string>',
    'FeatureGroupStatus' => 'Creating|Created|CreateFailed|Deleting|DeleteFailed',
    'LastModifiedTime' => <DateTime>,
    'LastUpdateStatus' => [
        'FailureReason' => '<string>',
        'Status' => 'Successful|Failed|InProgress',
    ],
    'NextToken' => '<string>',
    'OfflineStoreConfig' => [
        'DataCatalogConfig' => [
            'Catalog' => '<string>',
            'Database' => '<string>',
            'TableName' => '<string>',
        ],
        'DisableGlueTableCreation' => true || false,
        'S3StorageConfig' => [
            'KmsKeyId' => '<string>',
            'ResolvedOutputS3Uri' => '<string>',
            'S3Uri' => '<string>',
        ],
        'TableFormat' => 'Default|Glue|Iceberg',
    ],
    'OfflineStoreStatus' => [
        'BlockedReason' => '<string>',
        'Status' => 'Active|Blocked|Disabled',
    ],
    'OnlineStoreConfig' => [
        'EnableOnlineStore' => true || false,
        'SecurityConfig' => [
            'KmsKeyId' => '<string>',
        ],
        'StorageType' => 'Standard|InMemory',
        'TtlDuration' => [
            'Unit' => 'Seconds|Minutes|Hours|Days|Weeks',
            'Value' => <integer>,
        ],
    ],
    'OnlineStoreTotalSizeBytes' => <integer>,
    'RecordIdentifierFeatureName' => '<string>',
    'RoleArn' => '<string>',
    'ThroughputConfig' => [
        'ProvisionedReadCapacityUnits' => <integer>,
        'ProvisionedWriteCapacityUnits' => <integer>,
        'ThroughputMode' => 'OnDemand|Provisioned',
    ],
]

Result Details

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp indicating when SageMaker created the FeatureGroup.

Description
Type: string

A free form description of the feature group.

EventTimeFeatureName
Required: Yes
Type: string

The name of the feature that stores the EventTime of a Record in a FeatureGroup.

An EventTime is a point in time when a new event occurs that corresponds to the creation or update of a Record in a FeatureGroup. All Records in the FeatureGroup have a corresponding EventTime.

FailureReason
Type: string

The reason that the FeatureGroup failed to be replicated in the OfflineStore. This is failure can occur because:

  • The FeatureGroup could not be created in the OfflineStore.

  • The FeatureGroup could not be deleted from the OfflineStore.

FeatureDefinitions
Required: Yes
Type: Array of FeatureDefinition structures

A list of the Features in the FeatureGroup. Each feature is defined by a FeatureName and FeatureType.

FeatureGroupArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the FeatureGroup.

FeatureGroupName
Required: Yes
Type: string

he name of the FeatureGroup.

FeatureGroupStatus
Type: string

The status of the feature group.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp indicating when the feature group was last updated.

LastUpdateStatus
Type: LastUpdateStatus structure

A value indicating whether the update made to the feature group was successful.

NextToken
Required: Yes
Type: string

A token to resume pagination of the list of Features (FeatureDefinitions).

OfflineStoreConfig
Type: OfflineStoreConfig structure

The configuration of the offline store. It includes the following configurations:

  • Amazon S3 location of the offline store.

  • Configuration of the Glue data catalog.

  • Table format of the offline store.

  • Option to disable the automatic creation of a Glue table for the offline store.

  • Encryption configuration.

OfflineStoreStatus
Type: OfflineStoreStatus structure

The status of the OfflineStore. Notifies you if replicating data into the OfflineStore has failed. Returns either: Active or Blocked

OnlineStoreConfig
Type: OnlineStoreConfig structure

The configuration for the OnlineStore.

OnlineStoreTotalSizeBytes
Type: long (int|float)

The size of the OnlineStore in bytes.

RecordIdentifierFeatureName
Required: Yes
Type: string

The name of the Feature used for RecordIdentifier, whose value uniquely identifies a record stored in the feature store.

RoleArn
Type: string

The Amazon Resource Name (ARN) of the IAM execution role used to persist data into the OfflineStore if an OfflineStoreConfig is provided.

ThroughputConfig
Type: ThroughputConfigDescription structure

Active throughput configuration of the feature group. There are two modes: ON_DEMAND and PROVISIONED. With on-demand mode, you are charged for data reads and writes that your application performs on your feature group. You do not need to specify read and write throughput because Feature Store accommodates your workloads as they ramp up and down. You can switch a feature group to on-demand only once in a 24 hour period. With provisioned throughput mode, you specify the read and write capacity per second that you expect your application to require, and you are billed based on those limits. Exceeding provisioned throughput will result in your requests being throttled.

Note: PROVISIONED throughput mode is supported only for feature groups that are offline-only, or use the Standard tier online store.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeFeatureMetadata

$result = $client->describeFeatureMetadata([/* ... */]);
$promise = $client->describeFeatureMetadataAsync([/* ... */]);

Shows the metadata for a feature within a feature group.

Parameter Syntax

$result = $client->describeFeatureMetadata([
    'FeatureGroupName' => '<string>', // REQUIRED
    'FeatureName' => '<string>', // REQUIRED
]);

Parameter Details

Members
FeatureGroupName
Required: Yes
Type: string

The name or Amazon Resource Name (ARN) of the feature group containing the feature.

FeatureName
Required: Yes
Type: string

The name of the feature.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'Description' => '<string>',
    'FeatureGroupArn' => '<string>',
    'FeatureGroupName' => '<string>',
    'FeatureName' => '<string>',
    'FeatureType' => 'Integral|Fractional|String',
    'LastModifiedTime' => <DateTime>,
    'Parameters' => [
        [
            'Key' => '<string>',
            'Value' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp indicating when the feature was created.

Description
Type: string

The description you added to describe the feature.

FeatureGroupArn
Required: Yes
Type: string

The Amazon Resource Number (ARN) of the feature group that contains the feature.

FeatureGroupName
Required: Yes
Type: string

The name of the feature group that you've specified.

FeatureName
Required: Yes
Type: string

The name of the feature that you've specified.

FeatureType
Required: Yes
Type: string

The data type of the feature.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp indicating when the metadata for the feature group was modified. For example, if you add a parameter describing the feature, the timestamp changes to reflect the last time you

Parameters
Type: Array of FeatureParameter structures

The key-value pairs that you added to describe the feature.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeFlowDefinition

$result = $client->describeFlowDefinition([/* ... */]);
$promise = $client->describeFlowDefinitionAsync([/* ... */]);

Returns information about the specified flow definition.

Parameter Syntax

$result = $client->describeFlowDefinition([
    'FlowDefinitionName' => '<string>', // REQUIRED
]);

Parameter Details

Members
FlowDefinitionName
Required: Yes
Type: string

The name of the flow definition.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'FailureReason' => '<string>',
    'FlowDefinitionArn' => '<string>',
    'FlowDefinitionName' => '<string>',
    'FlowDefinitionStatus' => 'Initializing|Active|Failed|Deleting',
    'HumanLoopActivationConfig' => [
        'HumanLoopActivationConditionsConfig' => [
            'HumanLoopActivationConditions' => '<string>',
        ],
    ],
    'HumanLoopConfig' => [
        'HumanTaskUiArn' => '<string>',
        'PublicWorkforceTaskPrice' => [
            'AmountInUsd' => [
                'Cents' => <integer>,
                'Dollars' => <integer>,
                'TenthFractionsOfACent' => <integer>,
            ],
        ],
        'TaskAvailabilityLifetimeInSeconds' => <integer>,
        'TaskCount' => <integer>,
        'TaskDescription' => '<string>',
        'TaskKeywords' => ['<string>', ...],
        'TaskTimeLimitInSeconds' => <integer>,
        'TaskTitle' => '<string>',
        'WorkteamArn' => '<string>',
    ],
    'HumanLoopRequestSource' => [
        'AwsManagedHumanLoopRequestSource' => 'AWS/Rekognition/DetectModerationLabels/Image/V3|AWS/Textract/AnalyzeDocument/Forms/V1',
    ],
    'OutputConfig' => [
        'KmsKeyId' => '<string>',
        'S3OutputPath' => '<string>',
    ],
    'RoleArn' => '<string>',
]

Result Details

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp when the flow definition was created.

FailureReason
Type: string

The reason your flow definition failed.

FlowDefinitionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the flow defintion.

FlowDefinitionName
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the flow definition.

FlowDefinitionStatus
Required: Yes
Type: string

The status of the flow definition. Valid values are listed below.

HumanLoopActivationConfig
Type: HumanLoopActivationConfig structure

An object containing information about what triggers a human review workflow.

HumanLoopConfig
Type: HumanLoopConfig structure

An object containing information about who works on the task, the workforce task price, and other task details.

HumanLoopRequestSource
Type: HumanLoopRequestSource structure

Container for configuring the source of human task requests. Used to specify if Amazon Rekognition or Amazon Textract is used as an integration source.

OutputConfig
Required: Yes
Type: FlowDefinitionOutputConfig structure

An object containing information about the output file.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the Amazon Web Services Identity and Access Management (IAM) execution role for the flow definition.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeHub

$result = $client->describeHub([/* ... */]);
$promise = $client->describeHubAsync([/* ... */]);

Describes a hub.

Parameter Syntax

$result = $client->describeHub([
    'HubName' => '<string>', // REQUIRED
]);

Parameter Details

Members
HubName
Required: Yes
Type: string

The name of the hub to describe.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'FailureReason' => '<string>',
    'HubArn' => '<string>',
    'HubDescription' => '<string>',
    'HubDisplayName' => '<string>',
    'HubName' => '<string>',
    'HubSearchKeywords' => ['<string>', ...],
    'HubStatus' => 'InService|Creating|Updating|Deleting|CreateFailed|UpdateFailed|DeleteFailed',
    'LastModifiedTime' => <DateTime>,
    'S3StorageConfig' => [
        'S3OutputPath' => '<string>',
    ],
]

Result Details

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the hub was created.

FailureReason
Type: string

The failure reason if importing hub content failed.

HubArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the hub.

HubDescription
Type: string

A description of the hub.

HubDisplayName
Type: string

The display name of the hub.

HubName
Required: Yes
Type: string

The name of the hub.

HubSearchKeywords
Type: Array of strings

The searchable keywords for the hub.

HubStatus
Required: Yes
Type: string

The status of the hub.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the hub was last modified.

S3StorageConfig
Type: HubS3StorageConfig structure

The Amazon S3 storage configuration for the hub.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeHubContent

$result = $client->describeHubContent([/* ... */]);
$promise = $client->describeHubContentAsync([/* ... */]);

Describe the content of a hub.

Parameter Syntax

$result = $client->describeHubContent([
    'HubContentName' => '<string>', // REQUIRED
    'HubContentType' => 'Model|Notebook|ModelReference', // REQUIRED
    'HubContentVersion' => '<string>',
    'HubName' => '<string>', // REQUIRED
]);

Parameter Details

Members
HubContentName
Required: Yes
Type: string

The name of the content to describe.

HubContentType
Required: Yes
Type: string

The type of content in the hub.

HubContentVersion
Type: string

The version of the content to describe.

HubName
Required: Yes
Type: string

The name of the hub that contains the content to describe.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'DocumentSchemaVersion' => '<string>',
    'FailureReason' => '<string>',
    'HubArn' => '<string>',
    'HubContentArn' => '<string>',
    'HubContentDependencies' => [
        [
            'DependencyCopyPath' => '<string>',
            'DependencyOriginPath' => '<string>',
        ],
        // ...
    ],
    'HubContentDescription' => '<string>',
    'HubContentDisplayName' => '<string>',
    'HubContentDocument' => '<string>',
    'HubContentMarkdown' => '<string>',
    'HubContentName' => '<string>',
    'HubContentSearchKeywords' => ['<string>', ...],
    'HubContentStatus' => 'Available|Importing|Deleting|ImportFailed|DeleteFailed',
    'HubContentType' => 'Model|Notebook|ModelReference',
    'HubContentVersion' => '<string>',
    'HubName' => '<string>',
    'ReferenceMinVersion' => '<string>',
    'SageMakerPublicHubContentArn' => '<string>',
    'SupportStatus' => 'Supported|Deprecated',
]

Result Details

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that hub content was created.

DocumentSchemaVersion
Required: Yes
Type: string

The document schema version for the hub content.

FailureReason
Type: string

The failure reason if importing hub content failed.

HubArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the hub that contains the content.

HubContentArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the hub content.

HubContentDependencies
Type: Array of HubContentDependency structures

The location of any dependencies that the hub content has, such as scripts, model artifacts, datasets, or notebooks.

HubContentDescription
Type: string

A description of the hub content.

HubContentDisplayName
Type: string

The display name of the hub content.

HubContentDocument
Required: Yes
Type: string

The hub content document that describes information about the hub content such as type, associated containers, scripts, and more.

HubContentMarkdown
Type: string

A string that provides a description of the hub content. This string can include links, tables, and standard markdown formating.

HubContentName
Required: Yes
Type: string

The name of the hub content.

HubContentSearchKeywords
Type: Array of strings

The searchable keywords for the hub content.

HubContentStatus
Required: Yes
Type: string

The status of the hub content.

HubContentType
Required: Yes
Type: string

The type of hub content.

HubContentVersion
Required: Yes
Type: string

The version of the hub content.

HubName
Required: Yes
Type: string

The name of the hub that contains the content.

ReferenceMinVersion
Type: string

The minimum version of the hub content.

SageMakerPublicHubContentArn
Type: string

The ARN of the public hub content.

SupportStatus
Type: string

The support status of the hub content.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeHumanTaskUi

$result = $client->describeHumanTaskUi([/* ... */]);
$promise = $client->describeHumanTaskUiAsync([/* ... */]);

Returns information about the requested human task user interface (worker task template).

Parameter Syntax

$result = $client->describeHumanTaskUi([
    'HumanTaskUiName' => '<string>', // REQUIRED
]);

Parameter Details

Members
HumanTaskUiName
Required: Yes
Type: string

The name of the human task user interface (worker task template) you want information about.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'HumanTaskUiArn' => '<string>',
    'HumanTaskUiName' => '<string>',
    'HumanTaskUiStatus' => 'Active|Deleting',
    'UiTemplate' => [
        'ContentSha256' => '<string>',
        'Url' => '<string>',
    ],
]

Result Details

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp when the human task user interface was created.

HumanTaskUiArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the human task user interface (worker task template).

HumanTaskUiName
Required: Yes
Type: string

The name of the human task user interface (worker task template).

HumanTaskUiStatus
Type: string

The status of the human task user interface (worker task template). Valid values are listed below.

UiTemplate
Required: Yes
Type: UiTemplateInfo structure

Container for user interface template information.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeHyperParameterTuningJob

$result = $client->describeHyperParameterTuningJob([/* ... */]);
$promise = $client->describeHyperParameterTuningJobAsync([/* ... */]);

Returns a description of a hyperparameter tuning job, depending on the fields selected. These fields can include the name, Amazon Resource Name (ARN), job status of your tuning job and more.

Parameter Syntax

$result = $client->describeHyperParameterTuningJob([
    'HyperParameterTuningJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
HyperParameterTuningJobName
Required: Yes
Type: string

The name of the tuning job.

Result Syntax

[
    'Autotune' => [
        'Mode' => 'Enabled',
    ],
    'BestTrainingJob' => [
        'CreationTime' => <DateTime>,
        'FailureReason' => '<string>',
        'FinalHyperParameterTuningJobObjectiveMetric' => [
            'MetricName' => '<string>',
            'Type' => 'Maximize|Minimize',
            'Value' => <float>,
        ],
        'ObjectiveStatus' => 'Succeeded|Pending|Failed',
        'TrainingEndTime' => <DateTime>,
        'TrainingJobArn' => '<string>',
        'TrainingJobDefinitionName' => '<string>',
        'TrainingJobName' => '<string>',
        'TrainingJobStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
        'TrainingStartTime' => <DateTime>,
        'TunedHyperParameters' => ['<string>', ...],
        'TuningJobName' => '<string>',
    ],
    'ConsumedResources' => [
        'RuntimeInSeconds' => <integer>,
    ],
    'CreationTime' => <DateTime>,
    'FailureReason' => '<string>',
    'HyperParameterTuningEndTime' => <DateTime>,
    'HyperParameterTuningJobArn' => '<string>',
    'HyperParameterTuningJobConfig' => [
        'HyperParameterTuningJobObjective' => [
            'MetricName' => '<string>',
            'Type' => 'Maximize|Minimize',
        ],
        'ParameterRanges' => [
            'AutoParameters' => [
                [
                    'Name' => '<string>',
                    'ValueHint' => '<string>',
                ],
                // ...
            ],
            'CategoricalParameterRanges' => [
                [
                    'Name' => '<string>',
                    'Values' => ['<string>', ...],
                ],
                // ...
            ],
            'ContinuousParameterRanges' => [
                [
                    'MaxValue' => '<string>',
                    'MinValue' => '<string>',
                    'Name' => '<string>',
                    'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                ],
                // ...
            ],
            'IntegerParameterRanges' => [
                [
                    'MaxValue' => '<string>',
                    'MinValue' => '<string>',
                    'Name' => '<string>',
                    'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                ],
                // ...
            ],
        ],
        'RandomSeed' => <integer>,
        'ResourceLimits' => [
            'MaxNumberOfTrainingJobs' => <integer>,
            'MaxParallelTrainingJobs' => <integer>,
            'MaxRuntimeInSeconds' => <integer>,
        ],
        'Strategy' => 'Bayesian|Random|Hyperband|Grid',
        'StrategyConfig' => [
            'HyperbandStrategyConfig' => [
                'MaxResource' => <integer>,
                'MinResource' => <integer>,
            ],
        ],
        'TrainingJobEarlyStoppingType' => 'Off|Auto',
        'TuningJobCompletionCriteria' => [
            'BestObjectiveNotImproving' => [
                'MaxNumberOfTrainingJobsNotImproving' => <integer>,
            ],
            'ConvergenceDetected' => [
                'CompleteOnConvergence' => 'Disabled|Enabled',
            ],
            'TargetObjectiveMetricValue' => <float>,
        ],
    ],
    'HyperParameterTuningJobName' => '<string>',
    'HyperParameterTuningJobStatus' => 'Completed|InProgress|Failed|Stopped|Stopping|Deleting|DeleteFailed',
    'LastModifiedTime' => <DateTime>,
    'ObjectiveStatusCounters' => [
        'Failed' => <integer>,
        'Pending' => <integer>,
        'Succeeded' => <integer>,
    ],
    'OverallBestTrainingJob' => [
        'CreationTime' => <DateTime>,
        'FailureReason' => '<string>',
        'FinalHyperParameterTuningJobObjectiveMetric' => [
            'MetricName' => '<string>',
            'Type' => 'Maximize|Minimize',
            'Value' => <float>,
        ],
        'ObjectiveStatus' => 'Succeeded|Pending|Failed',
        'TrainingEndTime' => <DateTime>,
        'TrainingJobArn' => '<string>',
        'TrainingJobDefinitionName' => '<string>',
        'TrainingJobName' => '<string>',
        'TrainingJobStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
        'TrainingStartTime' => <DateTime>,
        'TunedHyperParameters' => ['<string>', ...],
        'TuningJobName' => '<string>',
    ],
    'TrainingJobDefinition' => [
        'AlgorithmSpecification' => [
            'AlgorithmName' => '<string>',
            'MetricDefinitions' => [
                [
                    'Name' => '<string>',
                    'Regex' => '<string>',
                ],
                // ...
            ],
            'TrainingImage' => '<string>',
            'TrainingInputMode' => 'Pipe|File|FastFile',
        ],
        'CheckpointConfig' => [
            'LocalPath' => '<string>',
            'S3Uri' => '<string>',
        ],
        'DefinitionName' => '<string>',
        'EnableInterContainerTrafficEncryption' => true || false,
        'EnableManagedSpotTraining' => true || false,
        'EnableNetworkIsolation' => true || false,
        'Environment' => ['<string>', ...],
        'HyperParameterRanges' => [
            'AutoParameters' => [
                [
                    'Name' => '<string>',
                    'ValueHint' => '<string>',
                ],
                // ...
            ],
            'CategoricalParameterRanges' => [
                [
                    'Name' => '<string>',
                    'Values' => ['<string>', ...],
                ],
                // ...
            ],
            'ContinuousParameterRanges' => [
                [
                    'MaxValue' => '<string>',
                    'MinValue' => '<string>',
                    'Name' => '<string>',
                    'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                ],
                // ...
            ],
            'IntegerParameterRanges' => [
                [
                    'MaxValue' => '<string>',
                    'MinValue' => '<string>',
                    'Name' => '<string>',
                    'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                ],
                // ...
            ],
        ],
        'HyperParameterTuningResourceConfig' => [
            'AllocationStrategy' => 'Prioritized',
            'InstanceConfigs' => [
                [
                    'InstanceCount' => <integer>,
                    'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                    'VolumeSizeInGB' => <integer>,
                ],
                // ...
            ],
            'InstanceCount' => <integer>,
            'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
            'VolumeKmsKeyId' => '<string>',
            'VolumeSizeInGB' => <integer>,
        ],
        'InputDataConfig' => [
            [
                'ChannelName' => '<string>',
                'CompressionType' => 'None|Gzip',
                'ContentType' => '<string>',
                'DataSource' => [
                    'FileSystemDataSource' => [
                        'DirectoryPath' => '<string>',
                        'FileSystemAccessMode' => 'rw|ro',
                        'FileSystemId' => '<string>',
                        'FileSystemType' => 'EFS|FSxLustre',
                    ],
                    'S3DataSource' => [
                        'AttributeNames' => ['<string>', ...],
                        'InstanceGroupNames' => ['<string>', ...],
                        'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                        'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile',
                        'S3Uri' => '<string>',
                    ],
                ],
                'InputMode' => 'Pipe|File|FastFile',
                'RecordWrapperType' => 'None|RecordIO',
                'ShuffleConfig' => [
                    'Seed' => <integer>,
                ],
            ],
            // ...
        ],
        'OutputDataConfig' => [
            'CompressionType' => 'GZIP|NONE',
            'KmsKeyId' => '<string>',
            'S3OutputPath' => '<string>',
        ],
        'ResourceConfig' => [
            'InstanceCount' => <integer>,
            'InstanceGroups' => [
                [
                    'InstanceCount' => <integer>,
                    'InstanceGroupName' => '<string>',
                    'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                ],
                // ...
            ],
            'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
            'KeepAlivePeriodInSeconds' => <integer>,
            'TrainingPlanArn' => '<string>',
            'VolumeKmsKeyId' => '<string>',
            'VolumeSizeInGB' => <integer>,
        ],
        'RetryStrategy' => [
            'MaximumRetryAttempts' => <integer>,
        ],
        'RoleArn' => '<string>',
        'StaticHyperParameters' => ['<string>', ...],
        'StoppingCondition' => [
            'MaxPendingTimeInSeconds' => <integer>,
            'MaxRuntimeInSeconds' => <integer>,
            'MaxWaitTimeInSeconds' => <integer>,
        ],
        'TuningObjective' => [
            'MetricName' => '<string>',
            'Type' => 'Maximize|Minimize',
        ],
        'VpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...],
            'Subnets' => ['<string>', ...],
        ],
    ],
    'TrainingJobDefinitions' => [
        [
            'AlgorithmSpecification' => [
                'AlgorithmName' => '<string>',
                'MetricDefinitions' => [
                    [
                        'Name' => '<string>',
                        'Regex' => '<string>',
                    ],
                    // ...
                ],
                'TrainingImage' => '<string>',
                'TrainingInputMode' => 'Pipe|File|FastFile',
            ],
            'CheckpointConfig' => [
                'LocalPath' => '<string>',
                'S3Uri' => '<string>',
            ],
            'DefinitionName' => '<string>',
            'EnableInterContainerTrafficEncryption' => true || false,
            'EnableManagedSpotTraining' => true || false,
            'EnableNetworkIsolation' => true || false,
            'Environment' => ['<string>', ...],
            'HyperParameterRanges' => [
                'AutoParameters' => [
                    [
                        'Name' => '<string>',
                        'ValueHint' => '<string>',
                    ],
                    // ...
                ],
                'CategoricalParameterRanges' => [
                    [
                        'Name' => '<string>',
                        'Values' => ['<string>', ...],
                    ],
                    // ...
                ],
                'ContinuousParameterRanges' => [
                    [
                        'MaxValue' => '<string>',
                        'MinValue' => '<string>',
                        'Name' => '<string>',
                        'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                    ],
                    // ...
                ],
                'IntegerParameterRanges' => [
                    [
                        'MaxValue' => '<string>',
                        'MinValue' => '<string>',
                        'Name' => '<string>',
                        'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                    ],
                    // ...
                ],
            ],
            'HyperParameterTuningResourceConfig' => [
                'AllocationStrategy' => 'Prioritized',
                'InstanceConfigs' => [
                    [
                        'InstanceCount' => <integer>,
                        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                        'VolumeSizeInGB' => <integer>,
                    ],
                    // ...
                ],
                'InstanceCount' => <integer>,
                'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                'VolumeKmsKeyId' => '<string>',
                'VolumeSizeInGB' => <integer>,
            ],
            'InputDataConfig' => [
                [
                    'ChannelName' => '<string>',
                    'CompressionType' => 'None|Gzip',
                    'ContentType' => '<string>',
                    'DataSource' => [
                        'FileSystemDataSource' => [
                            'DirectoryPath' => '<string>',
                            'FileSystemAccessMode' => 'rw|ro',
                            'FileSystemId' => '<string>',
                            'FileSystemType' => 'EFS|FSxLustre',
                        ],
                        'S3DataSource' => [
                            'AttributeNames' => ['<string>', ...],
                            'InstanceGroupNames' => ['<string>', ...],
                            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                            'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile',
                            'S3Uri' => '<string>',
                        ],
                    ],
                    'InputMode' => 'Pipe|File|FastFile',
                    'RecordWrapperType' => 'None|RecordIO',
                    'ShuffleConfig' => [
                        'Seed' => <integer>,
                    ],
                ],
                // ...
            ],
            'OutputDataConfig' => [
                'CompressionType' => 'GZIP|NONE',
                'KmsKeyId' => '<string>',
                'S3OutputPath' => '<string>',
            ],
            'ResourceConfig' => [
                'InstanceCount' => <integer>,
                'InstanceGroups' => [
                    [
                        'InstanceCount' => <integer>,
                        'InstanceGroupName' => '<string>',
                        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                    ],
                    // ...
                ],
                'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                'KeepAlivePeriodInSeconds' => <integer>,
                'TrainingPlanArn' => '<string>',
                'VolumeKmsKeyId' => '<string>',
                'VolumeSizeInGB' => <integer>,
            ],
            'RetryStrategy' => [
                'MaximumRetryAttempts' => <integer>,
            ],
            'RoleArn' => '<string>',
            'StaticHyperParameters' => ['<string>', ...],
            'StoppingCondition' => [
                'MaxPendingTimeInSeconds' => <integer>,
                'MaxRuntimeInSeconds' => <integer>,
                'MaxWaitTimeInSeconds' => <integer>,
            ],
            'TuningObjective' => [
                'MetricName' => '<string>',
                'Type' => 'Maximize|Minimize',
            ],
            'VpcConfig' => [
                'SecurityGroupIds' => ['<string>', ...],
                'Subnets' => ['<string>', ...],
            ],
        ],
        // ...
    ],
    'TrainingJobStatusCounters' => [
        'Completed' => <integer>,
        'InProgress' => <integer>,
        'NonRetryableError' => <integer>,
        'RetryableError' => <integer>,
        'Stopped' => <integer>,
    ],
    'TuningJobCompletionDetails' => [
        'ConvergenceDetectedTime' => <DateTime>,
        'NumberOfTrainingJobsObjectiveNotImproving' => <integer>,
    ],
    'WarmStartConfig' => [
        'ParentHyperParameterTuningJobs' => [
            [
                'HyperParameterTuningJobName' => '<string>',
            ],
            // ...
        ],
        'WarmStartType' => 'IdenticalDataAndAlgorithm|TransferLearning',
    ],
]

Result Details

Members
Autotune
Type: Autotune structure

A flag to indicate if autotune is enabled for the hyperparameter tuning job.

BestTrainingJob

A TrainingJobSummary object that describes the training job that completed with the best current HyperParameterTuningJobObjective.

ConsumedResources

The total resources consumed by your hyperparameter tuning job.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the tuning job started.

FailureReason
Type: string

If the tuning job failed, the reason it failed.

HyperParameterTuningEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the tuning job ended.

HyperParameterTuningJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the tuning job.

HyperParameterTuningJobConfig
Required: Yes
Type: HyperParameterTuningJobConfig structure

The HyperParameterTuningJobConfig object that specifies the configuration of the tuning job.

HyperParameterTuningJobName
Required: Yes
Type: string

The name of the hyperparameter tuning job.

HyperParameterTuningJobStatus
Required: Yes
Type: string

The status of the tuning job.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the status of the tuning job was modified.

ObjectiveStatusCounters
Required: Yes
Type: ObjectiveStatusCounters structure

The ObjectiveStatusCounters object that specifies the number of training jobs, categorized by the status of their final objective metric, that this tuning job launched.

OverallBestTrainingJob

If the hyperparameter tuning job is an warm start tuning job with a WarmStartType of IDENTICAL_DATA_AND_ALGORITHM, this is the TrainingJobSummary for the training job with the best objective metric value of all training jobs launched by this tuning job and all parent jobs specified for the warm start tuning job.

TrainingJobDefinition

The HyperParameterTrainingJobDefinition object that specifies the definition of the training jobs that this tuning job launches.

TrainingJobDefinitions
Type: Array of HyperParameterTrainingJobDefinition structures

A list of the HyperParameterTrainingJobDefinition objects launched for this tuning job.

TrainingJobStatusCounters
Required: Yes
Type: TrainingJobStatusCounters structure

The TrainingJobStatusCounters object that specifies the number of training jobs, categorized by status, that this tuning job launched.

TuningJobCompletionDetails

Tuning job completion information returned as the response from a hyperparameter tuning job. This information tells if your tuning job has or has not converged. It also includes the number of training jobs that have not improved model performance as evaluated against the objective function.

WarmStartConfig

The configuration for starting the hyperparameter parameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeImage

$result = $client->describeImage([/* ... */]);
$promise = $client->describeImageAsync([/* ... */]);

Describes a SageMaker AI image.

Parameter Syntax

$result = $client->describeImage([
    'ImageName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ImageName
Required: Yes
Type: string

The name of the image to describe.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'Description' => '<string>',
    'DisplayName' => '<string>',
    'FailureReason' => '<string>',
    'ImageArn' => '<string>',
    'ImageName' => '<string>',
    'ImageStatus' => 'CREATING|CREATED|CREATE_FAILED|UPDATING|UPDATE_FAILED|DELETING|DELETE_FAILED',
    'LastModifiedTime' => <DateTime>,
    'RoleArn' => '<string>',
]

Result Details

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the image was created.

Description
Type: string

The description of the image.

DisplayName
Type: string

The name of the image as displayed.

FailureReason
Type: string

When a create, update, or delete operation fails, the reason for the failure.

ImageArn
Type: string

The ARN of the image.

ImageName
Type: string

The name of the image.

ImageStatus
Type: string

The status of the image.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the image was last modified.

RoleArn
Type: string

The ARN of the IAM role that enables Amazon SageMaker AI to perform tasks on your behalf.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeImageVersion

$result = $client->describeImageVersion([/* ... */]);
$promise = $client->describeImageVersionAsync([/* ... */]);

Describes a version of a SageMaker AI image.

Parameter Syntax

$result = $client->describeImageVersion([
    'Alias' => '<string>',
    'ImageName' => '<string>', // REQUIRED
    'Version' => <integer>,
]);

Parameter Details

Members
Alias
Type: string

The alias of the image version.

ImageName
Required: Yes
Type: string

The name of the image.

Version
Type: int

The version of the image. If not specified, the latest version is described.

Result Syntax

[
    'BaseImage' => '<string>',
    'ContainerImage' => '<string>',
    'CreationTime' => <DateTime>,
    'FailureReason' => '<string>',
    'Horovod' => true || false,
    'ImageArn' => '<string>',
    'ImageVersionArn' => '<string>',
    'ImageVersionStatus' => 'CREATING|CREATED|CREATE_FAILED|DELETING|DELETE_FAILED',
    'JobType' => 'TRAINING|INFERENCE|NOTEBOOK_KERNEL',
    'LastModifiedTime' => <DateTime>,
    'MLFramework' => '<string>',
    'Processor' => 'CPU|GPU',
    'ProgrammingLang' => '<string>',
    'ReleaseNotes' => '<string>',
    'VendorGuidance' => 'NOT_PROVIDED|STABLE|TO_BE_ARCHIVED|ARCHIVED',
    'Version' => <integer>,
]

Result Details

Members
BaseImage
Type: string

The registry path of the container image on which this image version is based.

ContainerImage
Type: string

The registry path of the container image that contains this image version.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the version was created.

FailureReason
Type: string

When a create or delete operation fails, the reason for the failure.

Horovod
Type: boolean

Indicates Horovod compatibility.

ImageArn
Type: string

The ARN of the image the version is based on.

ImageVersionArn
Type: string

The ARN of the version.

ImageVersionStatus
Type: string

The status of the version.

JobType
Type: string

Indicates SageMaker AI job type compatibility.

  • TRAINING: The image version is compatible with SageMaker AI training jobs.

  • INFERENCE: The image version is compatible with SageMaker AI inference jobs.

  • NOTEBOOK_KERNEL: The image version is compatible with SageMaker AI notebook kernels.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the version was last modified.

MLFramework
Type: string

The machine learning framework vended in the image version.

Processor
Type: string

Indicates CPU or GPU compatibility.

  • CPU: The image version is compatible with CPU.

  • GPU: The image version is compatible with GPU.

ProgrammingLang
Type: string

The supported programming language and its version.

ReleaseNotes
Type: string

The maintainer description of the image version.

VendorGuidance
Type: string

The stability of the image version specified by the maintainer.

  • NOT_PROVIDED: The maintainers did not provide a status for image version stability.

  • STABLE: The image version is stable.

  • TO_BE_ARCHIVED: The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months.

  • ARCHIVED: The image version is archived. Archived image versions are not searchable and are no longer actively supported.

Version
Type: int

The version number.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeInferenceComponent

$result = $client->describeInferenceComponent([/* ... */]);
$promise = $client->describeInferenceComponentAsync([/* ... */]);

Returns information about an inference component.

Parameter Syntax

$result = $client->describeInferenceComponent([
    'InferenceComponentName' => '<string>', // REQUIRED
]);

Parameter Details

Members
InferenceComponentName
Required: Yes
Type: string

The name of the inference component.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'EndpointArn' => '<string>',
    'EndpointName' => '<string>',
    'FailureReason' => '<string>',
    'InferenceComponentArn' => '<string>',
    'InferenceComponentName' => '<string>',
    'InferenceComponentStatus' => 'InService|Creating|Updating|Failed|Deleting',
    'LastModifiedTime' => <DateTime>,
    'RuntimeConfig' => [
        'CurrentCopyCount' => <integer>,
        'DesiredCopyCount' => <integer>,
    ],
    'Specification' => [
        'BaseInferenceComponentName' => '<string>',
        'ComputeResourceRequirements' => [
            'MaxMemoryRequiredInMb' => <integer>,
            'MinMemoryRequiredInMb' => <integer>,
            'NumberOfAcceleratorDevicesRequired' => <float>,
            'NumberOfCpuCoresRequired' => <float>,
        ],
        'Container' => [
            'ArtifactUrl' => '<string>',
            'DeployedImage' => [
                'ResolutionTime' => <DateTime>,
                'ResolvedImage' => '<string>',
                'SpecifiedImage' => '<string>',
            ],
            'Environment' => ['<string>', ...],
        ],
        'ModelName' => '<string>',
        'StartupParameters' => [
            'ContainerStartupHealthCheckTimeoutInSeconds' => <integer>,
            'ModelDataDownloadTimeoutInSeconds' => <integer>,
        ],
    ],
    'VariantName' => '<string>',
]

Result Details

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the inference component was created.

EndpointArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the endpoint that hosts the inference component.

EndpointName
Required: Yes
Type: string

The name of the endpoint that hosts the inference component.

FailureReason
Type: string

If the inference component status is Failed, the reason for the failure.

InferenceComponentArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the inference component.

InferenceComponentName
Required: Yes
Type: string

The name of the inference component.

InferenceComponentStatus
Type: string

The status of the inference component.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the inference component was last updated.

RuntimeConfig

Details about the runtime settings for the model that is deployed with the inference component.

Specification

Details about the resources that are deployed with this inference component.

VariantName
Type: string

The name of the production variant that hosts the inference component.

Errors

There are no errors described for this operation.

DescribeInferenceExperiment

$result = $client->describeInferenceExperiment([/* ... */]);
$promise = $client->describeInferenceExperimentAsync([/* ... */]);

Returns details about an inference experiment.

Parameter Syntax

$result = $client->describeInferenceExperiment([
    'Name' => '<string>', // REQUIRED
]);

Parameter Details

Members
Name
Required: Yes
Type: string

The name of the inference experiment to describe.

Result Syntax

[
    'Arn' => '<string>',
    'CompletionTime' => <DateTime>,
    'CreationTime' => <DateTime>,
    'DataStorageConfig' => [
        'ContentType' => [
            'CsvContentTypes' => ['<string>', ...],
            'JsonContentTypes' => ['<string>', ...],
        ],
        'Destination' => '<string>',
        'KmsKey' => '<string>',
    ],
    'Description' => '<string>',
    'EndpointMetadata' => [
        'EndpointConfigName' => '<string>',
        'EndpointName' => '<string>',
        'EndpointStatus' => 'OutOfService|Creating|Updating|SystemUpdating|RollingBack|InService|Deleting|Failed|UpdateRollbackFailed',
        'FailureReason' => '<string>',
    ],
    'KmsKey' => '<string>',
    'LastModifiedTime' => <DateTime>,
    'ModelVariants' => [
        [
            'InfrastructureConfig' => [
                'InfrastructureType' => 'RealTimeInference',
                'RealTimeInferenceConfig' => [
                    'InstanceCount' => <integer>,
                    'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge',
                ],
            ],
            'ModelName' => '<string>',
            'Status' => 'Creating|Updating|InService|Deleting|Deleted',
            'VariantName' => '<string>',
        ],
        // ...
    ],
    'Name' => '<string>',
    'RoleArn' => '<string>',
    'Schedule' => [
        'EndTime' => <DateTime>,
        'StartTime' => <DateTime>,
    ],
    'ShadowModeConfig' => [
        'ShadowModelVariants' => [
            [
                'SamplingPercentage' => <integer>,
                'ShadowModelVariantName' => '<string>',
            ],
            // ...
        ],
        'SourceModelVariantName' => '<string>',
    ],
    'Status' => 'Creating|Created|Updating|Running|Starting|Stopping|Completed|Cancelled',
    'StatusReason' => '<string>',
    'Type' => 'ShadowMode',
]

Result Details

Members
Arn
Required: Yes
Type: string

The ARN of the inference experiment being described.

CompletionTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp at which the inference experiment was completed.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp at which you created the inference experiment.

DataStorageConfig

The Amazon S3 location and configuration for storing inference request and response data.

Description
Type: string

The description of the inference experiment.

EndpointMetadata
Required: Yes
Type: EndpointMetadata structure

The metadata of the endpoint on which the inference experiment ran.

KmsKey
Type: string

The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. For more information, see CreateInferenceExperiment.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp at which you last modified the inference experiment.

ModelVariants
Required: Yes
Type: Array of ModelVariantConfigSummary structures

An array of ModelVariantConfigSummary objects. There is one for each variant in the inference experiment. Each ModelVariantConfigSummary object in the array describes the infrastructure configuration for deploying the corresponding variant.

Name
Required: Yes
Type: string

The name of the inference experiment.

RoleArn
Type: string

The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.

Schedule
Type: InferenceExperimentSchedule structure

The duration for which the inference experiment ran or will run.

ShadowModeConfig
Type: ShadowModeConfig structure

The configuration of ShadowMode inference experiment type, which shows the production variant that takes all the inference requests, and the shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant it also shows the percentage of requests that Amazon SageMaker replicates.

Status
Required: Yes
Type: string

The status of the inference experiment. The following are the possible statuses for an inference experiment:

  • Creating - Amazon SageMaker is creating your experiment.

  • Created - Amazon SageMaker has finished the creation of your experiment and will begin the experiment at the scheduled time.

  • Updating - When you make changes to your experiment, your experiment shows as updating.

  • Starting - Amazon SageMaker is beginning your experiment.

  • Running - Your experiment is in progress.

  • Stopping - Amazon SageMaker is stopping your experiment.

  • Completed - Your experiment has completed.

  • Cancelled - When you conclude your experiment early using the StopInferenceExperiment API, or if any operation fails with an unexpected error, it shows as cancelled.

StatusReason
Type: string

The error message or client-specified Reason from the StopInferenceExperiment API, that explains the status of the inference experiment.

Type
Required: Yes
Type: string

The type of the inference experiment.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeInferenceRecommendationsJob

$result = $client->describeInferenceRecommendationsJob([/* ... */]);
$promise = $client->describeInferenceRecommendationsJobAsync([/* ... */]);

Provides the results of the Inference Recommender job. One or more recommendation jobs are returned.

Parameter Syntax

$result = $client->describeInferenceRecommendationsJob([
    'JobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
JobName
Required: Yes
Type: string

The name of the job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

Result Syntax

[
    'CompletionTime' => <DateTime>,
    'CreationTime' => <DateTime>,
    'EndpointPerformances' => [
        [
            'EndpointInfo' => [
                'EndpointName' => '<string>',
            ],
            'Metrics' => [
                'MaxInvocations' => <integer>,
                'ModelLatency' => <integer>,
            ],
        ],
        // ...
    ],
    'FailureReason' => '<string>',
    'InferenceRecommendations' => [
        [
            'EndpointConfiguration' => [
                'EndpointName' => '<string>',
                'InitialInstanceCount' => <integer>,
                'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.12xlarge|ml.m5d.24xlarge|ml.c4.large|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.large|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.12xlarge|ml.r5.24xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.12xlarge|ml.r5d.24xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.dl1.24xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p4d.24xlarge|ml.c7g.large|ml.c7g.xlarge|ml.c7g.2xlarge|ml.c7g.4xlarge|ml.c7g.8xlarge|ml.c7g.12xlarge|ml.c7g.16xlarge|ml.m6g.large|ml.m6g.xlarge|ml.m6g.2xlarge|ml.m6g.4xlarge|ml.m6g.8xlarge|ml.m6g.12xlarge|ml.m6g.16xlarge|ml.m6gd.large|ml.m6gd.xlarge|ml.m6gd.2xlarge|ml.m6gd.4xlarge|ml.m6gd.8xlarge|ml.m6gd.12xlarge|ml.m6gd.16xlarge|ml.c6g.large|ml.c6g.xlarge|ml.c6g.2xlarge|ml.c6g.4xlarge|ml.c6g.8xlarge|ml.c6g.12xlarge|ml.c6g.16xlarge|ml.c6gd.large|ml.c6gd.xlarge|ml.c6gd.2xlarge|ml.c6gd.4xlarge|ml.c6gd.8xlarge|ml.c6gd.12xlarge|ml.c6gd.16xlarge|ml.c6gn.large|ml.c6gn.xlarge|ml.c6gn.2xlarge|ml.c6gn.4xlarge|ml.c6gn.8xlarge|ml.c6gn.12xlarge|ml.c6gn.16xlarge|ml.r6g.large|ml.r6g.xlarge|ml.r6g.2xlarge|ml.r6g.4xlarge|ml.r6g.8xlarge|ml.r6g.12xlarge|ml.r6g.16xlarge|ml.r6gd.large|ml.r6gd.xlarge|ml.r6gd.2xlarge|ml.r6gd.4xlarge|ml.r6gd.8xlarge|ml.r6gd.12xlarge|ml.r6gd.16xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge',
                'ServerlessConfig' => [
                    'MaxConcurrency' => <integer>,
                    'MemorySizeInMB' => <integer>,
                    'ProvisionedConcurrency' => <integer>,
                ],
                'VariantName' => '<string>',
            ],
            'InvocationEndTime' => <DateTime>,
            'InvocationStartTime' => <DateTime>,
            'Metrics' => [
                'CostPerHour' => <float>,
                'CostPerInference' => <float>,
                'CpuUtilization' => <float>,
                'MaxInvocations' => <integer>,
                'MemoryUtilization' => <float>,
                'ModelLatency' => <integer>,
                'ModelSetupTime' => <integer>,
            ],
            'ModelConfiguration' => [
                'CompilationJobName' => '<string>',
                'EnvironmentParameters' => [
                    [
                        'Key' => '<string>',
                        'Value' => '<string>',
                        'ValueType' => '<string>',
                    ],
                    // ...
                ],
                'InferenceSpecificationName' => '<string>',
            ],
            'RecommendationId' => '<string>',
        ],
        // ...
    ],
    'InputConfig' => [
        'ContainerConfig' => [
            'DataInputConfig' => '<string>',
            'Domain' => '<string>',
            'Framework' => '<string>',
            'FrameworkVersion' => '<string>',
            'NearestModelName' => '<string>',
            'PayloadConfig' => [
                'SamplePayloadUrl' => '<string>',
                'SupportedContentTypes' => ['<string>', ...],
            ],
            'SupportedEndpointType' => 'RealTime|Serverless',
            'SupportedInstanceTypes' => ['<string>', ...],
            'SupportedResponseMIMETypes' => ['<string>', ...],
            'Task' => '<string>',
        ],
        'EndpointConfigurations' => [
            [
                'EnvironmentParameterRanges' => [
                    'CategoricalParameterRanges' => [
                        [
                            'Name' => '<string>',
                            'Value' => ['<string>', ...],
                        ],
                        // ...
                    ],
                ],
                'InferenceSpecificationName' => '<string>',
                'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.12xlarge|ml.m5d.24xlarge|ml.c4.large|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.large|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.12xlarge|ml.r5.24xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.12xlarge|ml.r5d.24xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.dl1.24xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p4d.24xlarge|ml.c7g.large|ml.c7g.xlarge|ml.c7g.2xlarge|ml.c7g.4xlarge|ml.c7g.8xlarge|ml.c7g.12xlarge|ml.c7g.16xlarge|ml.m6g.large|ml.m6g.xlarge|ml.m6g.2xlarge|ml.m6g.4xlarge|ml.m6g.8xlarge|ml.m6g.12xlarge|ml.m6g.16xlarge|ml.m6gd.large|ml.m6gd.xlarge|ml.m6gd.2xlarge|ml.m6gd.4xlarge|ml.m6gd.8xlarge|ml.m6gd.12xlarge|ml.m6gd.16xlarge|ml.c6g.large|ml.c6g.xlarge|ml.c6g.2xlarge|ml.c6g.4xlarge|ml.c6g.8xlarge|ml.c6g.12xlarge|ml.c6g.16xlarge|ml.c6gd.large|ml.c6gd.xlarge|ml.c6gd.2xlarge|ml.c6gd.4xlarge|ml.c6gd.8xlarge|ml.c6gd.12xlarge|ml.c6gd.16xlarge|ml.c6gn.large|ml.c6gn.xlarge|ml.c6gn.2xlarge|ml.c6gn.4xlarge|ml.c6gn.8xlarge|ml.c6gn.12xlarge|ml.c6gn.16xlarge|ml.r6g.large|ml.r6g.xlarge|ml.r6g.2xlarge|ml.r6g.4xlarge|ml.r6g.8xlarge|ml.r6g.12xlarge|ml.r6g.16xlarge|ml.r6gd.large|ml.r6gd.xlarge|ml.r6gd.2xlarge|ml.r6gd.4xlarge|ml.r6gd.8xlarge|ml.r6gd.12xlarge|ml.r6gd.16xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge',
                'ServerlessConfig' => [
                    'MaxConcurrency' => <integer>,
                    'MemorySizeInMB' => <integer>,
                    'ProvisionedConcurrency' => <integer>,
                ],
            ],
            // ...
        ],
        'Endpoints' => [
            [
                'EndpointName' => '<string>',
            ],
            // ...
        ],
        'JobDurationInSeconds' => <integer>,
        'ModelName' => '<string>',
        'ModelPackageVersionArn' => '<string>',
        'ResourceLimit' => [
            'MaxNumberOfTests' => <integer>,
            'MaxParallelOfTests' => <integer>,
        ],
        'TrafficPattern' => [
            'Phases' => [
                [
                    'DurationInSeconds' => <integer>,
                    'InitialNumberOfUsers' => <integer>,
                    'SpawnRate' => <integer>,
                ],
                // ...
            ],
            'Stairs' => [
                'DurationInSeconds' => <integer>,
                'NumberOfSteps' => <integer>,
                'UsersPerStep' => <integer>,
            ],
            'TrafficType' => 'PHASES|STAIRS',
        ],
        'VolumeKmsKeyId' => '<string>',
        'VpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...],
            'Subnets' => ['<string>', ...],
        ],
    ],
    'JobArn' => '<string>',
    'JobDescription' => '<string>',
    'JobName' => '<string>',
    'JobType' => 'Default|Advanced',
    'LastModifiedTime' => <DateTime>,
    'RoleArn' => '<string>',
    'Status' => 'PENDING|IN_PROGRESS|COMPLETED|FAILED|STOPPING|STOPPED|DELETING|DELETED',
    'StoppingConditions' => [
        'FlatInvocations' => 'Continue|Stop',
        'MaxInvocations' => <integer>,
        'ModelLatencyThresholds' => [
            [
                'Percentile' => '<string>',
                'ValueInMilliseconds' => <integer>,
            ],
            // ...
        ],
    ],
]

Result Details

Members
CompletionTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the job completed.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the job was created.

EndpointPerformances
Type: Array of EndpointPerformance structures

The performance results from running an Inference Recommender job on an existing endpoint.

FailureReason
Type: string

If the job fails, provides information why the job failed.

InferenceRecommendations
Type: Array of InferenceRecommendation structures

The recommendations made by Inference Recommender.

InputConfig
Required: Yes
Type: RecommendationJobInputConfig structure

Returns information about the versioned model package Amazon Resource Name (ARN), the traffic pattern, and endpoint configurations you provided when you initiated the job.

JobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the job.

JobDescription
Type: string

The job description that you provided when you initiated the job.

JobName
Required: Yes
Type: string

The name of the job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

JobType
Required: Yes
Type: string

The job type that you provided when you initiated the job.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the job was last modified.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the Amazon Web Services Identity and Access Management (IAM) role you provided when you initiated the job.

Status
Required: Yes
Type: string

The status of the job.

StoppingConditions

The stopping conditions that you provided when you initiated the job.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeLabelingJob

$result = $client->describeLabelingJob([/* ... */]);
$promise = $client->describeLabelingJobAsync([/* ... */]);

Gets information about a labeling job.

Parameter Syntax

$result = $client->describeLabelingJob([
    'LabelingJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
LabelingJobName
Required: Yes
Type: string

The name of the labeling job to return information for.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'FailureReason' => '<string>',
    'HumanTaskConfig' => [
        'AnnotationConsolidationConfig' => [
            'AnnotationConsolidationLambdaArn' => '<string>',
        ],
        'MaxConcurrentTaskCount' => <integer>,
        'NumberOfHumanWorkersPerDataObject' => <integer>,
        'PreHumanTaskLambdaArn' => '<string>',
        'PublicWorkforceTaskPrice' => [
            'AmountInUsd' => [
                'Cents' => <integer>,
                'Dollars' => <integer>,
                'TenthFractionsOfACent' => <integer>,
            ],
        ],
        'TaskAvailabilityLifetimeInSeconds' => <integer>,
        'TaskDescription' => '<string>',
        'TaskKeywords' => ['<string>', ...],
        'TaskTimeLimitInSeconds' => <integer>,
        'TaskTitle' => '<string>',
        'UiConfig' => [
            'HumanTaskUiArn' => '<string>',
            'UiTemplateS3Uri' => '<string>',
        ],
        'WorkteamArn' => '<string>',
    ],
    'InputConfig' => [
        'DataAttributes' => [
            'ContentClassifiers' => ['<string>', ...],
        ],
        'DataSource' => [
            'S3DataSource' => [
                'ManifestS3Uri' => '<string>',
            ],
            'SnsDataSource' => [
                'SnsTopicArn' => '<string>',
            ],
        ],
    ],
    'JobReferenceCode' => '<string>',
    'LabelAttributeName' => '<string>',
    'LabelCategoryConfigS3Uri' => '<string>',
    'LabelCounters' => [
        'FailedNonRetryableError' => <integer>,
        'HumanLabeled' => <integer>,
        'MachineLabeled' => <integer>,
        'TotalLabeled' => <integer>,
        'Unlabeled' => <integer>,
    ],
    'LabelingJobAlgorithmsConfig' => [
        'InitialActiveLearningModelArn' => '<string>',
        'LabelingJobAlgorithmSpecificationArn' => '<string>',
        'LabelingJobResourceConfig' => [
            'VolumeKmsKeyId' => '<string>',
            'VpcConfig' => [
                'SecurityGroupIds' => ['<string>', ...],
                'Subnets' => ['<string>', ...],
            ],
        ],
    ],
    'LabelingJobArn' => '<string>',
    'LabelingJobName' => '<string>',
    'LabelingJobOutput' => [
        'FinalActiveLearningModelArn' => '<string>',
        'OutputDatasetS3Uri' => '<string>',
    ],
    'LabelingJobStatus' => 'Initializing|InProgress|Completed|Failed|Stopping|Stopped',
    'LastModifiedTime' => <DateTime>,
    'OutputConfig' => [
        'KmsKeyId' => '<string>',
        'S3OutputPath' => '<string>',
        'SnsTopicArn' => '<string>',
    ],
    'RoleArn' => '<string>',
    'StoppingConditions' => [
        'MaxHumanLabeledObjectCount' => <integer>,
        'MaxPercentageOfInputDatasetLabeled' => <integer>,
    ],
    'Tags' => [
        [
            'Key' => '<string>',
            'Value' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the labeling job was created.

FailureReason
Type: string

If the job failed, the reason that it failed.

HumanTaskConfig
Required: Yes
Type: HumanTaskConfig structure

Configuration information required for human workers to complete a labeling task.

InputConfig
Required: Yes
Type: LabelingJobInputConfig structure

Input configuration information for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.

JobReferenceCode
Required: Yes
Type: string

A unique identifier for work done as part of a labeling job.

LabelAttributeName
Type: string

The attribute used as the label in the output manifest file.

LabelCategoryConfigS3Uri
Type: string

The S3 location of the JSON file that defines the categories used to label data objects. Please note the following label-category limits:

  • Semantic segmentation labeling jobs using automated labeling: 20 labels

  • Box bounding labeling jobs (all): 10 labels

The file is a JSON structure in the following format:

{

"document-version": "2018-11-28"

"labels": [

{

"label": "label 1"

},

{

"label": "label 2"

},

...

{

"label": "label n"

}

]

}

LabelCounters
Required: Yes
Type: LabelCounters structure

Provides a breakdown of the number of data objects labeled by humans, the number of objects labeled by machine, the number of objects than couldn't be labeled, and the total number of objects labeled.

LabelingJobAlgorithmsConfig
Type: LabelingJobAlgorithmsConfig structure

Configuration information for automated data labeling.

LabelingJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the labeling job.

LabelingJobName
Required: Yes
Type: string

The name assigned to the labeling job when it was created.

LabelingJobOutput
Type: LabelingJobOutput structure

The location of the output produced by the labeling job.

LabelingJobStatus
Required: Yes
Type: string

The processing status of the labeling job.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the labeling job was last updated.

OutputConfig
Required: Yes
Type: LabelingJobOutputConfig structure

The location of the job's output data and the Amazon Web Services Key Management Service key ID for the key used to encrypt the output data, if any.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during data labeling.

StoppingConditions

A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped.

Tags
Type: Array of Tag structures

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeLineageGroup

$result = $client->describeLineageGroup([/* ... */]);
$promise = $client->describeLineageGroupAsync([/* ... */]);

Provides a list of properties for the requested lineage group. For more information, see Cross-Account Lineage Tracking in the Amazon SageMaker Developer Guide.

Parameter Syntax

$result = $client->describeLineageGroup([
    'LineageGroupName' => '<string>', // REQUIRED
]);

Parameter Details

Members
LineageGroupName
Required: Yes
Type: string

The name of the lineage group.

Result Syntax

[
    'CreatedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'Description' => '<string>',
    'DisplayName' => '<string>',
    'LastModifiedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
    'LineageGroupArn' => '<string>',
    'LineageGroupName' => '<string>',
]

Result Details

Members
CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time of lineage group.

Description
Type: string

The description of the lineage group.

DisplayName
Type: string

The display name of the lineage group.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last modified time of the lineage group.

LineageGroupArn
Type: string

The Amazon Resource Name (ARN) of the lineage group.

LineageGroupName
Type: string

The name of the lineage group.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeMlflowTrackingServer

$result = $client->describeMlflowTrackingServer([/* ... */]);
$promise = $client->describeMlflowTrackingServerAsync([/* ... */]);

Returns information about an MLflow Tracking Server.

Parameter Syntax

$result = $client->describeMlflowTrackingServer([
    'TrackingServerName' => '<string>', // REQUIRED
]);

Parameter Details

Members
TrackingServerName
Required: Yes
Type: string

The name of the MLflow Tracking Server to describe.

Result Syntax

[
    'ArtifactStoreUri' => '<string>',
    'AutomaticModelRegistration' => true || false,
    'CreatedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'IsActive' => 'Active|Inactive',
    'LastModifiedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
    'MlflowVersion' => '<string>',
    'RoleArn' => '<string>',
    'TrackingServerArn' => '<string>',
    'TrackingServerName' => '<string>',
    'TrackingServerSize' => 'Small|Medium|Large',
    'TrackingServerStatus' => 'Creating|Created|CreateFailed|Updating|Updated|UpdateFailed|Deleting|DeleteFailed|Stopping|Stopped|StopFailed|Starting|Started|StartFailed|MaintenanceInProgress|MaintenanceComplete|MaintenanceFailed',
    'TrackingServerUrl' => '<string>',
    'WeeklyMaintenanceWindowStart' => '<string>',
]

Result Details

Members
ArtifactStoreUri
Type: string

The S3 URI of the general purpose bucket used as the MLflow Tracking Server artifact store.

AutomaticModelRegistration
Type: boolean

Whether automatic registration of new MLflow models to the SageMaker Model Registry is enabled.

CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp of when the described MLflow Tracking Server was created.

IsActive
Type: string

Whether the described MLflow Tracking Server is currently active.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp of when the described MLflow Tracking Server was last modified.

MlflowVersion
Type: string

The MLflow version used for the described tracking server.

RoleArn
Type: string

The Amazon Resource Name (ARN) for an IAM role in your account that the described MLflow Tracking Server uses to access the artifact store in Amazon S3.

TrackingServerArn
Type: string

The ARN of the described tracking server.

TrackingServerName
Type: string

The name of the described tracking server.

TrackingServerSize
Type: string

The size of the described tracking server.

TrackingServerStatus
Type: string

The current creation status of the described MLflow Tracking Server.

TrackingServerUrl
Type: string

The URL to connect to the MLflow user interface for the described tracking server.

WeeklyMaintenanceWindowStart
Type: string

The day and time of the week when weekly maintenance occurs on the described tracking server.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeModel

$result = $client->describeModel([/* ... */]);
$promise = $client->describeModelAsync([/* ... */]);

Describes a model that you created using the CreateModel API.

Parameter Syntax

$result = $client->describeModel([
    'ModelName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ModelName
Required: Yes
Type: string

The name of the model.

Result Syntax

[
    'Containers' => [
        [
            'AdditionalModelDataSources' => [
                [
                    'ChannelName' => '<string>',
                    'S3DataSource' => [
                        'CompressionType' => 'None|Gzip',
                        'ETag' => '<string>',
                        'HubAccessConfig' => [
                            'HubContentArn' => '<string>',
                        ],
                        'ManifestEtag' => '<string>',
                        'ManifestS3Uri' => '<string>',
                        'ModelAccessConfig' => [
                            'AcceptEula' => true || false,
                        ],
                        'S3DataType' => 'S3Prefix|S3Object',
                        'S3Uri' => '<string>',
                    ],
                ],
                // ...
            ],
            'ContainerHostname' => '<string>',
            'Environment' => ['<string>', ...],
            'Image' => '<string>',
            'ImageConfig' => [
                'RepositoryAccessMode' => 'Platform|Vpc',
                'RepositoryAuthConfig' => [
                    'RepositoryCredentialsProviderArn' => '<string>',
                ],
            ],
            'InferenceSpecificationName' => '<string>',
            'Mode' => 'SingleModel|MultiModel',
            'ModelDataSource' => [
                'S3DataSource' => [
                    'CompressionType' => 'None|Gzip',
                    'ETag' => '<string>',
                    'HubAccessConfig' => [
                        'HubContentArn' => '<string>',
                    ],
                    'ManifestEtag' => '<string>',
                    'ManifestS3Uri' => '<string>',
                    'ModelAccessConfig' => [
                        'AcceptEula' => true || false,
                    ],
                    'S3DataType' => 'S3Prefix|S3Object',
                    'S3Uri' => '<string>',
                ],
            ],
            'ModelDataUrl' => '<string>',
            'ModelPackageName' => '<string>',
            'MultiModelConfig' => [
                'ModelCacheSetting' => 'Enabled|Disabled',
            ],
        ],
        // ...
    ],
    'CreationTime' => <DateTime>,
    'DeploymentRecommendation' => [
        'RealTimeInferenceRecommendations' => [
            [
                'Environment' => ['<string>', ...],
                'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.12xlarge|ml.m5d.24xlarge|ml.c4.large|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.large|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.12xlarge|ml.r5.24xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.12xlarge|ml.r5d.24xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.dl1.24xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p4d.24xlarge|ml.c7g.large|ml.c7g.xlarge|ml.c7g.2xlarge|ml.c7g.4xlarge|ml.c7g.8xlarge|ml.c7g.12xlarge|ml.c7g.16xlarge|ml.m6g.large|ml.m6g.xlarge|ml.m6g.2xlarge|ml.m6g.4xlarge|ml.m6g.8xlarge|ml.m6g.12xlarge|ml.m6g.16xlarge|ml.m6gd.large|ml.m6gd.xlarge|ml.m6gd.2xlarge|ml.m6gd.4xlarge|ml.m6gd.8xlarge|ml.m6gd.12xlarge|ml.m6gd.16xlarge|ml.c6g.large|ml.c6g.xlarge|ml.c6g.2xlarge|ml.c6g.4xlarge|ml.c6g.8xlarge|ml.c6g.12xlarge|ml.c6g.16xlarge|ml.c6gd.large|ml.c6gd.xlarge|ml.c6gd.2xlarge|ml.c6gd.4xlarge|ml.c6gd.8xlarge|ml.c6gd.12xlarge|ml.c6gd.16xlarge|ml.c6gn.large|ml.c6gn.xlarge|ml.c6gn.2xlarge|ml.c6gn.4xlarge|ml.c6gn.8xlarge|ml.c6gn.12xlarge|ml.c6gn.16xlarge|ml.r6g.large|ml.r6g.xlarge|ml.r6g.2xlarge|ml.r6g.4xlarge|ml.r6g.8xlarge|ml.r6g.12xlarge|ml.r6g.16xlarge|ml.r6gd.large|ml.r6gd.xlarge|ml.r6gd.2xlarge|ml.r6gd.4xlarge|ml.r6gd.8xlarge|ml.r6gd.12xlarge|ml.r6gd.16xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge',
                'RecommendationId' => '<string>',
            ],
            // ...
        ],
        'RecommendationStatus' => 'IN_PROGRESS|COMPLETED|FAILED|NOT_APPLICABLE',
    ],
    'EnableNetworkIsolation' => true || false,
    'ExecutionRoleArn' => '<string>',
    'InferenceExecutionConfig' => [
        'Mode' => 'Serial|Direct',
    ],
    'ModelArn' => '<string>',
    'ModelName' => '<string>',
    'PrimaryContainer' => [
        'AdditionalModelDataSources' => [
            [
                'ChannelName' => '<string>',
                'S3DataSource' => [
                    'CompressionType' => 'None|Gzip',
                    'ETag' => '<string>',
                    'HubAccessConfig' => [
                        'HubContentArn' => '<string>',
                    ],
                    'ManifestEtag' => '<string>',
                    'ManifestS3Uri' => '<string>',
                    'ModelAccessConfig' => [
                        'AcceptEula' => true || false,
                    ],
                    'S3DataType' => 'S3Prefix|S3Object',
                    'S3Uri' => '<string>',
                ],
            ],
            // ...
        ],
        'ContainerHostname' => '<string>',
        'Environment' => ['<string>', ...],
        'Image' => '<string>',
        'ImageConfig' => [
            'RepositoryAccessMode' => 'Platform|Vpc',
            'RepositoryAuthConfig' => [
                'RepositoryCredentialsProviderArn' => '<string>',
            ],
        ],
        'InferenceSpecificationName' => '<string>',
        'Mode' => 'SingleModel|MultiModel',
        'ModelDataSource' => [
            'S3DataSource' => [
                'CompressionType' => 'None|Gzip',
                'ETag' => '<string>',
                'HubAccessConfig' => [
                    'HubContentArn' => '<string>',
                ],
                'ManifestEtag' => '<string>',
                'ManifestS3Uri' => '<string>',
                'ModelAccessConfig' => [
                    'AcceptEula' => true || false,
                ],
                'S3DataType' => 'S3Prefix|S3Object',
                'S3Uri' => '<string>',
            ],
        ],
        'ModelDataUrl' => '<string>',
        'ModelPackageName' => '<string>',
        'MultiModelConfig' => [
            'ModelCacheSetting' => 'Enabled|Disabled',
        ],
    ],
    'VpcConfig' => [
        'SecurityGroupIds' => ['<string>', ...],
        'Subnets' => ['<string>', ...],
    ],
]

Result Details

Members
Containers
Type: Array of ContainerDefinition structures

The containers in the inference pipeline.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the model was created.

DeploymentRecommendation
Type: DeploymentRecommendation structure

A set of recommended deployment configurations for the model.

EnableNetworkIsolation
Type: boolean

If True, no inbound or outbound network calls can be made to or from the model container.

ExecutionRoleArn
Type: string

The Amazon Resource Name (ARN) of the IAM role that you specified for the model.

InferenceExecutionConfig
Type: InferenceExecutionConfig structure

Specifies details of how containers in a multi-container endpoint are called.

ModelArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model.

ModelName
Required: Yes
Type: string

Name of the SageMaker model.

PrimaryContainer
Type: ContainerDefinition structure

The location of the primary inference code, associated artifacts, and custom environment map that the inference code uses when it is deployed in production.

VpcConfig
Type: VpcConfig structure

A VpcConfig object that specifies the VPC that this model has access to. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud

Errors

There are no errors described for this operation.

DescribeModelBiasJobDefinition

$result = $client->describeModelBiasJobDefinition([/* ... */]);
$promise = $client->describeModelBiasJobDefinitionAsync([/* ... */]);

Returns a description of a model bias job definition.

Parameter Syntax

$result = $client->describeModelBiasJobDefinition([
    'JobDefinitionName' => '<string>', // REQUIRED
]);

Parameter Details

Members
JobDefinitionName
Required: Yes
Type: string

The name of the model bias job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'JobDefinitionArn' => '<string>',
    'JobDefinitionName' => '<string>',
    'JobResources' => [
        'ClusterConfig' => [
            'InstanceCount' => <integer>,
            'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge',
            'VolumeKmsKeyId' => '<string>',
            'VolumeSizeInGB' => <integer>,
        ],
    ],
    'ModelBiasAppSpecification' => [
        'ConfigUri' => '<string>',
        'Environment' => ['<string>', ...],
        'ImageUri' => '<string>',
    ],
    'ModelBiasBaselineConfig' => [
        'BaseliningJobName' => '<string>',
        'ConstraintsResource' => [
            'S3Uri' => '<string>',
        ],
    ],
    'ModelBiasJobInput' => [
        'BatchTransformInput' => [
            'DataCapturedDestinationS3Uri' => '<string>',
            'DatasetFormat' => [
                'Csv' => [
                    'Header' => true || false,
                ],
                'Json' => [
                    'Line' => true || false,
                ],
                'Parquet' => [
                ],
            ],
            'EndTimeOffset' => '<string>',
            'ExcludeFeaturesAttribute' => '<string>',
            'FeaturesAttribute' => '<string>',
            'InferenceAttribute' => '<string>',
            'LocalPath' => '<string>',
            'ProbabilityAttribute' => '<string>',
            'ProbabilityThresholdAttribute' => <float>,
            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
            'S3InputMode' => 'Pipe|File',
            'StartTimeOffset' => '<string>',
        ],
        'EndpointInput' => [
            'EndTimeOffset' => '<string>',
            'EndpointName' => '<string>',
            'ExcludeFeaturesAttribute' => '<string>',
            'FeaturesAttribute' => '<string>',
            'InferenceAttribute' => '<string>',
            'LocalPath' => '<string>',
            'ProbabilityAttribute' => '<string>',
            'ProbabilityThresholdAttribute' => <float>,
            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
            'S3InputMode' => 'Pipe|File',
            'StartTimeOffset' => '<string>',
        ],
        'GroundTruthS3Input' => [
            'S3Uri' => '<string>',
        ],
    ],
    'ModelBiasJobOutputConfig' => [
        'KmsKeyId' => '<string>',
        'MonitoringOutputs' => [
            [
                'S3Output' => [
                    'LocalPath' => '<string>',
                    'S3UploadMode' => 'Continuous|EndOfJob',
                    'S3Uri' => '<string>',
                ],
            ],
            // ...
        ],
    ],
    'NetworkConfig' => [
        'EnableInterContainerTrafficEncryption' => true || false,
        'EnableNetworkIsolation' => true || false,
        'VpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...],
            'Subnets' => ['<string>', ...],
        ],
    ],
    'RoleArn' => '<string>',
    'StoppingCondition' => [
        'MaxRuntimeInSeconds' => <integer>,
    ],
]

Result Details

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time at which the model bias job was created.

JobDefinitionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model bias job.

JobDefinitionName
Required: Yes
Type: string

The name of the bias job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

JobResources
Required: Yes
Type: MonitoringResources structure

Identifies the resources to deploy for a monitoring job.

ModelBiasAppSpecification
Required: Yes
Type: ModelBiasAppSpecification structure

Configures the model bias job to run a specified Docker container image.

ModelBiasBaselineConfig
Type: ModelBiasBaselineConfig structure

The baseline configuration for a model bias job.

ModelBiasJobInput
Required: Yes
Type: ModelBiasJobInput structure

Inputs for the model bias job.

ModelBiasJobOutputConfig
Required: Yes
Type: MonitoringOutputConfig structure

The output configuration for monitoring jobs.

NetworkConfig
Type: MonitoringNetworkConfig structure

Networking options for a model bias job.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the IAM role that has read permission to the input data location and write permission to the output data location in Amazon S3.

StoppingCondition
Type: MonitoringStoppingCondition structure

A time limit for how long the monitoring job is allowed to run before stopping.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeModelCard

$result = $client->describeModelCard([/* ... */]);
$promise = $client->describeModelCardAsync([/* ... */]);

Describes the content, creation time, and security configuration of an Amazon SageMaker Model Card.

Parameter Syntax

$result = $client->describeModelCard([
    'ModelCardName' => '<string>', // REQUIRED
    'ModelCardVersion' => <integer>,
]);

Parameter Details

Members
ModelCardName
Required: Yes
Type: string

The name or Amazon Resource Name (ARN) of the model card to describe.

ModelCardVersion
Type: int

The version of the model card to describe. If a version is not provided, then the latest version of the model card is described.

Result Syntax

[
    'Content' => '<string>',
    'CreatedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'LastModifiedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
    'ModelCardArn' => '<string>',
    'ModelCardName' => '<string>',
    'ModelCardProcessingStatus' => 'DeleteInProgress|DeletePending|ContentDeleted|ExportJobsDeleted|DeleteCompleted|DeleteFailed',
    'ModelCardStatus' => 'Draft|PendingReview|Approved|Archived',
    'ModelCardVersion' => <integer>,
    'SecurityConfig' => [
        'KmsKeyId' => '<string>',
    ],
]

Result Details

Members
Content
Required: Yes
Type: string

The content of the model card.

CreatedBy
Required: Yes
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time the model card was created.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time the model card was last modified.

ModelCardArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model card.

ModelCardName
Required: Yes
Type: string

The name of the model card.

ModelCardProcessingStatus
Type: string

The processing status of model card deletion. The ModelCardProcessingStatus updates throughout the different deletion steps.

  • DeletePending: Model card deletion request received.

  • DeleteInProgress: Model card deletion is in progress.

  • ContentDeleted: Deleted model card content.

  • ExportJobsDeleted: Deleted all export jobs associated with the model card.

  • DeleteCompleted: Successfully deleted the model card.

  • DeleteFailed: The model card failed to delete.

ModelCardStatus
Required: Yes
Type: string

The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.

  • Draft: The model card is a work in progress.

  • PendingReview: The model card is pending review.

  • Approved: The model card is approved.

  • Archived: The model card is archived. No more updates should be made to the model card, but it can still be exported.

ModelCardVersion
Required: Yes
Type: int

The version of the model card.

SecurityConfig
Type: ModelCardSecurityConfig structure

The security configuration used to protect model card content.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeModelCardExportJob

$result = $client->describeModelCardExportJob([/* ... */]);
$promise = $client->describeModelCardExportJobAsync([/* ... */]);

Describes an Amazon SageMaker Model Card export job.

Parameter Syntax

$result = $client->describeModelCardExportJob([
    'ModelCardExportJobArn' => '<string>', // REQUIRED
]);

Parameter Details

Members
ModelCardExportJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model card export job to describe.

Result Syntax

[
    'CreatedAt' => <DateTime>,
    'ExportArtifacts' => [
        'S3ExportArtifacts' => '<string>',
    ],
    'FailureReason' => '<string>',
    'LastModifiedAt' => <DateTime>,
    'ModelCardExportJobArn' => '<string>',
    'ModelCardExportJobName' => '<string>',
    'ModelCardName' => '<string>',
    'ModelCardVersion' => <integer>,
    'OutputConfig' => [
        'S3OutputPath' => '<string>',
    ],
    'Status' => 'InProgress|Completed|Failed',
]

Result Details

Members
CreatedAt
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the model export job was created.

ExportArtifacts
Type: ModelCardExportArtifacts structure

The exported model card artifacts.

FailureReason
Type: string

The failure reason if the model export job fails.

LastModifiedAt
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the model export job was last modified.

ModelCardExportJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model card export job.

ModelCardExportJobName
Required: Yes
Type: string

The name of the model card export job to describe.

ModelCardName
Required: Yes
Type: string

The name or Amazon Resource Name (ARN) of the model card that the model export job exports.

ModelCardVersion
Required: Yes
Type: int

The version of the model card that the model export job exports.

OutputConfig
Required: Yes
Type: ModelCardExportOutputConfig structure

The export output details for the model card.

Status
Required: Yes
Type: string

The completion status of the model card export job.

  • InProgress: The model card export job is in progress.

  • Completed: The model card export job is complete.

  • Failed: The model card export job failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeModelCardExportJob call.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeModelExplainabilityJobDefinition

$result = $client->describeModelExplainabilityJobDefinition([/* ... */]);
$promise = $client->describeModelExplainabilityJobDefinitionAsync([/* ... */]);

Returns a description of a model explainability job definition.

Parameter Syntax

$result = $client->describeModelExplainabilityJobDefinition([
    'JobDefinitionName' => '<string>', // REQUIRED
]);

Parameter Details

Members
JobDefinitionName
Required: Yes
Type: string

The name of the model explainability job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'JobDefinitionArn' => '<string>',
    'JobDefinitionName' => '<string>',
    'JobResources' => [
        'ClusterConfig' => [
            'InstanceCount' => <integer>,
            'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge',
            'VolumeKmsKeyId' => '<string>',
            'VolumeSizeInGB' => <integer>,
        ],
    ],
    'ModelExplainabilityAppSpecification' => [
        'ConfigUri' => '<string>',
        'Environment' => ['<string>', ...],
        'ImageUri' => '<string>',
    ],
    'ModelExplainabilityBaselineConfig' => [
        'BaseliningJobName' => '<string>',
        'ConstraintsResource' => [
            'S3Uri' => '<string>',
        ],
    ],
    'ModelExplainabilityJobInput' => [
        'BatchTransformInput' => [
            'DataCapturedDestinationS3Uri' => '<string>',
            'DatasetFormat' => [
                'Csv' => [
                    'Header' => true || false,
                ],
                'Json' => [
                    'Line' => true || false,
                ],
                'Parquet' => [
                ],
            ],
            'EndTimeOffset' => '<string>',
            'ExcludeFeaturesAttribute' => '<string>',
            'FeaturesAttribute' => '<string>',
            'InferenceAttribute' => '<string>',
            'LocalPath' => '<string>',
            'ProbabilityAttribute' => '<string>',
            'ProbabilityThresholdAttribute' => <float>,
            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
            'S3InputMode' => 'Pipe|File',
            'StartTimeOffset' => '<string>',
        ],
        'EndpointInput' => [
            'EndTimeOffset' => '<string>',
            'EndpointName' => '<string>',
            'ExcludeFeaturesAttribute' => '<string>',
            'FeaturesAttribute' => '<string>',
            'InferenceAttribute' => '<string>',
            'LocalPath' => '<string>',
            'ProbabilityAttribute' => '<string>',
            'ProbabilityThresholdAttribute' => <float>,
            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
            'S3InputMode' => 'Pipe|File',
            'StartTimeOffset' => '<string>',
        ],
    ],
    'ModelExplainabilityJobOutputConfig' => [
        'KmsKeyId' => '<string>',
        'MonitoringOutputs' => [
            [
                'S3Output' => [
                    'LocalPath' => '<string>',
                    'S3UploadMode' => 'Continuous|EndOfJob',
                    'S3Uri' => '<string>',
                ],
            ],
            // ...
        ],
    ],
    'NetworkConfig' => [
        'EnableInterContainerTrafficEncryption' => true || false,
        'EnableNetworkIsolation' => true || false,
        'VpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...],
            'Subnets' => ['<string>', ...],
        ],
    ],
    'RoleArn' => '<string>',
    'StoppingCondition' => [
        'MaxRuntimeInSeconds' => <integer>,
    ],
]

Result Details

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time at which the model explainability job was created.

JobDefinitionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model explainability job.

JobDefinitionName
Required: Yes
Type: string

The name of the explainability job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

JobResources
Required: Yes
Type: MonitoringResources structure

Identifies the resources to deploy for a monitoring job.

ModelExplainabilityAppSpecification
Required: Yes
Type: ModelExplainabilityAppSpecification structure

Configures the model explainability job to run a specified Docker container image.

ModelExplainabilityBaselineConfig

The baseline configuration for a model explainability job.

ModelExplainabilityJobInput
Required: Yes
Type: ModelExplainabilityJobInput structure

Inputs for the model explainability job.

ModelExplainabilityJobOutputConfig
Required: Yes
Type: MonitoringOutputConfig structure

The output configuration for monitoring jobs.

NetworkConfig
Type: MonitoringNetworkConfig structure

Networking options for a model explainability job.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the IAM role that has read permission to the input data location and write permission to the output data location in Amazon S3.

StoppingCondition
Type: MonitoringStoppingCondition structure

A time limit for how long the monitoring job is allowed to run before stopping.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeModelPackage

$result = $client->describeModelPackage([/* ... */]);
$promise = $client->describeModelPackageAsync([/* ... */]);

Returns a description of the specified model package, which is used to create SageMaker models or list them on Amazon Web Services Marketplace.

If you provided a KMS Key ID when you created your model package, you will see the KMS Decrypt API call in your CloudTrail logs when you use this API.

To create models in SageMaker, buyers can subscribe to model packages listed on Amazon Web Services Marketplace.

Parameter Syntax

$result = $client->describeModelPackage([
    'ModelPackageName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ModelPackageName
Required: Yes
Type: string

The name or Amazon Resource Name (ARN) of the model package to describe.

When you specify a name, the name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

Result Syntax

[
    'AdditionalInferenceSpecifications' => [
        [
            'Containers' => [
                [
                    'AdditionalS3DataSource' => [
                        'CompressionType' => 'None|Gzip',
                        'ETag' => '<string>',
                        'S3DataType' => 'S3Object|S3Prefix',
                        'S3Uri' => '<string>',
                    ],
                    'ContainerHostname' => '<string>',
                    'Environment' => ['<string>', ...],
                    'Framework' => '<string>',
                    'FrameworkVersion' => '<string>',
                    'Image' => '<string>',
                    'ImageDigest' => '<string>',
                    'ModelDataETag' => '<string>',
                    'ModelDataSource' => [
                        'S3DataSource' => [
                            'CompressionType' => 'None|Gzip',
                            'ETag' => '<string>',
                            'HubAccessConfig' => [
                                'HubContentArn' => '<string>',
                            ],
                            'ManifestEtag' => '<string>',
                            'ManifestS3Uri' => '<string>',
                            'ModelAccessConfig' => [
                                'AcceptEula' => true || false,
                            ],
                            'S3DataType' => 'S3Prefix|S3Object',
                            'S3Uri' => '<string>',
                        ],
                    ],
                    'ModelDataUrl' => '<string>',
                    'ModelInput' => [
                        'DataInputConfig' => '<string>',
                    ],
                    'NearestModelName' => '<string>',
                    'ProductId' => '<string>',
                ],
                // ...
            ],
            'Description' => '<string>',
            'Name' => '<string>',
            'SupportedContentTypes' => ['<string>', ...],
            'SupportedRealtimeInferenceInstanceTypes' => ['<string>', ...],
            'SupportedResponseMIMETypes' => ['<string>', ...],
            'SupportedTransformInstanceTypes' => ['<string>', ...],
        ],
        // ...
    ],
    'ApprovalDescription' => '<string>',
    'CertifyForMarketplace' => true || false,
    'CreatedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'CustomerMetadataProperties' => ['<string>', ...],
    'Domain' => '<string>',
    'DriftCheckBaselines' => [
        'Bias' => [
            'ConfigFile' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
            'PostTrainingConstraints' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
            'PreTrainingConstraints' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
        ],
        'Explainability' => [
            'ConfigFile' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
            'Constraints' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
        ],
        'ModelDataQuality' => [
            'Constraints' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
            'Statistics' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
        ],
        'ModelQuality' => [
            'Constraints' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
            'Statistics' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
        ],
    ],
    'InferenceSpecification' => [
        'Containers' => [
            [
                'AdditionalS3DataSource' => [
                    'CompressionType' => 'None|Gzip',
                    'ETag' => '<string>',
                    'S3DataType' => 'S3Object|S3Prefix',
                    'S3Uri' => '<string>',
                ],
                'ContainerHostname' => '<string>',
                'Environment' => ['<string>', ...],
                'Framework' => '<string>',
                'FrameworkVersion' => '<string>',
                'Image' => '<string>',
                'ImageDigest' => '<string>',
                'ModelDataETag' => '<string>',
                'ModelDataSource' => [
                    'S3DataSource' => [
                        'CompressionType' => 'None|Gzip',
                        'ETag' => '<string>',
                        'HubAccessConfig' => [
                            'HubContentArn' => '<string>',
                        ],
                        'ManifestEtag' => '<string>',
                        'ManifestS3Uri' => '<string>',
                        'ModelAccessConfig' => [
                            'AcceptEula' => true || false,
                        ],
                        'S3DataType' => 'S3Prefix|S3Object',
                        'S3Uri' => '<string>',
                    ],
                ],
                'ModelDataUrl' => '<string>',
                'ModelInput' => [
                    'DataInputConfig' => '<string>',
                ],
                'NearestModelName' => '<string>',
                'ProductId' => '<string>',
            ],
            // ...
        ],
        'SupportedContentTypes' => ['<string>', ...],
        'SupportedRealtimeInferenceInstanceTypes' => ['<string>', ...],
        'SupportedResponseMIMETypes' => ['<string>', ...],
        'SupportedTransformInstanceTypes' => ['<string>', ...],
    ],
    'LastModifiedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
    'MetadataProperties' => [
        'CommitId' => '<string>',
        'GeneratedBy' => '<string>',
        'ProjectId' => '<string>',
        'Repository' => '<string>',
    ],
    'ModelApprovalStatus' => 'Approved|Rejected|PendingManualApproval',
    'ModelCard' => [
        'ModelCardContent' => '<string>',
        'ModelCardStatus' => 'Draft|PendingReview|Approved|Archived',
    ],
    'ModelLifeCycle' => [
        'Stage' => '<string>',
        'StageDescription' => '<string>',
        'StageStatus' => '<string>',
    ],
    'ModelMetrics' => [
        'Bias' => [
            'PostTrainingReport' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
            'PreTrainingReport' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
            'Report' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
        ],
        'Explainability' => [
            'Report' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
        ],
        'ModelDataQuality' => [
            'Constraints' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
            'Statistics' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
        ],
        'ModelQuality' => [
            'Constraints' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
            'Statistics' => [
                'ContentDigest' => '<string>',
                'ContentType' => '<string>',
                'S3Uri' => '<string>',
            ],
        ],
    ],
    'ModelPackageArn' => '<string>',
    'ModelPackageDescription' => '<string>',
    'ModelPackageGroupName' => '<string>',
    'ModelPackageName' => '<string>',
    'ModelPackageStatus' => 'Pending|InProgress|Completed|Failed|Deleting',
    'ModelPackageStatusDetails' => [
        'ImageScanStatuses' => [
            [
                'FailureReason' => '<string>',
                'Name' => '<string>',
                'Status' => 'NotStarted|InProgress|Completed|Failed',
            ],
            // ...
        ],
        'ValidationStatuses' => [
            [
                'FailureReason' => '<string>',
                'Name' => '<string>',
                'Status' => 'NotStarted|InProgress|Completed|Failed',
            ],
            // ...
        ],
    ],
    'ModelPackageVersion' => <integer>,
    'SamplePayloadUrl' => '<string>',
    'SecurityConfig' => [
        'KmsKeyId' => '<string>',
    ],
    'SkipModelValidation' => 'All|None',
    'SourceAlgorithmSpecification' => [
        'SourceAlgorithms' => [
            [
                'AlgorithmName' => '<string>',
                'ModelDataETag' => '<string>',
                'ModelDataSource' => [
                    'S3DataSource' => [
                        'CompressionType' => 'None|Gzip',
                        'ETag' => '<string>',
                        'HubAccessConfig' => [
                            'HubContentArn' => '<string>',
                        ],
                        'ManifestEtag' => '<string>',
                        'ManifestS3Uri' => '<string>',
                        'ModelAccessConfig' => [
                            'AcceptEula' => true || false,
                        ],
                        'S3DataType' => 'S3Prefix|S3Object',
                        'S3Uri' => '<string>',
                    ],
                ],
                'ModelDataUrl' => '<string>',
            ],
            // ...
        ],
    ],
    'SourceUri' => '<string>',
    'Task' => '<string>',
    'ValidationSpecification' => [
        'ValidationProfiles' => [
            [
                'ProfileName' => '<string>',
                'TransformJobDefinition' => [
                    'BatchStrategy' => 'MultiRecord|SingleRecord',
                    'Environment' => ['<string>', ...],
                    'MaxConcurrentTransforms' => <integer>,
                    'MaxPayloadInMB' => <integer>,
                    'TransformInput' => [
                        'CompressionType' => 'None|Gzip',
                        'ContentType' => '<string>',
                        'DataSource' => [
                            'S3DataSource' => [
                                'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile',
                                'S3Uri' => '<string>',
                            ],
                        ],
                        'SplitType' => 'None|Line|RecordIO|TFRecord',
                    ],
                    'TransformOutput' => [
                        'Accept' => '<string>',
                        'AssembleWith' => 'None|Line',
                        'KmsKeyId' => '<string>',
                        'S3OutputPath' => '<string>',
                    ],
                    'TransformResources' => [
                        'InstanceCount' => <integer>,
                        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge',
                        'VolumeKmsKeyId' => '<string>',
                    ],
                ],
            ],
            // ...
        ],
        'ValidationRole' => '<string>',
    ],
]

Result Details

Members
AdditionalInferenceSpecifications
Type: Array of AdditionalInferenceSpecificationDefinition structures

An array of additional Inference Specification objects. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.

ApprovalDescription
Type: string

A description provided for the model approval.

CertifyForMarketplace
Type: boolean

Whether the model package is certified for listing on Amazon Web Services Marketplace.

CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp specifying when the model package was created.

CustomerMetadataProperties
Type: Associative array of custom strings keys (CustomerMetadataKey) to strings

The metadata properties associated with the model package versions.

Domain
Type: string

The machine learning domain of the model package you specified. Common machine learning domains include computer vision and natural language processing.

DriftCheckBaselines
Type: DriftCheckBaselines structure

Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on Drift Detection against Previous Baselines in SageMaker Pipelines in the Amazon SageMaker Developer Guide.

InferenceSpecification
Type: InferenceSpecification structure

Details about inference jobs that you can run with models based on this model package.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last time that the model package was modified.

MetadataProperties
Type: MetadataProperties structure

Metadata properties of the tracking entity, trial, or trial component.

ModelApprovalStatus
Type: string

The approval status of the model package.

ModelCard
Type: ModelPackageModelCard structure

The model card associated with the model package. Since ModelPackageModelCard is tied to a model package, it is a specific usage of a model card and its schema is simplified compared to the schema of ModelCard. The ModelPackageModelCard schema does not include model_package_details, and model_overview is composed of the model_creator and model_artifact properties. For more information about the model package model card schema, see Model package model card schema. For more information about the model card associated with the model package, see View the Details of a Model Version.

ModelLifeCycle
Type: ModelLifeCycle structure

A structure describing the current state of the model in its life cycle.

ModelMetrics
Type: ModelMetrics structure

Metrics for the model.

ModelPackageArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model package.

ModelPackageDescription
Type: string

A brief summary of the model package.

ModelPackageGroupName
Type: string

If the model is a versioned model, the name of the model group that the versioned model belongs to.

ModelPackageName
Required: Yes
Type: string

The name of the model package being described.

ModelPackageStatus
Required: Yes
Type: string

The current status of the model package.

ModelPackageStatusDetails
Required: Yes
Type: ModelPackageStatusDetails structure

Details about the current status of the model package.

ModelPackageVersion
Type: int

The version of the model package.

SamplePayloadUrl
Type: string

The Amazon Simple Storage Service (Amazon S3) path where the sample payload are stored. This path points to a single gzip compressed tar archive (.tar.gz suffix).

SecurityConfig
Type: ModelPackageSecurityConfig structure

The KMS Key ID (KMSKeyId) used for encryption of model package information.

SkipModelValidation
Type: string

Indicates if you want to skip model validation.

SourceAlgorithmSpecification

Details about the algorithm that was used to create the model package.

SourceUri
Type: string

The URI of the source for the model package.

Task
Type: string

The machine learning task you specified that your model package accomplishes. Common machine learning tasks include object detection and image classification.

ValidationSpecification

Configurations for one or more transform jobs that SageMaker runs to test the model package.

Errors

There are no errors described for this operation.

DescribeModelPackageGroup

$result = $client->describeModelPackageGroup([/* ... */]);
$promise = $client->describeModelPackageGroupAsync([/* ... */]);

Gets a description for the specified model group.

Parameter Syntax

$result = $client->describeModelPackageGroup([
    'ModelPackageGroupName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ModelPackageGroupName
Required: Yes
Type: string

The name of the model group to describe.

Result Syntax

[
    'CreatedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'ModelPackageGroupArn' => '<string>',
    'ModelPackageGroupDescription' => '<string>',
    'ModelPackageGroupName' => '<string>',
    'ModelPackageGroupStatus' => 'Pending|InProgress|Completed|Failed|Deleting|DeleteFailed',
]

Result Details

Members
CreatedBy
Required: Yes
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the model group was created.

ModelPackageGroupArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model group.

ModelPackageGroupDescription
Type: string

A description of the model group.

ModelPackageGroupName
Required: Yes
Type: string

The name of the model group.

ModelPackageGroupStatus
Required: Yes
Type: string

The status of the model group.

Errors

There are no errors described for this operation.

DescribeModelQualityJobDefinition

$result = $client->describeModelQualityJobDefinition([/* ... */]);
$promise = $client->describeModelQualityJobDefinitionAsync([/* ... */]);

Returns a description of a model quality job definition.

Parameter Syntax

$result = $client->describeModelQualityJobDefinition([
    'JobDefinitionName' => '<string>', // REQUIRED
]);

Parameter Details

Members
JobDefinitionName
Required: Yes
Type: string

The name of the model quality job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'JobDefinitionArn' => '<string>',
    'JobDefinitionName' => '<string>',
    'JobResources' => [
        'ClusterConfig' => [
            'InstanceCount' => <integer>,
            'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge',
            'VolumeKmsKeyId' => '<string>',
            'VolumeSizeInGB' => <integer>,
        ],
    ],
    'ModelQualityAppSpecification' => [
        'ContainerArguments' => ['<string>', ...],
        'ContainerEntrypoint' => ['<string>', ...],
        'Environment' => ['<string>', ...],
        'ImageUri' => '<string>',
        'PostAnalyticsProcessorSourceUri' => '<string>',
        'ProblemType' => 'BinaryClassification|MulticlassClassification|Regression',
        'RecordPreprocessorSourceUri' => '<string>',
    ],
    'ModelQualityBaselineConfig' => [
        'BaseliningJobName' => '<string>',
        'ConstraintsResource' => [
            'S3Uri' => '<string>',
        ],
    ],
    'ModelQualityJobInput' => [
        'BatchTransformInput' => [
            'DataCapturedDestinationS3Uri' => '<string>',
            'DatasetFormat' => [
                'Csv' => [
                    'Header' => true || false,
                ],
                'Json' => [
                    'Line' => true || false,
                ],
                'Parquet' => [
                ],
            ],
            'EndTimeOffset' => '<string>',
            'ExcludeFeaturesAttribute' => '<string>',
            'FeaturesAttribute' => '<string>',
            'InferenceAttribute' => '<string>',
            'LocalPath' => '<string>',
            'ProbabilityAttribute' => '<string>',
            'ProbabilityThresholdAttribute' => <float>,
            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
            'S3InputMode' => 'Pipe|File',
            'StartTimeOffset' => '<string>',
        ],
        'EndpointInput' => [
            'EndTimeOffset' => '<string>',
            'EndpointName' => '<string>',
            'ExcludeFeaturesAttribute' => '<string>',
            'FeaturesAttribute' => '<string>',
            'InferenceAttribute' => '<string>',
            'LocalPath' => '<string>',
            'ProbabilityAttribute' => '<string>',
            'ProbabilityThresholdAttribute' => <float>,
            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
            'S3InputMode' => 'Pipe|File',
            'StartTimeOffset' => '<string>',
        ],
        'GroundTruthS3Input' => [
            'S3Uri' => '<string>',
        ],
    ],
    'ModelQualityJobOutputConfig' => [
        'KmsKeyId' => '<string>',
        'MonitoringOutputs' => [
            [
                'S3Output' => [
                    'LocalPath' => '<string>',
                    'S3UploadMode' => 'Continuous|EndOfJob',
                    'S3Uri' => '<string>',
                ],
            ],
            // ...
        ],
    ],
    'NetworkConfig' => [
        'EnableInterContainerTrafficEncryption' => true || false,
        'EnableNetworkIsolation' => true || false,
        'VpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...],
            'Subnets' => ['<string>', ...],
        ],
    ],
    'RoleArn' => '<string>',
    'StoppingCondition' => [
        'MaxRuntimeInSeconds' => <integer>,
    ],
]

Result Details

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time at which the model quality job was created.

JobDefinitionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model quality job.

JobDefinitionName
Required: Yes
Type: string

The name of the quality job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

JobResources
Required: Yes
Type: MonitoringResources structure

Identifies the resources to deploy for a monitoring job.

ModelQualityAppSpecification
Required: Yes
Type: ModelQualityAppSpecification structure

Configures the model quality job to run a specified Docker container image.

ModelQualityBaselineConfig
Type: ModelQualityBaselineConfig structure

The baseline configuration for a model quality job.

ModelQualityJobInput
Required: Yes
Type: ModelQualityJobInput structure

Inputs for the model quality job.

ModelQualityJobOutputConfig
Required: Yes
Type: MonitoringOutputConfig structure

The output configuration for monitoring jobs.

NetworkConfig
Type: MonitoringNetworkConfig structure

Networking options for a model quality job.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.

StoppingCondition
Type: MonitoringStoppingCondition structure

A time limit for how long the monitoring job is allowed to run before stopping.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeMonitoringSchedule

$result = $client->describeMonitoringSchedule([/* ... */]);
$promise = $client->describeMonitoringScheduleAsync([/* ... */]);

Describes the schedule for a monitoring job.

Parameter Syntax

$result = $client->describeMonitoringSchedule([
    'MonitoringScheduleName' => '<string>', // REQUIRED
]);

Parameter Details

Members
MonitoringScheduleName
Required: Yes
Type: string

Name of a previously created monitoring schedule.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'EndpointName' => '<string>',
    'FailureReason' => '<string>',
    'LastModifiedTime' => <DateTime>,
    'LastMonitoringExecutionSummary' => [
        'CreationTime' => <DateTime>,
        'EndpointName' => '<string>',
        'FailureReason' => '<string>',
        'LastModifiedTime' => <DateTime>,
        'MonitoringExecutionStatus' => 'Pending|Completed|CompletedWithViolations|InProgress|Failed|Stopping|Stopped',
        'MonitoringJobDefinitionName' => '<string>',
        'MonitoringScheduleName' => '<string>',
        'MonitoringType' => 'DataQuality|ModelQuality|ModelBias|ModelExplainability',
        'ProcessingJobArn' => '<string>',
        'ScheduledTime' => <DateTime>,
    ],
    'MonitoringScheduleArn' => '<string>',
    'MonitoringScheduleConfig' => [
        'MonitoringJobDefinition' => [
            'BaselineConfig' => [
                'BaseliningJobName' => '<string>',
                'ConstraintsResource' => [
                    'S3Uri' => '<string>',
                ],
                'StatisticsResource' => [
                    'S3Uri' => '<string>',
                ],
            ],
            'Environment' => ['<string>', ...],
            'MonitoringAppSpecification' => [
                'ContainerArguments' => ['<string>', ...],
                'ContainerEntrypoint' => ['<string>', ...],
                'ImageUri' => '<string>',
                'PostAnalyticsProcessorSourceUri' => '<string>',
                'RecordPreprocessorSourceUri' => '<string>',
            ],
            'MonitoringInputs' => [
                [
                    'BatchTransformInput' => [
                        'DataCapturedDestinationS3Uri' => '<string>',
                        'DatasetFormat' => [
                            'Csv' => [
                                'Header' => true || false,
                            ],
                            'Json' => [
                                'Line' => true || false,
                            ],
                            'Parquet' => [
                            ],
                        ],
                        'EndTimeOffset' => '<string>',
                        'ExcludeFeaturesAttribute' => '<string>',
                        'FeaturesAttribute' => '<string>',
                        'InferenceAttribute' => '<string>',
                        'LocalPath' => '<string>',
                        'ProbabilityAttribute' => '<string>',
                        'ProbabilityThresholdAttribute' => <float>,
                        'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                        'S3InputMode' => 'Pipe|File',
                        'StartTimeOffset' => '<string>',
                    ],
                    'EndpointInput' => [
                        'EndTimeOffset' => '<string>',
                        'EndpointName' => '<string>',
                        'ExcludeFeaturesAttribute' => '<string>',
                        'FeaturesAttribute' => '<string>',
                        'InferenceAttribute' => '<string>',
                        'LocalPath' => '<string>',
                        'ProbabilityAttribute' => '<string>',
                        'ProbabilityThresholdAttribute' => <float>,
                        'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                        'S3InputMode' => 'Pipe|File',
                        'StartTimeOffset' => '<string>',
                    ],
                ],
                // ...
            ],
            'MonitoringOutputConfig' => [
                'KmsKeyId' => '<string>',
                'MonitoringOutputs' => [
                    [
                        'S3Output' => [
                            'LocalPath' => '<string>',
                            'S3UploadMode' => 'Continuous|EndOfJob',
                            'S3Uri' => '<string>',
                        ],
                    ],
                    // ...
                ],
            ],
            'MonitoringResources' => [
                'ClusterConfig' => [
                    'InstanceCount' => <integer>,
                    'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge',
                    'VolumeKmsKeyId' => '<string>',
                    'VolumeSizeInGB' => <integer>,
                ],
            ],
            'NetworkConfig' => [
                'EnableInterContainerTrafficEncryption' => true || false,
                'EnableNetworkIsolation' => true || false,
                'VpcConfig' => [
                    'SecurityGroupIds' => ['<string>', ...],
                    'Subnets' => ['<string>', ...],
                ],
            ],
            'RoleArn' => '<string>',
            'StoppingCondition' => [
                'MaxRuntimeInSeconds' => <integer>,
            ],
        ],
        'MonitoringJobDefinitionName' => '<string>',
        'MonitoringType' => 'DataQuality|ModelQuality|ModelBias|ModelExplainability',
        'ScheduleConfig' => [
            'DataAnalysisEndTime' => '<string>',
            'DataAnalysisStartTime' => '<string>',
            'ScheduleExpression' => '<string>',
        ],
    ],
    'MonitoringScheduleName' => '<string>',
    'MonitoringScheduleStatus' => 'Pending|Failed|Scheduled|Stopped',
    'MonitoringType' => 'DataQuality|ModelQuality|ModelBias|ModelExplainability',
]

Result Details

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time at which the monitoring job was created.

EndpointName
Type: string

The name of the endpoint for the monitoring job.

FailureReason
Type: string

A string, up to one KB in size, that contains the reason a monitoring job failed, if it failed.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time at which the monitoring job was last modified.

LastMonitoringExecutionSummary
Type: MonitoringExecutionSummary structure

Describes metadata on the last execution to run, if there was one.

MonitoringScheduleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the monitoring schedule.

MonitoringScheduleConfig
Required: Yes
Type: MonitoringScheduleConfig structure

The configuration object that specifies the monitoring schedule and defines the monitoring job.

MonitoringScheduleName
Required: Yes
Type: string

Name of the monitoring schedule.

MonitoringScheduleStatus
Required: Yes
Type: string

The status of an monitoring job.

MonitoringType
Type: string

The type of the monitoring job that this schedule runs. This is one of the following values.

  • DATA_QUALITY - The schedule is for a data quality monitoring job.

  • MODEL_QUALITY - The schedule is for a model quality monitoring job.

  • MODEL_BIAS - The schedule is for a bias monitoring job.

  • MODEL_EXPLAINABILITY - The schedule is for an explainability monitoring job.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeNotebookInstance

$result = $client->describeNotebookInstance([/* ... */]);
$promise = $client->describeNotebookInstanceAsync([/* ... */]);

Returns information about a notebook instance.

Parameter Syntax

$result = $client->describeNotebookInstance([
    'NotebookInstanceName' => '<string>', // REQUIRED
]);

Parameter Details

Members
NotebookInstanceName
Required: Yes
Type: string

The name of the notebook instance that you want information about.

Result Syntax

[
    'AcceleratorTypes' => ['<string>', ...],
    'AdditionalCodeRepositories' => ['<string>', ...],
    'CreationTime' => <DateTime>,
    'DefaultCodeRepository' => '<string>',
    'DirectInternetAccess' => 'Enabled|Disabled',
    'FailureReason' => '<string>',
    'InstanceMetadataServiceConfiguration' => [
        'MinimumInstanceMetadataServiceVersion' => '<string>',
    ],
    'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge',
    'KmsKeyId' => '<string>',
    'LastModifiedTime' => <DateTime>,
    'NetworkInterfaceId' => '<string>',
    'NotebookInstanceArn' => '<string>',
    'NotebookInstanceLifecycleConfigName' => '<string>',
    'NotebookInstanceName' => '<string>',
    'NotebookInstanceStatus' => 'Pending|InService|Stopping|Stopped|Failed|Deleting|Updating',
    'PlatformIdentifier' => '<string>',
    'RoleArn' => '<string>',
    'RootAccess' => 'Enabled|Disabled',
    'SecurityGroups' => ['<string>', ...],
    'SubnetId' => '<string>',
    'Url' => '<string>',
    'VolumeSizeInGB' => <integer>,
]

Result Details

Members
AcceleratorTypes
Type: Array of strings

This parameter is no longer supported. Elastic Inference (EI) is no longer available.

This parameter was used to specify a list of the EI instance types associated with this notebook instance.

AdditionalCodeRepositories
Type: Array of strings

An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp. Use this parameter to return the time when the notebook instance was created

DefaultCodeRepository
Type: string

The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.

DirectInternetAccess
Type: string

Describes whether SageMaker AI provides internet access to the notebook instance. If this value is set to Disabled, the notebook instance does not have internet access, and cannot connect to SageMaker AI training and endpoint services.

For more information, see Notebook Instances Are Internet-Enabled by Default.

FailureReason
Type: string

If status is Failed, the reason it failed.

InstanceMetadataServiceConfiguration

Information on the IMDS configuration of the notebook instance

InstanceType
Type: string

The type of ML compute instance running on the notebook instance.

KmsKeyId
Type: string

The Amazon Web Services KMS key ID SageMaker AI uses to encrypt data when storing it on the ML storage volume attached to the instance.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp. Use this parameter to retrieve the time when the notebook instance was last modified.

NetworkInterfaceId
Type: string

The network interface IDs that SageMaker AI created at the time of creating the instance.

NotebookInstanceArn
Type: string

The Amazon Resource Name (ARN) of the notebook instance.

NotebookInstanceLifecycleConfigName
Type: string

Returns the name of a notebook instance lifecycle configuration.

For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance

NotebookInstanceName
Type: string

The name of the SageMaker AI notebook instance.

NotebookInstanceStatus
Type: string

The status of the notebook instance.

PlatformIdentifier
Type: string

The platform identifier of the notebook instance runtime environment.

RoleArn
Type: string

The Amazon Resource Name (ARN) of the IAM role associated with the instance.

RootAccess
Type: string

Whether root access is enabled or disabled for users of the notebook instance.

Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.

SecurityGroups
Type: Array of strings

The IDs of the VPC security groups.

SubnetId
Type: string

The ID of the VPC subnet.

Url
Type: string

The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.

VolumeSizeInGB
Type: int

The size, in GB, of the ML storage volume attached to the notebook instance.

Errors

There are no errors described for this operation.

DescribeNotebookInstanceLifecycleConfig

$result = $client->describeNotebookInstanceLifecycleConfig([/* ... */]);
$promise = $client->describeNotebookInstanceLifecycleConfigAsync([/* ... */]);

Returns a description of a notebook instance lifecycle configuration.

For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

Parameter Syntax

$result = $client->describeNotebookInstanceLifecycleConfig([
    'NotebookInstanceLifecycleConfigName' => '<string>', // REQUIRED
]);

Parameter Details

Members
NotebookInstanceLifecycleConfigName
Required: Yes
Type: string

The name of the lifecycle configuration to describe.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'LastModifiedTime' => <DateTime>,
    'NotebookInstanceLifecycleConfigArn' => '<string>',
    'NotebookInstanceLifecycleConfigName' => '<string>',
    'OnCreate' => [
        [
            'Content' => '<string>',
        ],
        // ...
    ],
    'OnStart' => [
        [
            'Content' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that tells when the lifecycle configuration was created.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that tells when the lifecycle configuration was last modified.

NotebookInstanceLifecycleConfigArn
Type: string

The Amazon Resource Name (ARN) of the lifecycle configuration.

NotebookInstanceLifecycleConfigName
Type: string

The name of the lifecycle configuration.

OnCreate
Type: Array of NotebookInstanceLifecycleHook structures

The shell script that runs only once, when you create a notebook instance.

OnStart
Type: Array of NotebookInstanceLifecycleHook structures

The shell script that runs every time you start a notebook instance, including when you create the notebook instance.

Errors

There are no errors described for this operation.

DescribeOptimizationJob

$result = $client->describeOptimizationJob([/* ... */]);
$promise = $client->describeOptimizationJobAsync([/* ... */]);

Provides the properties of the specified optimization job.

Parameter Syntax

$result = $client->describeOptimizationJob([
    'OptimizationJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
OptimizationJobName
Required: Yes
Type: string

The name that you assigned to the optimization job.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'DeploymentInstanceType' => 'ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge',
    'FailureReason' => '<string>',
    'LastModifiedTime' => <DateTime>,
    'ModelSource' => [
        'S3' => [
            'ModelAccessConfig' => [
                'AcceptEula' => true || false,
            ],
            'S3Uri' => '<string>',
        ],
    ],
    'OptimizationConfigs' => [
        [
            'ModelCompilationConfig' => [
                'Image' => '<string>',
                'OverrideEnvironment' => ['<string>', ...],
            ],
            'ModelQuantizationConfig' => [
                'Image' => '<string>',
                'OverrideEnvironment' => ['<string>', ...],
            ],
            'ModelShardingConfig' => [
                'Image' => '<string>',
                'OverrideEnvironment' => ['<string>', ...],
            ],
        ],
        // ...
    ],
    'OptimizationEndTime' => <DateTime>,
    'OptimizationEnvironment' => ['<string>', ...],
    'OptimizationJobArn' => '<string>',
    'OptimizationJobName' => '<string>',
    'OptimizationJobStatus' => 'INPROGRESS|COMPLETED|FAILED|STARTING|STOPPING|STOPPED',
    'OptimizationOutput' => [
        'RecommendedInferenceImage' => '<string>',
    ],
    'OptimizationStartTime' => <DateTime>,
    'OutputConfig' => [
        'KmsKeyId' => '<string>',
        'S3OutputLocation' => '<string>',
    ],
    'RoleArn' => '<string>',
    'StoppingCondition' => [
        'MaxPendingTimeInSeconds' => <integer>,
        'MaxRuntimeInSeconds' => <integer>,
        'MaxWaitTimeInSeconds' => <integer>,
    ],
    'VpcConfig' => [
        'SecurityGroupIds' => ['<string>', ...],
        'Subnets' => ['<string>', ...],
    ],
]

Result Details

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when you created the optimization job.

DeploymentInstanceType
Required: Yes
Type: string

The type of instance that hosts the optimized model that you create with the optimization job.

FailureReason
Type: string

If the optimization job status is FAILED, the reason for the failure.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the optimization job was last updated.

ModelSource
Required: Yes
Type: OptimizationJobModelSource structure

The location of the source model to optimize with an optimization job.

OptimizationConfigs
Required: Yes
Type: Array of OptimizationConfig structures

Settings for each of the optimization techniques that the job applies.

OptimizationEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the optimization job finished processing.

OptimizationEnvironment
Type: Associative array of custom strings keys (NonEmptyString256) to strings

The environment variables to set in the model container.

OptimizationJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the optimization job.

OptimizationJobName
Required: Yes
Type: string

The name that you assigned to the optimization job.

OptimizationJobStatus
Required: Yes
Type: string

The current status of the optimization job.

OptimizationOutput
Type: OptimizationOutput structure

Output values produced by an optimization job.

OptimizationStartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the optimization job started.

OutputConfig
Required: Yes
Type: OptimizationJobOutputConfig structure

Details for where to store the optimized model that you create with the optimization job.

RoleArn
Required: Yes
Type: string

The ARN of the IAM role that you assigned to the optimization job.

StoppingCondition
Required: Yes
Type: StoppingCondition structure

Specifies a limit to how long a job can run. When the job reaches the time limit, SageMaker ends the job. Use this API to cap costs.

To stop a training job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.

The training algorithms provided by SageMaker automatically save the intermediate results of a model training job when possible. This attempt to save artifacts is only a best effort case as model might not be in a state from which it can be saved. For example, if training has just started, the model might not be ready to save. When saved, this intermediate data is a valid model artifact. You can use it to create a model with CreateModel.

The Neural Topic Model (NTM) currently does not support saving intermediate model artifacts. When training NTMs, make sure that the maximum runtime is sufficient for the training job to complete.

VpcConfig
Type: OptimizationVpcConfig structure

A VPC in Amazon VPC that your optimized model has access to.

Errors

ResourceNotFound:

Resource being access is not found.

DescribePartnerApp

$result = $client->describePartnerApp([/* ... */]);
$promise = $client->describePartnerAppAsync([/* ... */]);

Gets information about a SageMaker Partner AI App.

Parameter Syntax

$result = $client->describePartnerApp([
    'Arn' => '<string>', // REQUIRED
]);

Parameter Details

Members
Arn
Required: Yes
Type: string

The ARN of the SageMaker Partner AI App to describe.

Result Syntax

[
    'ApplicationConfig' => [
        'AdminUsers' => ['<string>', ...],
        'Arguments' => ['<string>', ...],
    ],
    'Arn' => '<string>',
    'AuthType' => 'IAM',
    'BaseUrl' => '<string>',
    'CreationTime' => <DateTime>,
    'EnableIamSessionBasedIdentity' => true || false,
    'Error' => [
        'Code' => '<string>',
        'Reason' => '<string>',
    ],
    'ExecutionRoleArn' => '<string>',
    'MaintenanceConfig' => [
        'MaintenanceWindowStart' => '<string>',
    ],
    'Name' => '<string>',
    'Status' => 'Creating|Updating|Deleting|Available|Failed|UpdateFailed|Deleted',
    'Tier' => '<string>',
    'Type' => 'lakera-guard|comet|deepchecks-llm-evaluation|fiddler',
    'Version' => '<string>',
]

Result Details

Members
ApplicationConfig
Type: PartnerAppConfig structure

Configuration settings for the SageMaker Partner AI App.

Arn
Type: string

The ARN of the SageMaker Partner AI App that was described.

AuthType
Type: string

The authorization type that users use to access the SageMaker Partner AI App.

BaseUrl
Type: string

The URL of the SageMaker Partner AI App that the Application SDK uses to support in-app calls for the user.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the SageMaker Partner AI App was created.

EnableIamSessionBasedIdentity
Type: boolean

When set to TRUE, the SageMaker Partner AI App sets the Amazon Web Services IAM session name or the authenticated IAM user as the identity of the SageMaker Partner AI App user.

Error
Type: ErrorInfo structure

This is an error field object that contains the error code and the reason for an operation failure.

ExecutionRoleArn
Type: string

The ARN of the IAM role associated with the SageMaker Partner AI App.

MaintenanceConfig
Type: PartnerAppMaintenanceConfig structure

Maintenance configuration settings for the SageMaker Partner AI App.

Name
Type: string

The name of the SageMaker Partner AI App.

Status
Type: string

The status of the SageMaker Partner AI App.

Tier
Type: string

The instance type and size of the cluster attached to the SageMaker Partner AI App.

Type
Type: string

The type of SageMaker Partner AI App. Must be one of the following: lakera-guard, comet, deepchecks-llm-evaluation, or fiddler.

Version
Type: string

The version of the SageMaker Partner AI App.

Errors

ResourceNotFound:

Resource being access is not found.

DescribePipeline

$result = $client->describePipeline([/* ... */]);
$promise = $client->describePipelineAsync([/* ... */]);

Describes the details of a pipeline.

Parameter Syntax

$result = $client->describePipeline([
    'PipelineName' => '<string>', // REQUIRED
]);

Parameter Details

Members
PipelineName
Required: Yes
Type: string

The name or Amazon Resource Name (ARN) of the pipeline to describe.

Result Syntax

[
    'CreatedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'LastModifiedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
    'LastRunTime' => <DateTime>,
    'ParallelismConfiguration' => [
        'MaxParallelExecutionSteps' => <integer>,
    ],
    'PipelineArn' => '<string>',
    'PipelineDefinition' => '<string>',
    'PipelineDescription' => '<string>',
    'PipelineDisplayName' => '<string>',
    'PipelineName' => '<string>',
    'PipelineStatus' => 'Active|Deleting',
    'RoleArn' => '<string>',
]

Result Details

Members
CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the pipeline was created.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the pipeline was last modified.

LastRunTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the pipeline was last run.

ParallelismConfiguration
Type: ParallelismConfiguration structure

Lists the parallelism configuration applied to the pipeline.

PipelineArn
Type: string

The Amazon Resource Name (ARN) of the pipeline.

PipelineDefinition
Type: string

The JSON pipeline definition.

PipelineDescription
Type: string

The description of the pipeline.

PipelineDisplayName
Type: string

The display name of the pipeline.

PipelineName
Type: string

The name of the pipeline.

PipelineStatus
Type: string

The status of the pipeline execution.

RoleArn
Type: string

The Amazon Resource Name (ARN) that the pipeline uses to execute.

Errors

ResourceNotFound:

Resource being access is not found.

DescribePipelineDefinitionForExecution

$result = $client->describePipelineDefinitionForExecution([/* ... */]);
$promise = $client->describePipelineDefinitionForExecutionAsync([/* ... */]);

Describes the details of an execution's pipeline definition.

Parameter Syntax

$result = $client->describePipelineDefinitionForExecution([
    'PipelineExecutionArn' => '<string>', // REQUIRED
]);

Parameter Details

Members
PipelineExecutionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the pipeline execution.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'PipelineDefinition' => '<string>',
]

Result Details

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the pipeline was created.

PipelineDefinition
Type: string

The JSON pipeline definition.

Errors

ResourceNotFound:

Resource being access is not found.

DescribePipelineExecution

$result = $client->describePipelineExecution([/* ... */]);
$promise = $client->describePipelineExecutionAsync([/* ... */]);

Describes the details of a pipeline execution.

Parameter Syntax

$result = $client->describePipelineExecution([
    'PipelineExecutionArn' => '<string>', // REQUIRED
]);

Parameter Details

Members
PipelineExecutionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the pipeline execution.

Result Syntax

[
    'CreatedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'FailureReason' => '<string>',
    'LastModifiedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
    'ParallelismConfiguration' => [
        'MaxParallelExecutionSteps' => <integer>,
    ],
    'PipelineArn' => '<string>',
    'PipelineExecutionArn' => '<string>',
    'PipelineExecutionDescription' => '<string>',
    'PipelineExecutionDisplayName' => '<string>',
    'PipelineExecutionStatus' => 'Executing|Stopping|Stopped|Failed|Succeeded',
    'PipelineExperimentConfig' => [
        'ExperimentName' => '<string>',
        'TrialName' => '<string>',
    ],
    'SelectiveExecutionConfig' => [
        'SelectedSteps' => [
            [
                'StepName' => '<string>',
            ],
            // ...
        ],
        'SourcePipelineExecutionArn' => '<string>',
    ],
]

Result Details

Members
CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the pipeline execution was created.

FailureReason
Type: string

If the execution failed, a message describing why.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the pipeline execution was modified last.

ParallelismConfiguration
Type: ParallelismConfiguration structure

The parallelism configuration applied to the pipeline.

PipelineArn
Type: string

The Amazon Resource Name (ARN) of the pipeline.

PipelineExecutionArn
Type: string

The Amazon Resource Name (ARN) of the pipeline execution.

PipelineExecutionDescription
Type: string

The description of the pipeline execution.

PipelineExecutionDisplayName
Type: string

The display name of the pipeline execution.

PipelineExecutionStatus
Type: string

The status of the pipeline execution.

PipelineExperimentConfig
Type: PipelineExperimentConfig structure

Specifies the names of the experiment and trial created by a pipeline.

SelectiveExecutionConfig
Type: SelectiveExecutionConfig structure

The selective execution configuration applied to the pipeline run.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeProcessingJob

$result = $client->describeProcessingJob([/* ... */]);
$promise = $client->describeProcessingJobAsync([/* ... */]);

Returns a description of a processing job.

Parameter Syntax

$result = $client->describeProcessingJob([
    'ProcessingJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ProcessingJobName
Required: Yes
Type: string

The name of the processing job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

Result Syntax

[
    'AppSpecification' => [
        'ContainerArguments' => ['<string>', ...],
        'ContainerEntrypoint' => ['<string>', ...],
        'ImageUri' => '<string>',
    ],
    'AutoMLJobArn' => '<string>',
    'CreationTime' => <DateTime>,
    'Environment' => ['<string>', ...],
    'ExitMessage' => '<string>',
    'ExperimentConfig' => [
        'ExperimentName' => '<string>',
        'RunName' => '<string>',
        'TrialComponentDisplayName' => '<string>',
        'TrialName' => '<string>',
    ],
    'FailureReason' => '<string>',
    'LastModifiedTime' => <DateTime>,
    'MonitoringScheduleArn' => '<string>',
    'NetworkConfig' => [
        'EnableInterContainerTrafficEncryption' => true || false,
        'EnableNetworkIsolation' => true || false,
        'VpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...],
            'Subnets' => ['<string>', ...],
        ],
    ],
    'ProcessingEndTime' => <DateTime>,
    'ProcessingInputs' => [
        [
            'AppManaged' => true || false,
            'DatasetDefinition' => [
                'AthenaDatasetDefinition' => [
                    'Catalog' => '<string>',
                    'Database' => '<string>',
                    'KmsKeyId' => '<string>',
                    'OutputCompression' => 'GZIP|SNAPPY|ZLIB',
                    'OutputFormat' => 'PARQUET|ORC|AVRO|JSON|TEXTFILE',
                    'OutputS3Uri' => '<string>',
                    'QueryString' => '<string>',
                    'WorkGroup' => '<string>',
                ],
                'DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                'InputMode' => 'Pipe|File',
                'LocalPath' => '<string>',
                'RedshiftDatasetDefinition' => [
                    'ClusterId' => '<string>',
                    'ClusterRoleArn' => '<string>',
                    'Database' => '<string>',
                    'DbUser' => '<string>',
                    'KmsKeyId' => '<string>',
                    'OutputCompression' => 'None|GZIP|BZIP2|ZSTD|SNAPPY',
                    'OutputFormat' => 'PARQUET|CSV',
                    'OutputS3Uri' => '<string>',
                    'QueryString' => '<string>',
                ],
            ],
            'InputName' => '<string>',
            'S3Input' => [
                'LocalPath' => '<string>',
                'S3CompressionType' => 'None|Gzip',
                'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                'S3DataType' => 'ManifestFile|S3Prefix',
                'S3InputMode' => 'Pipe|File',
                'S3Uri' => '<string>',
            ],
        ],
        // ...
    ],
    'ProcessingJobArn' => '<string>',
    'ProcessingJobName' => '<string>',
    'ProcessingJobStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
    'ProcessingOutputConfig' => [
        'KmsKeyId' => '<string>',
        'Outputs' => [
            [
                'AppManaged' => true || false,
                'FeatureStoreOutput' => [
                    'FeatureGroupName' => '<string>',
                ],
                'OutputName' => '<string>',
                'S3Output' => [
                    'LocalPath' => '<string>',
                    'S3UploadMode' => 'Continuous|EndOfJob',
                    'S3Uri' => '<string>',
                ],
            ],
            // ...
        ],
    ],
    'ProcessingResources' => [
        'ClusterConfig' => [
            'InstanceCount' => <integer>,
            'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge',
            'VolumeKmsKeyId' => '<string>',
            'VolumeSizeInGB' => <integer>,
        ],
    ],
    'ProcessingStartTime' => <DateTime>,
    'RoleArn' => '<string>',
    'StoppingCondition' => [
        'MaxRuntimeInSeconds' => <integer>,
    ],
    'TrainingJobArn' => '<string>',
]

Result Details

Members
AppSpecification
Required: Yes
Type: AppSpecification structure

Configures the processing job to run a specified container image.

AutoMLJobArn
Type: string

The ARN of an AutoML job associated with this processing job.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time at which the processing job was created.

Environment
Type: Associative array of custom strings keys (ProcessingEnvironmentKey) to strings

The environment variables set in the Docker container.

ExitMessage
Type: string

An optional string, up to one KB in size, that contains metadata from the processing container when the processing job exits.

ExperimentConfig
Type: ExperimentConfig structure

The configuration information used to create an experiment.

FailureReason
Type: string

A string, up to one KB in size, that contains the reason a processing job failed, if it failed.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time at which the processing job was last modified.

MonitoringScheduleArn
Type: string

The ARN of a monitoring schedule for an endpoint associated with this processing job.

NetworkConfig
Type: NetworkConfig structure

Networking options for a processing job.

ProcessingEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time at which the processing job completed.

ProcessingInputs
Type: Array of ProcessingInput structures

The inputs for a processing job.

ProcessingJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the processing job.

ProcessingJobName
Required: Yes
Type: string

The name of the processing job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

ProcessingJobStatus
Required: Yes
Type: string

Provides the status of a processing job.

ProcessingOutputConfig
Type: ProcessingOutputConfig structure

Output configuration for the processing job.

ProcessingResources
Required: Yes
Type: ProcessingResources structure

Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.

ProcessingStartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time at which the processing job started.

RoleArn
Type: string

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

StoppingCondition
Type: ProcessingStoppingCondition structure

The time limit for how long the processing job is allowed to run.

TrainingJobArn
Type: string

The ARN of a training job associated with this processing job.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeProject

$result = $client->describeProject([/* ... */]);
$promise = $client->describeProjectAsync([/* ... */]);

Describes the details of a project.

Parameter Syntax

$result = $client->describeProject([
    'ProjectName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ProjectName
Required: Yes
Type: string

The name of the project to describe.

Result Syntax

[
    'CreatedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'LastModifiedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
    'ProjectArn' => '<string>',
    'ProjectDescription' => '<string>',
    'ProjectId' => '<string>',
    'ProjectName' => '<string>',
    'ProjectStatus' => 'Pending|CreateInProgress|CreateCompleted|CreateFailed|DeleteInProgress|DeleteFailed|DeleteCompleted|UpdateInProgress|UpdateCompleted|UpdateFailed',
    'ServiceCatalogProvisionedProductDetails' => [
        'ProvisionedProductId' => '<string>',
        'ProvisionedProductStatusMessage' => '<string>',
    ],
    'ServiceCatalogProvisioningDetails' => [
        'PathId' => '<string>',
        'ProductId' => '<string>',
        'ProvisioningArtifactId' => '<string>',
        'ProvisioningParameters' => [
            [
                'Key' => '<string>',
                'Value' => '<string>',
            ],
            // ...
        ],
    ],
]

Result Details

Members
CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the project was created.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp when project was last modified.

ProjectArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the project.

ProjectDescription
Type: string

The description of the project.

ProjectId
Required: Yes
Type: string

The ID of the project.

ProjectName
Required: Yes
Type: string

The name of the project.

ProjectStatus
Required: Yes
Type: string

The status of the project.

ServiceCatalogProvisionedProductDetails

Information about a provisioned service catalog product.

ServiceCatalogProvisioningDetails
Required: Yes
Type: ServiceCatalogProvisioningDetails structure

Information used to provision a service catalog product. For information, see What is Amazon Web Services Service Catalog.

Errors

There are no errors described for this operation.

DescribeSpace

$result = $client->describeSpace([/* ... */]);
$promise = $client->describeSpaceAsync([/* ... */]);

Describes the space.

Parameter Syntax

$result = $client->describeSpace([
    'DomainId' => '<string>', // REQUIRED
    'SpaceName' => '<string>', // REQUIRED
]);

Parameter Details

Members
DomainId
Required: Yes
Type: string

The ID of the associated domain.

SpaceName
Required: Yes
Type: string

The name of the space.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'DomainId' => '<string>',
    'FailureReason' => '<string>',
    'HomeEfsFileSystemUid' => '<string>',
    'LastModifiedTime' => <DateTime>,
    'OwnershipSettings' => [
        'OwnerUserProfileName' => '<string>',
    ],
    'SpaceArn' => '<string>',
    'SpaceDisplayName' => '<string>',
    'SpaceName' => '<string>',
    'SpaceSettings' => [
        'AppType' => 'JupyterServer|KernelGateway|DetailedProfiler|TensorBoard|CodeEditor|JupyterLab|RStudioServerPro|RSessionGateway|Canvas',
        'CodeEditorAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
        'CustomFileSystems' => [
            [
                'EFSFileSystem' => [
                    'FileSystemId' => '<string>',
                ],
                'FSxLustreFileSystem' => [
                    'FileSystemId' => '<string>',
                ],
            ],
            // ...
        ],
        'JupyterLabAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>',
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
        'JupyterServerAppSettings' => [
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>',
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'KernelGatewayAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>',
                    'ImageName' => '<string>',
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'SpaceStorageSettings' => [
            'EbsStorageSettings' => [
                'EbsVolumeSizeInGb' => <integer>,
            ],
        ],
    ],
    'SpaceSharingSettings' => [
        'SharingType' => 'Private|Shared',
    ],
    'Status' => 'Deleting|Failed|InService|Pending|Updating|Update_Failed|Delete_Failed',
    'Url' => '<string>',
]

Result Details

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time.

DomainId
Type: string

The ID of the associated domain.

FailureReason
Type: string

The failure reason.

HomeEfsFileSystemUid
Type: string

The ID of the space's profile in the Amazon EFS volume.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last modified time.

OwnershipSettings
Type: OwnershipSettings structure

The collection of ownership settings for a space.

SpaceArn
Type: string

The space's Amazon Resource Name (ARN).

SpaceDisplayName
Type: string

The name of the space that appears in the Amazon SageMaker Studio UI.

SpaceName
Type: string

The name of the space.

SpaceSettings
Type: SpaceSettings structure

A collection of space settings.

SpaceSharingSettings
Type: SpaceSharingSettings structure

The collection of space sharing settings for a space.

Status
Type: string

The status.

Url
Type: string

Returns the URL of the space. If the space is created with Amazon Web Services IAM Identity Center (Successor to Amazon Web Services Single Sign-On) authentication, users can navigate to the URL after appending the respective redirect parameter for the application type to be federated through Amazon Web Services IAM Identity Center.

The following application types are supported:

  • Studio Classic: &redirect=JupyterServer

  • JupyterLab: &redirect=JupyterLab

  • Code Editor, based on Code-OSS, Visual Studio Code - Open Source: &redirect=CodeEditor

Errors

ResourceNotFound:

Resource being access is not found.

DescribeStudioLifecycleConfig

$result = $client->describeStudioLifecycleConfig([/* ... */]);
$promise = $client->describeStudioLifecycleConfigAsync([/* ... */]);

Describes the Amazon SageMaker AI Studio Lifecycle Configuration.

Parameter Syntax

$result = $client->describeStudioLifecycleConfig([
    'StudioLifecycleConfigName' => '<string>', // REQUIRED
]);

Parameter Details

Members
StudioLifecycleConfigName
Required: Yes
Type: string

The name of the Amazon SageMaker AI Studio Lifecycle Configuration to describe.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'LastModifiedTime' => <DateTime>,
    'StudioLifecycleConfigAppType' => 'JupyterServer|KernelGateway|CodeEditor|JupyterLab',
    'StudioLifecycleConfigArn' => '<string>',
    'StudioLifecycleConfigContent' => '<string>',
    'StudioLifecycleConfigName' => '<string>',
]

Result Details

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time of the Amazon SageMaker AI Studio Lifecycle Configuration.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

This value is equivalent to CreationTime because Amazon SageMaker AI Studio Lifecycle Configurations are immutable.

StudioLifecycleConfigAppType
Type: string

The App type that the Lifecycle Configuration is attached to.

StudioLifecycleConfigArn
Type: string

The ARN of the Lifecycle Configuration to describe.

StudioLifecycleConfigContent
Type: string

The content of your Amazon SageMaker AI Studio Lifecycle Configuration script.

StudioLifecycleConfigName
Type: string

The name of the Amazon SageMaker AI Studio Lifecycle Configuration that is described.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeSubscribedWorkteam

$result = $client->describeSubscribedWorkteam([/* ... */]);
$promise = $client->describeSubscribedWorkteamAsync([/* ... */]);

Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the Amazon Web Services Marketplace.

Parameter Syntax

$result = $client->describeSubscribedWorkteam([
    'WorkteamArn' => '<string>', // REQUIRED
]);

Parameter Details

Members
WorkteamArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the subscribed work team to describe.

Result Syntax

[
    'SubscribedWorkteam' => [
        'ListingId' => '<string>',
        'MarketplaceDescription' => '<string>',
        'MarketplaceTitle' => '<string>',
        'SellerName' => '<string>',
        'WorkteamArn' => '<string>',
    ],
]

Result Details

Members
SubscribedWorkteam
Required: Yes
Type: SubscribedWorkteam structure

A Workteam instance that contains information about the work team.

Errors

There are no errors described for this operation.

DescribeTrainingJob

$result = $client->describeTrainingJob([/* ... */]);
$promise = $client->describeTrainingJobAsync([/* ... */]);

Returns information about a training job.

Some of the attributes below only appear if the training job successfully starts. If the training job fails, TrainingJobStatus is Failed and, depending on the FailureReason, attributes like TrainingStartTime, TrainingTimeInSeconds, TrainingEndTime, and BillableTimeInSeconds may not be present in the response.

Parameter Syntax

$result = $client->describeTrainingJob([
    'TrainingJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
TrainingJobName
Required: Yes
Type: string

The name of the training job.

Result Syntax

[
    'AlgorithmSpecification' => [
        'AlgorithmName' => '<string>',
        'ContainerArguments' => ['<string>', ...],
        'ContainerEntrypoint' => ['<string>', ...],
        'EnableSageMakerMetricsTimeSeries' => true || false,
        'MetricDefinitions' => [
            [
                'Name' => '<string>',
                'Regex' => '<string>',
            ],
            // ...
        ],
        'TrainingImage' => '<string>',
        'TrainingImageConfig' => [
            'TrainingRepositoryAccessMode' => 'Platform|Vpc',
            'TrainingRepositoryAuthConfig' => [
                'TrainingRepositoryCredentialsProviderArn' => '<string>',
            ],
        ],
        'TrainingInputMode' => 'Pipe|File|FastFile',
    ],
    'AutoMLJobArn' => '<string>',
    'BillableTimeInSeconds' => <integer>,
    'CheckpointConfig' => [
        'LocalPath' => '<string>',
        'S3Uri' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'DebugHookConfig' => [
        'CollectionConfigurations' => [
            [
                'CollectionName' => '<string>',
                'CollectionParameters' => ['<string>', ...],
            ],
            // ...
        ],
        'HookParameters' => ['<string>', ...],
        'LocalPath' => '<string>',
        'S3OutputPath' => '<string>',
    ],
    'DebugRuleConfigurations' => [
        [
            'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge',
            'LocalPath' => '<string>',
            'RuleConfigurationName' => '<string>',
            'RuleEvaluatorImage' => '<string>',
            'RuleParameters' => ['<string>', ...],
            'S3OutputPath' => '<string>',
            'VolumeSizeInGB' => <integer>,
        ],
        // ...
    ],
    'DebugRuleEvaluationStatuses' => [
        [
            'LastModifiedTime' => <DateTime>,
            'RuleConfigurationName' => '<string>',
            'RuleEvaluationJobArn' => '<string>',
            'RuleEvaluationStatus' => 'InProgress|NoIssuesFound|IssuesFound|Error|Stopping|Stopped',
            'StatusDetails' => '<string>',
        ],
        // ...
    ],
    'EnableInterContainerTrafficEncryption' => true || false,
    'EnableManagedSpotTraining' => true || false,
    'EnableNetworkIsolation' => true || false,
    'Environment' => ['<string>', ...],
    'ExperimentConfig' => [
        'ExperimentName' => '<string>',
        'RunName' => '<string>',
        'TrialComponentDisplayName' => '<string>',
        'TrialName' => '<string>',
    ],
    'FailureReason' => '<string>',
    'FinalMetricDataList' => [
        [
            'MetricName' => '<string>',
            'Timestamp' => <DateTime>,
            'Value' => <float>,
        ],
        // ...
    ],
    'HyperParameters' => ['<string>', ...],
    'InfraCheckConfig' => [
        'EnableInfraCheck' => true || false,
    ],
    'InputDataConfig' => [
        [
            'ChannelName' => '<string>',
            'CompressionType' => 'None|Gzip',
            'ContentType' => '<string>',
            'DataSource' => [
                'FileSystemDataSource' => [
                    'DirectoryPath' => '<string>',
                    'FileSystemAccessMode' => 'rw|ro',
                    'FileSystemId' => '<string>',
                    'FileSystemType' => 'EFS|FSxLustre',
                ],
                'S3DataSource' => [
                    'AttributeNames' => ['<string>', ...],
                    'InstanceGroupNames' => ['<string>', ...],
                    'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                    'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile',
                    'S3Uri' => '<string>',
                ],
            ],
            'InputMode' => 'Pipe|File|FastFile',
            'RecordWrapperType' => 'None|RecordIO',
            'ShuffleConfig' => [
                'Seed' => <integer>,
            ],
        ],
        // ...
    ],
    'LabelingJobArn' => '<string>',
    'LastModifiedTime' => <DateTime>,
    'ModelArtifacts' => [
        'S3ModelArtifacts' => '<string>',
    ],
    'OutputDataConfig' => [
        'CompressionType' => 'GZIP|NONE',
        'KmsKeyId' => '<string>',
        'S3OutputPath' => '<string>',
    ],
    'ProfilerConfig' => [
        'DisableProfiler' => true || false,
        'ProfilingIntervalInMilliseconds' => <integer>,
        'ProfilingParameters' => ['<string>', ...],
        'S3OutputPath' => '<string>',
    ],
    'ProfilerRuleConfigurations' => [
        [
            'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge',
            'LocalPath' => '<string>',
            'RuleConfigurationName' => '<string>',
            'RuleEvaluatorImage' => '<string>',
            'RuleParameters' => ['<string>', ...],
            'S3OutputPath' => '<string>',
            'VolumeSizeInGB' => <integer>,
        ],
        // ...
    ],
    'ProfilerRuleEvaluationStatuses' => [
        [
            'LastModifiedTime' => <DateTime>,
            'RuleConfigurationName' => '<string>',
            'RuleEvaluationJobArn' => '<string>',
            'RuleEvaluationStatus' => 'InProgress|NoIssuesFound|IssuesFound|Error|Stopping|Stopped',
            'StatusDetails' => '<string>',
        ],
        // ...
    ],
    'ProfilingStatus' => 'Enabled|Disabled',
    'RemoteDebugConfig' => [
        'EnableRemoteDebug' => true || false,
    ],
    'ResourceConfig' => [
        'InstanceCount' => <integer>,
        'InstanceGroups' => [
            [
                'InstanceCount' => <integer>,
                'InstanceGroupName' => '<string>',
                'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
            ],
            // ...
        ],
        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
        'KeepAlivePeriodInSeconds' => <integer>,
        'TrainingPlanArn' => '<string>',
        'VolumeKmsKeyId' => '<string>',
        'VolumeSizeInGB' => <integer>,
    ],
    'RetryStrategy' => [
        'MaximumRetryAttempts' => <integer>,
    ],
    'RoleArn' => '<string>',
    'SecondaryStatus' => 'Starting|LaunchingMLInstances|PreparingTrainingStack|Downloading|DownloadingTrainingImage|Training|Uploading|Stopping|Stopped|MaxRuntimeExceeded|Completed|Failed|Interrupted|MaxWaitTimeExceeded|Updating|Restarting|Pending',
    'SecondaryStatusTransitions' => [
        [
            'EndTime' => <DateTime>,
            'StartTime' => <DateTime>,
            'Status' => 'Starting|LaunchingMLInstances|PreparingTrainingStack|Downloading|DownloadingTrainingImage|Training|Uploading|Stopping|Stopped|MaxRuntimeExceeded|Completed|Failed|Interrupted|MaxWaitTimeExceeded|Updating|Restarting|Pending',
            'StatusMessage' => '<string>',
        ],
        // ...
    ],
    'StoppingCondition' => [
        'MaxPendingTimeInSeconds' => <integer>,
        'MaxRuntimeInSeconds' => <integer>,
        'MaxWaitTimeInSeconds' => <integer>,
    ],
    'TensorBoardOutputConfig' => [
        'LocalPath' => '<string>',
        'S3OutputPath' => '<string>',
    ],
    'TrainingEndTime' => <DateTime>,
    'TrainingJobArn' => '<string>',
    'TrainingJobName' => '<string>',
    'TrainingJobStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
    'TrainingStartTime' => <DateTime>,
    'TrainingTimeInSeconds' => <integer>,
    'TuningJobArn' => '<string>',
    'VpcConfig' => [
        'SecurityGroupIds' => ['<string>', ...],
        'Subnets' => ['<string>', ...],
    ],
    'WarmPoolStatus' => [
        'ResourceRetainedBillableTimeInSeconds' => <integer>,
        'ReusedByJob' => '<string>',
        'Status' => 'Available|Terminated|Reused|InUse',
    ],
]

Result Details

Members
AlgorithmSpecification
Required: Yes
Type: AlgorithmSpecification structure

Information about the algorithm used for training, and algorithm metadata.

AutoMLJobArn
Type: string

The Amazon Resource Name (ARN) of an AutoML job.

BillableTimeInSeconds
Type: int

The billable time in seconds. Billable time refers to the absolute wall-clock time.

Multiply BillableTimeInSeconds by the number of instances (InstanceCount) in your training cluster to get the total compute time SageMaker bills you if you run distributed training. The formula is as follows: BillableTimeInSeconds * InstanceCount .

You can calculate the savings from using managed spot training using the formula (1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100. For example, if BillableTimeInSeconds is 100 and TrainingTimeInSeconds is 500, the savings is 80%.

CheckpointConfig
Type: CheckpointConfig structure

Contains information about the output location for managed spot training checkpoint data.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that indicates when the training job was created.

DebugHookConfig
Type: DebugHookConfig structure

Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the DebugHookConfig parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

DebugRuleConfigurations
Type: Array of DebugRuleConfiguration structures

Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.

DebugRuleEvaluationStatuses
Type: Array of DebugRuleEvaluationStatus structures

Evaluation status of Amazon SageMaker Debugger rules for debugging on a training job.

EnableInterContainerTrafficEncryption
Type: boolean

To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithms in distributed training.

EnableManagedSpotTraining
Type: boolean

A Boolean indicating whether managed spot training is enabled (True) or not (False).

EnableNetworkIsolation
Type: boolean

If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose True. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

Environment
Type: Associative array of custom strings keys (TrainingEnvironmentKey) to strings

The environment variables to set in the Docker container.

ExperimentConfig
Type: ExperimentConfig structure

Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

FailureReason
Type: string

If the training job failed, the reason it failed.

FinalMetricDataList
Type: Array of MetricData structures

A collection of MetricData objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.

HyperParameters
Type: Associative array of custom strings keys (HyperParameterKey) to strings

Algorithm-specific parameters.

InfraCheckConfig
Type: InfraCheckConfig structure

Contains information about the infrastructure health check configuration for the training job.

InputDataConfig
Type: Array of Channel structures

An array of Channel objects that describes each data input channel.

LabelingJobArn
Type: string

The Amazon Resource Name (ARN) of the SageMaker Ground Truth labeling job that created the transform or training job.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that indicates when the status of the training job was last modified.

ModelArtifacts
Required: Yes
Type: ModelArtifacts structure

Information about the Amazon S3 location that is configured for storing model artifacts.

OutputDataConfig
Type: OutputDataConfig structure

The S3 path where model artifacts that you configured when creating the job are stored. SageMaker creates subfolders for model artifacts.

ProfilerConfig
Type: ProfilerConfig structure

Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.

ProfilerRuleConfigurations
Type: Array of ProfilerRuleConfiguration structures

Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.

ProfilerRuleEvaluationStatuses
Type: Array of ProfilerRuleEvaluationStatus structures

Evaluation status of Amazon SageMaker Debugger rules for profiling on a training job.

ProfilingStatus
Type: string

Profiling status of a training job.

RemoteDebugConfig
Type: RemoteDebugConfig structure

Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging.

ResourceConfig
Required: Yes
Type: ResourceConfig structure

Resources, including ML compute instances and ML storage volumes, that are configured for model training.

RetryStrategy
Type: RetryStrategy structure

The number of times to retry the job when the job fails due to an InternalServerError.

RoleArn
Type: string

The Amazon Web Services Identity and Access Management (IAM) role configured for the training job.

SecondaryStatus
Required: Yes
Type: string

Provides detailed information about the state of the training job. For detailed information on the secondary status of the training job, see StatusMessage under SecondaryStatusTransition.

SageMaker provides primary statuses and secondary statuses that apply to each of them:

InProgress
  • Starting - Starting the training job.

  • Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.

  • Training - Training is in progress.

  • Interrupted - The job stopped because the managed spot training instances were interrupted.

  • Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.

Completed
  • Completed - The training job has completed.

Failed
  • Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse.

Stopped
  • MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.

  • MaxWaitTimeExceeded - The job stopped because it exceeded the maximum allowed wait time.

  • Stopped - The training job has stopped.

Stopping
  • Stopping - Stopping the training job.

Valid values for SecondaryStatus are subject to change.

We no longer support the following secondary statuses:

  • LaunchingMLInstances

  • PreparingTraining

  • DownloadingTrainingImage

SecondaryStatusTransitions
Type: Array of SecondaryStatusTransition structures

A history of all of the secondary statuses that the training job has transitioned through.

StoppingCondition
Required: Yes
Type: StoppingCondition structure

Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.

TensorBoardOutputConfig
Type: TensorBoardOutputConfig structure

Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.

TrainingEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when SageMaker detects a job failure.

TrainingJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the training job.

TrainingJobName
Required: Yes
Type: string

Name of the model training job.

TrainingJobStatus
Required: Yes
Type: string

The status of the training job.

SageMaker provides the following training job statuses:

  • InProgress - The training is in progress.

  • Completed - The training job has completed.

  • Failed - The training job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTrainingJobResponse call.

  • Stopping - The training job is stopping.

  • Stopped - The training job has stopped.

For more detailed information, see SecondaryStatus.

TrainingStartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of TrainingEndTime. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.

TrainingTimeInSeconds
Type: int

The training time in seconds.

TuningJobArn
Type: string

The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.

VpcConfig
Type: VpcConfig structure

A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

WarmPoolStatus
Type: WarmPoolStatus structure

The status of the warm pool associated with the training job.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeTrainingPlan

$result = $client->describeTrainingPlan([/* ... */]);
$promise = $client->describeTrainingPlanAsync([/* ... */]);

Retrieves detailed information about a specific training plan.

Parameter Syntax

$result = $client->describeTrainingPlan([
    'TrainingPlanName' => '<string>', // REQUIRED
]);

Parameter Details

Members
TrainingPlanName
Required: Yes
Type: string

The name of the training plan to describe.

Result Syntax

[
    'AvailableInstanceCount' => <integer>,
    'CurrencyCode' => '<string>',
    'DurationHours' => <integer>,
    'DurationMinutes' => <integer>,
    'EndTime' => <DateTime>,
    'InUseInstanceCount' => <integer>,
    'ReservedCapacitySummaries' => [
        [
            'AvailabilityZone' => '<string>',
            'DurationHours' => <integer>,
            'DurationMinutes' => <integer>,
            'EndTime' => <DateTime>,
            'InstanceType' => 'ml.p4d.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.trn1.32xlarge|ml.trn2.48xlarge',
            'ReservedCapacityArn' => '<string>',
            'StartTime' => <DateTime>,
            'Status' => 'Pending|Active|Scheduled|Expired|Failed',
            'TotalInstanceCount' => <integer>,
        ],
        // ...
    ],
    'StartTime' => <DateTime>,
    'Status' => 'Pending|Active|Scheduled|Expired|Failed',
    'StatusMessage' => '<string>',
    'TargetResources' => ['<string>', ...],
    'TotalInstanceCount' => <integer>,
    'TrainingPlanArn' => '<string>',
    'TrainingPlanName' => '<string>',
    'UpfrontFee' => '<string>',
]

Result Details

Members
AvailableInstanceCount
Type: int

The number of instances currently available for use in this training plan.

CurrencyCode
Type: string

The currency code for the upfront fee (e.g., USD).

DurationHours
Type: long (int|float)

The number of whole hours in the total duration for this training plan.

DurationMinutes
Type: long (int|float)

The additional minutes beyond whole hours in the total duration for this training plan.

EndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The end time of the training plan.

InUseInstanceCount
Type: int

The number of instances currently in use from this training plan.

ReservedCapacitySummaries
Type: Array of ReservedCapacitySummary structures

The list of Reserved Capacity providing the underlying compute resources of the plan.

StartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The start time of the training plan.

Status
Required: Yes
Type: string

The current status of the training plan (e.g., Pending, Active, Expired). To see the complete list of status values available for a training plan, refer to the Status attribute within the TrainingPlanSummary object.

StatusMessage
Type: string

A message providing additional information about the current status of the training plan.

TargetResources
Type: Array of strings

The target resources (e.g., SageMaker Training Jobs, SageMaker HyperPod) that can use this training plan.

Training plans are specific to their target resource.

  • A training plan designed for SageMaker training jobs can only be used to schedule and run training jobs.

  • A training plan for HyperPod clusters can be used exclusively to provide compute resources to a cluster's instance group.

TotalInstanceCount
Type: int

The total number of instances reserved in this training plan.

TrainingPlanArn
Required: Yes
Type: string

The Amazon Resource Name (ARN); of the training plan.

TrainingPlanName
Required: Yes
Type: string

The name of the training plan.

UpfrontFee
Type: string

The upfront fee for the training plan.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeTransformJob

$result = $client->describeTransformJob([/* ... */]);
$promise = $client->describeTransformJobAsync([/* ... */]);

Returns information about a transform job.

Parameter Syntax

$result = $client->describeTransformJob([
    'TransformJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
TransformJobName
Required: Yes
Type: string

The name of the transform job that you want to view details of.

Result Syntax

[
    'AutoMLJobArn' => '<string>',
    'BatchStrategy' => 'MultiRecord|SingleRecord',
    'CreationTime' => <DateTime>,
    'DataCaptureConfig' => [
        'DestinationS3Uri' => '<string>',
        'GenerateInferenceId' => true || false,
        'KmsKeyId' => '<string>',
    ],
    'DataProcessing' => [
        'InputFilter' => '<string>',
        'JoinSource' => 'Input|None',
        'OutputFilter' => '<string>',
    ],
    'Environment' => ['<string>', ...],
    'ExperimentConfig' => [
        'ExperimentName' => '<string>',
        'RunName' => '<string>',
        'TrialComponentDisplayName' => '<string>',
        'TrialName' => '<string>',
    ],
    'FailureReason' => '<string>',
    'LabelingJobArn' => '<string>',
    'MaxConcurrentTransforms' => <integer>,
    'MaxPayloadInMB' => <integer>,
    'ModelClientConfig' => [
        'InvocationsMaxRetries' => <integer>,
        'InvocationsTimeoutInSeconds' => <integer>,
    ],
    'ModelName' => '<string>',
    'TransformEndTime' => <DateTime>,
    'TransformInput' => [
        'CompressionType' => 'None|Gzip',
        'ContentType' => '<string>',
        'DataSource' => [
            'S3DataSource' => [
                'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile',
                'S3Uri' => '<string>',
            ],
        ],
        'SplitType' => 'None|Line|RecordIO|TFRecord',
    ],
    'TransformJobArn' => '<string>',
    'TransformJobName' => '<string>',
    'TransformJobStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
    'TransformOutput' => [
        'Accept' => '<string>',
        'AssembleWith' => 'None|Line',
        'KmsKeyId' => '<string>',
        'S3OutputPath' => '<string>',
    ],
    'TransformResources' => [
        'InstanceCount' => <integer>,
        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge',
        'VolumeKmsKeyId' => '<string>',
    ],
    'TransformStartTime' => <DateTime>,
]

Result Details

Members
AutoMLJobArn
Type: string

The Amazon Resource Name (ARN) of the AutoML transform job.

BatchStrategy
Type: string

Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.

To enable the batch strategy, you must set SplitType to Line, RecordIO, or TFRecord.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the transform Job was created.

DataCaptureConfig
Type: BatchDataCaptureConfig structure

Configuration to control how SageMaker captures inference data.

DataProcessing
Type: DataProcessing structure

The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.

Environment
Type: Associative array of custom strings keys (TransformEnvironmentKey) to strings

The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

ExperimentConfig
Type: ExperimentConfig structure

Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

FailureReason
Type: string

If the transform job failed, FailureReason describes why it failed. A transform job creates a log file, which includes error messages, and stores it as an Amazon S3 object. For more information, see Log Amazon SageMaker Events with Amazon CloudWatch.

LabelingJobArn
Type: string

The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.

MaxConcurrentTransforms
Type: int

The maximum number of parallel requests on each instance node that can be launched in a transform job. The default value is 1.

MaxPayloadInMB
Type: int

The maximum payload size, in MB, used in the transform job.

ModelClientConfig
Type: ModelClientConfig structure

The timeout and maximum number of retries for processing a transform job invocation.

ModelName
Required: Yes
Type: string

The name of the model used in the transform job.

TransformEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of TransformStartTime.

TransformInput
Required: Yes
Type: TransformInput structure

Describes the dataset to be transformed and the Amazon S3 location where it is stored.

TransformJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the transform job.

TransformJobName
Required: Yes
Type: string

The name of the transform job.

TransformJobStatus
Required: Yes
Type: string

The status of the transform job. If the transform job failed, the reason is returned in the FailureReason field.

TransformOutput
Type: TransformOutput structure

Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

TransformResources
Required: Yes
Type: TransformResources structure

Describes the resources, including ML instance types and ML instance count, to use for the transform job.

TransformStartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of TransformEndTime.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeTrial

$result = $client->describeTrial([/* ... */]);
$promise = $client->describeTrialAsync([/* ... */]);

Provides a list of a trial's properties.

Parameter Syntax

$result = $client->describeTrial([
    'TrialName' => '<string>', // REQUIRED
]);

Parameter Details

Members
TrialName
Required: Yes
Type: string

The name of the trial to describe.

Result Syntax

[
    'CreatedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'DisplayName' => '<string>',
    'ExperimentName' => '<string>',
    'LastModifiedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
    'MetadataProperties' => [
        'CommitId' => '<string>',
        'GeneratedBy' => '<string>',
        'ProjectId' => '<string>',
        'Repository' => '<string>',
    ],
    'Source' => [
        'SourceArn' => '<string>',
        'SourceType' => '<string>',
    ],
    'TrialArn' => '<string>',
    'TrialName' => '<string>',
]

Result Details

Members
CreatedBy
Type: UserContext structure

Who created the trial.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the trial was created.

DisplayName
Type: string

The name of the trial as displayed. If DisplayName isn't specified, TrialName is displayed.

ExperimentName
Type: string

The name of the experiment the trial is part of.

LastModifiedBy
Type: UserContext structure

Who last modified the trial.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the trial was last modified.

MetadataProperties
Type: MetadataProperties structure

Metadata properties of the tracking entity, trial, or trial component.

Source
Type: TrialSource structure

The Amazon Resource Name (ARN) of the source and, optionally, the job type.

TrialArn
Type: string

The Amazon Resource Name (ARN) of the trial.

TrialName
Type: string

The name of the trial.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeTrialComponent

$result = $client->describeTrialComponent([/* ... */]);
$promise = $client->describeTrialComponentAsync([/* ... */]);

Provides a list of a trials component's properties.

Parameter Syntax

$result = $client->describeTrialComponent([
    'TrialComponentName' => '<string>', // REQUIRED
]);

Parameter Details

Members
TrialComponentName
Required: Yes
Type: string

The name of the trial component to describe.

Result Syntax

[
    'CreatedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'CreationTime' => <DateTime>,
    'DisplayName' => '<string>',
    'EndTime' => <DateTime>,
    'InputArtifacts' => [
        '<TrialComponentKey128>' => [
            'MediaType' => '<string>',
            'Value' => '<string>',
        ],
        // ...
    ],
    'LastModifiedBy' => [
        'DomainId' => '<string>',
        'IamIdentity' => [
            'Arn' => '<string>',
            'PrincipalId' => '<string>',
            'SourceIdentity' => '<string>',
        ],
        'UserProfileArn' => '<string>',
        'UserProfileName' => '<string>',
    ],
    'LastModifiedTime' => <DateTime>,
    'LineageGroupArn' => '<string>',
    'MetadataProperties' => [
        'CommitId' => '<string>',
        'GeneratedBy' => '<string>',
        'ProjectId' => '<string>',
        'Repository' => '<string>',
    ],
    'Metrics' => [
        [
            'Avg' => <float>,
            'Count' => <integer>,
            'Last' => <float>,
            'Max' => <float>,
            'MetricName' => '<string>',
            'Min' => <float>,
            'SourceArn' => '<string>',
            'StdDev' => <float>,
            'TimeStamp' => <DateTime>,
        ],
        // ...
    ],
    'OutputArtifacts' => [
        '<TrialComponentKey128>' => [
            'MediaType' => '<string>',
            'Value' => '<string>',
        ],
        // ...
    ],
    'Parameters' => [
        '<TrialComponentKey320>' => [
            'NumberValue' => <float>,
            'StringValue' => '<string>',
        ],
        // ...
    ],
    'Source' => [
        'SourceArn' => '<string>',
        'SourceType' => '<string>',
    ],
    'Sources' => [
        [
            'SourceArn' => '<string>',
            'SourceType' => '<string>',
        ],
        // ...
    ],
    'StartTime' => <DateTime>,
    'Status' => [
        'Message' => '<string>',
        'PrimaryStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
    ],
    'TrialComponentArn' => '<string>',
    'TrialComponentName' => '<string>',
]

Result Details

Members
CreatedBy
Type: UserContext structure

Who created the trial component.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component was created.

DisplayName
Type: string

The name of the component as displayed. If DisplayName isn't specified, TrialComponentName is displayed.

EndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component ended.

InputArtifacts
Type: Associative array of custom strings keys (TrialComponentKey128) to TrialComponentArtifact structures

The input artifacts of the component.

LastModifiedBy
Type: UserContext structure

Who last modified the component.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component was last modified.

LineageGroupArn
Type: string

The Amazon Resource Name (ARN) of the lineage group.

MetadataProperties
Type: MetadataProperties structure

Metadata properties of the tracking entity, trial, or trial component.

Metrics
Type: Array of TrialComponentMetricSummary structures

The metrics for the component.

OutputArtifacts
Type: Associative array of custom strings keys (TrialComponentKey128) to TrialComponentArtifact structures

The output artifacts of the component.

Parameters
Type: Associative array of custom strings keys (TrialComponentKey320) to TrialComponentParameterValue structures

The hyperparameters of the component.

Source
Type: TrialComponentSource structure

The Amazon Resource Name (ARN) of the source and, optionally, the job type.

Sources
Type: Array of TrialComponentSource structures

A list of ARNs and, if applicable, job types for multiple sources of an experiment run.

StartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component started.

Status
Type: TrialComponentStatus structure

The status of the component. States include:

  • InProgress

  • Completed

  • Failed

TrialComponentArn
Type: string

The Amazon Resource Name (ARN) of the trial component.

TrialComponentName
Type: string

The name of the trial component.

Errors

ResourceNotFound:

Resource being access is not found.

DescribeUserProfile

$result = $client->describeUserProfile([/* ... */]);
$promise = $client->describeUserProfileAsync([/* ... */]);

Describes a user profile. For more information, see CreateUserProfile.

Parameter Syntax

$result = $client->describeUserProfile([
    'DomainId' => '<string>', // REQUIRED
    'UserProfileName' => '<string>', // REQUIRED
]);

Parameter Details

Members
DomainId
Required: Yes
Type: string

The domain ID.

UserProfileName
Required: Yes
Type: string

The user profile name. This value is not case sensitive.

Result Syntax

[
    'CreationTime' => <DateTime>,
    'DomainId' => '<string>',
    'FailureReason' => '<string>',
    'HomeEfsFileSystemUid' => '<string>',
    'LastModifiedTime' => <DateTime>,
    'SingleSignOnUserIdentifier' => '<string>',
    'SingleSignOnUserValue' => '<string>',
    'Status' => 'Deleting|Failed|InService|Pending|Updating|Update_Failed|Delete_Failed',
    'UserProfileArn' => '<string>',
    'UserProfileName' => '<string>',
    'UserSettings' => [
        'AutoMountHomeEFS' => 'Enabled|Disabled|DefaultAsDomain',
        'CanvasAppSettings' => [
            'DirectDeploySettings' => [
                'Status' => 'ENABLED|DISABLED',
            ],
            'EmrServerlessSettings' => [
                'ExecutionRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'GenerativeAiSettings' => [
                'AmazonBedrockRoleArn' => '<string>',
            ],
            'IdentityProviderOAuthSettings' => [
                [
                    'DataSourceName' => 'SalesforceGenie|Snowflake',
                    'SecretArn' => '<string>',
                    'Status' => 'ENABLED|DISABLED',
                ],
                // ...
            ],
            'KendraSettings' => [
                'Status' => 'ENABLED|DISABLED',
            ],
            'ModelRegisterSettings' => [
                'CrossAccountModelRegisterRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'TimeSeriesForecastingSettings' => [
                'AmazonForecastRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'WorkspaceSettings' => [
                'S3ArtifactPath' => '<string>',
                'S3KmsKeyId' => '<string>',
            ],
        ],
        'CodeEditorAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                    'LifecycleManagement' => 'ENABLED|DISABLED',
                    'MaxIdleTimeoutInMinutes' => <integer>,
                    'MinIdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'BuiltInLifecycleConfigArn' => '<string>',
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>',
                    'ImageName' => '<string>',
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'CustomFileSystemConfigs' => [
            [
                'EFSFileSystemConfig' => [
                    'FileSystemId' => '<string>',
                    'FileSystemPath' => '<string>',
                ],
                'FSxLustreFileSystemConfig' => [
                    'FileSystemId' => '<string>',
                    'FileSystemPath' => '<string>',
                ],
            ],
            // ...
        ],
        'CustomPosixUserConfig' => [
            'Gid' => <integer>,
            'Uid' => <integer>,
        ],
        'DefaultLandingUri' => '<string>',
        'ExecutionRole' => '<string>',
        'JupyterLabAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                    'LifecycleManagement' => 'ENABLED|DISABLED',
                    'MaxIdleTimeoutInMinutes' => <integer>,
                    'MinIdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'BuiltInLifecycleConfigArn' => '<string>',
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>',
                ],
                // ...
            ],
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>',
                    'ImageName' => '<string>',
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'EmrSettings' => [
                'AssumableRoleArns' => ['<string>', ...],
                'ExecutionRoleArns' => ['<string>', ...],
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'JupyterServerAppSettings' => [
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>',
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'KernelGatewayAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>',
                    'ImageName' => '<string>',
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'RSessionAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>',
                    'ImageName' => '<string>',
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
        'RStudioServerProAppSettings' => [
            'AccessStatus' => 'ENABLED|DISABLED',
            'UserGroup' => 'R_STUDIO_ADMIN|R_STUDIO_USER',
        ],
        'SecurityGroups' => ['<string>', ...],
        'SharingSettings' => [
            'NotebookOutputOption' => 'Allowed|Disabled',
            'S3KmsKeyId' => '<string>',
            'S3OutputPath' => '<string>',
        ],
        'SpaceStorageSettings' => [
            'DefaultEbsStorageSettings' => [
                'DefaultEbsVolumeSizeInGb' => <integer>,
                'MaximumEbsVolumeSizeInGb' => <integer>,
            ],
        ],
        'StudioWebPortal' => 'ENABLED|DISABLED',
        'StudioWebPortalSettings' => [
            'HiddenAppTypes' => ['<string>', ...],
            'HiddenInstanceTypes' => ['<string>', ...],
            'HiddenMlTools' => ['<string>', ...],
            'HiddenSageMakerImageVersionAliases' => [
                [
                    'SageMakerImageName' => 'sagemaker_distribution',
                    'VersionAliases' => ['<string>', ...],
                ],
                // ...
            ],
        ],
        'TensorBoardAppSettings' => [
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
    ],
]

Result Details

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time.

DomainId
Type: string

The ID of the domain that contains the profile.

FailureReason
Type: string

The failure reason.

HomeEfsFileSystemUid
Type: string

The ID of the user's profile in the Amazon Elastic File System volume.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last modified time.

SingleSignOnUserIdentifier
Type: string

The IAM Identity Center user identifier.

SingleSignOnUserValue
Type: string

The IAM Identity Center user value.

Status
Type: string

The status.

UserProfileArn
Type: string

The user profile Amazon Resource Name (ARN).

UserProfileName
Type: string

The user profile name.

UserSettings
Type: UserSettings structure

A collection of settings.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

DescribeWorkforce

$result = $client->describeWorkforce([/* ... */]);
$promise = $client->describeWorkforceAsync([/* ... */]);

Lists private workforce information, including workforce name, Amazon Resource Name (ARN), and, if applicable, allowed IP address ranges (CIDRs). Allowable IP address ranges are the IP addresses that workers can use to access tasks.

This operation applies only to private workforces.

Parameter Syntax

$result = $client->describeWorkforce([
    'WorkforceName' => '<string>', // REQUIRED
]);

Parameter Details

Members
WorkforceName
Required: Yes
Type: string

The name of the private workforce whose access you want to restrict. WorkforceName is automatically set to default when a workforce is created and cannot be modified.

Result Syntax

[
    'Workforce' => [
        'CognitoConfig' => [
            'ClientId' => '<string>',
            'UserPool' => '<string>',
        ],
        'CreateDate' => <DateTime>,
        'FailureReason' => '<string>',
        'LastUpdatedDate' => <DateTime>,
        'OidcConfig' => [
            'AuthenticationRequestExtraParams' => ['<string>', ...],
            'AuthorizationEndpoint' => '<string>',
            'ClientId' => '<string>',
            'Issuer' => '<string>',
            'JwksUri' => '<string>',
            'LogoutEndpoint' => '<string>',
            'Scope' => '<string>',
            'TokenEndpoint' => '<string>',
            'UserInfoEndpoint' => '<string>',
        ],
        'SourceIpConfig' => [
            'Cidrs' => ['<string>', ...],
        ],
        'Status' => 'Initializing|Updating|Deleting|Failed|Active',
        'SubDomain' => '<string>',
        'WorkforceArn' => '<string>',
        'WorkforceName' => '<string>',
        'WorkforceVpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...],
            'Subnets' => ['<string>', ...],
            'VpcEndpointId' => '<string>',
            'VpcId' => '<string>',
        ],
    ],
]

Result Details

Members
Workforce
Required: Yes
Type: Workforce structure

A single private workforce, which is automatically created when you create your first private work team. You can create one private work force in each Amazon Web Services Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce.

Errors

There are no errors described for this operation.

DescribeWorkteam

$result = $client->describeWorkteam([/* ... */]);
$promise = $client->describeWorkteamAsync([/* ... */]);

Gets information about a specific work team. You can see information such as the creation date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).

Parameter Syntax

$result = $client->describeWorkteam([
    'WorkteamName' => '<string>', // REQUIRED
]);

Parameter Details

Members
WorkteamName
Required: Yes
Type: string

The name of the work team to return a description of.

Result Syntax

[
    'Workteam' => [
        'CreateDate' => <DateTime>,
        'Description' => '<string>',
        'LastUpdatedDate' => <DateTime>,
        'MemberDefinitions' => [
            [
                'CognitoMemberDefinition' => [
                    'ClientId' => '<string>',
                    'UserGroup' => '<string>',
                    'UserPool' => '<string>',
                ],
                'OidcMemberDefinition' => [
                    'Groups' => ['<string>', ...],
                ],
            ],
            // ...
        ],
        'NotificationConfiguration' => [
            'NotificationTopicArn' => '<string>',
        ],
        'ProductListingIds' => ['<string>', ...],
        'SubDomain' => '<string>',
        'WorkerAccessConfiguration' => [
            'S3Presign' => [
                'IamPolicyConstraints' => [
                    'SourceIp' => 'Enabled|Disabled',
                    'VpcSourceIp' => 'Enabled|Disabled',
                ],
            ],
        ],
        'WorkforceArn' => '<string>',
        'WorkteamArn' => '<string>',
        'WorkteamName' => '<string>',
    ],
]

Result Details

Members
Workteam
Required: Yes
Type: Workteam structure

A Workteam instance that contains information about the work team.

Errors

There are no errors described for this operation.

DisableSagemakerServicecatalogPortfolio

$result = $client->disableSagemakerServicecatalogPortfolio([/* ... */]);
$promise = $client->disableSagemakerServicecatalogPortfolioAsync([/* ... */]);

Disables using Service Catalog in SageMaker. Service Catalog is used to create SageMaker projects.

Parameter Syntax

$result = $client->disableSagemakerServicecatalogPortfolio([
]);

Parameter Details

Members

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

DisassociateTrialComponent

$result = $client->disassociateTrialComponent([/* ... */]);
$promise = $client->disassociateTrialComponentAsync([/* ... */]);

Disassociates a trial component from a trial. This doesn't effect other trials the component is associated with. Before you can delete a component, you must disassociate the component from all trials it is associated with. To associate a trial component with a trial, call the AssociateTrialComponent API.

To get a list of the trials a component is associated with, use the Search API. Specify ExperimentTrialComponent for the Resource parameter. The list appears in the response under Results.TrialComponent.Parents.

Parameter Syntax

$result = $client->disassociateTrialComponent([
    'TrialComponentName' => '<string>', // REQUIRED
    'TrialName' => '<string>', // REQUIRED
]);

Parameter Details

Members
TrialComponentName
Required: Yes
Type: string

The name of the component to disassociate from the trial.

TrialName
Required: Yes
Type: string

The name of the trial to disassociate from.

Result Syntax

[
    'TrialArn' => '<string>',
    'TrialComponentArn' => '<string>',
]

Result Details

Members
TrialArn
Type: string

The Amazon Resource Name (ARN) of the trial.

TrialComponentArn
Type: string

The Amazon Resource Name (ARN) of the trial component.

Errors

ResourceNotFound:

Resource being access is not found.

EnableSagemakerServicecatalogPortfolio

$result = $client->enableSagemakerServicecatalogPortfolio([/* ... */]);
$promise = $client->enableSagemakerServicecatalogPortfolioAsync([/* ... */]);

Enables using Service Catalog in SageMaker. Service Catalog is used to create SageMaker projects.

Parameter Syntax

$result = $client->enableSagemakerServicecatalogPortfolio([
]);

Parameter Details

Members

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

GetDeviceFleetReport

$result = $client->getDeviceFleetReport([/* ... */]);
$promise = $client->getDeviceFleetReportAsync([/* ... */]);

Describes a fleet.

Parameter Syntax

$result = $client->getDeviceFleetReport([
    'DeviceFleetName' => '<string>', // REQUIRED
]);

Parameter Details

Members
DeviceFleetName
Required: Yes
Type: string

The name of the fleet.

Result Syntax

[
    'AgentVersions' => [
        [
            'AgentCount' => <integer>,
            'Version' => '<string>',
        ],
        // ...
    ],
    'Description' => '<string>',
    'DeviceFleetArn' => '<string>',
    'DeviceFleetName' => '<string>',
    'DeviceStats' => [
        'ConnectedDeviceCount' => <integer>,
        'RegisteredDeviceCount' => <integer>,
    ],
    'ModelStats' => [
        [
            'ActiveDeviceCount' => <integer>,
            'ConnectedDeviceCount' => <integer>,
            'ModelName' => '<string>',
            'ModelVersion' => '<string>',
            'OfflineDeviceCount' => <integer>,
            'SamplingDeviceCount' => <integer>,
        ],
        // ...
    ],
    'OutputConfig' => [
        'KmsKeyId' => '<string>',
        'PresetDeploymentConfig' => '<string>',
        'PresetDeploymentType' => 'GreengrassV2Component',
        'S3OutputLocation' => '<string>',
    ],
    'ReportGenerated' => <DateTime>,
]

Result Details

Members
AgentVersions
Type: Array of AgentVersion structures

The versions of Edge Manager agent deployed on the fleet.

Description
Type: string

Description of the fleet.

DeviceFleetArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the device.

DeviceFleetName
Required: Yes
Type: string

The name of the fleet.

DeviceStats
Type: DeviceStats structure

Status of devices.

ModelStats
Type: Array of EdgeModelStat structures

Status of model on device.

OutputConfig
Type: EdgeOutputConfig structure

The output configuration for storing sample data collected by the fleet.

ReportGenerated
Type: timestamp (string|DateTime or anything parsable by strtotime)

Timestamp of when the report was generated.

Errors

There are no errors described for this operation.

GetLineageGroupPolicy

$result = $client->getLineageGroupPolicy([/* ... */]);
$promise = $client->getLineageGroupPolicyAsync([/* ... */]);

The resource policy for the lineage group.

Parameter Syntax

$result = $client->getLineageGroupPolicy([
    'LineageGroupName' => '<string>', // REQUIRED
]);

Parameter Details

Members
LineageGroupName
Required: Yes
Type: string

The name or Amazon Resource Name (ARN) of the lineage group.

Result Syntax

[
    'LineageGroupArn' => '<string>',
    'ResourcePolicy' => '<string>',
]

Result Details

Members
LineageGroupArn
Type: string

The Amazon Resource Name (ARN) of the lineage group.

ResourcePolicy
Type: string

The resource policy that gives access to the lineage group in another account.

Errors

ResourceNotFound:

Resource being access is not found.

GetModelPackageGroupPolicy

$result = $client->getModelPackageGroupPolicy([/* ... */]);
$promise = $client->getModelPackageGroupPolicyAsync([/* ... */]);

Gets a resource policy that manages access for a model group. For information about resource policies, see Identity-based policies and resource-based policies in the Amazon Web Services Identity and Access Management User Guide..

Parameter Syntax

$result = $client->getModelPackageGroupPolicy([
    'ModelPackageGroupName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ModelPackageGroupName
Required: Yes
Type: string

The name of the model group for which to get the resource policy.

Result Syntax

[
    'ResourcePolicy' => '<string>',
]

Result Details

Members
ResourcePolicy
Required: Yes
Type: string

The resource policy for the model group.

Errors

There are no errors described for this operation.

GetSagemakerServicecatalogPortfolioStatus

$result = $client->getSagemakerServicecatalogPortfolioStatus([/* ... */]);
$promise = $client->getSagemakerServicecatalogPortfolioStatusAsync([/* ... */]);

Gets the status of Service Catalog in SageMaker. Service Catalog is used to create SageMaker projects.

Parameter Syntax

$result = $client->getSagemakerServicecatalogPortfolioStatus([
]);

Parameter Details

Members

Result Syntax

[
    'Status' => 'Enabled|Disabled',
]

Result Details

Members
Status
Type: string

Whether Service Catalog is enabled or disabled in SageMaker.

Errors

There are no errors described for this operation.

GetScalingConfigurationRecommendation

$result = $client->getScalingConfigurationRecommendation([/* ... */]);
$promise = $client->getScalingConfigurationRecommendationAsync([/* ... */]);

Starts an Amazon SageMaker Inference Recommender autoscaling recommendation job. Returns recommendations for autoscaling policies that you can apply to your SageMaker endpoint.

Parameter Syntax

$result = $client->getScalingConfigurationRecommendation([
    'EndpointName' => '<string>',
    'InferenceRecommendationsJobName' => '<string>', // REQUIRED
    'RecommendationId' => '<string>',
    'ScalingPolicyObjective' => [
        'MaxInvocationsPerMinute' => <integer>,
        'MinInvocationsPerMinute' => <integer>,
    ],
    'TargetCpuUtilizationPerCore' => <integer>,
]);

Parameter Details

Members
EndpointName
Type: string

The name of an endpoint benchmarked during a previously completed inference recommendation job. This name should come from one of the recommendations returned by the job specified in the InferenceRecommendationsJobName field.

Specify either this field or the RecommendationId field.

InferenceRecommendationsJobName
Required: Yes
Type: string

The name of a previously completed Inference Recommender job.

RecommendationId
Type: string

The recommendation ID of a previously completed inference recommendation. This ID should come from one of the recommendations returned by the job specified in the InferenceRecommendationsJobName field.

Specify either this field or the EndpointName field.

ScalingPolicyObjective
Type: ScalingPolicyObjective structure

An object where you specify the anticipated traffic pattern for an endpoint.

TargetCpuUtilizationPerCore
Type: int

The percentage of how much utilization you want an instance to use before autoscaling. The default value is 50%.

Result Syntax

[
    'DynamicScalingConfiguration' => [
        'MaxCapacity' => <integer>,
        'MinCapacity' => <integer>,
        'ScaleInCooldown' => <integer>,
        'ScaleOutCooldown' => <integer>,
        'ScalingPolicies' => [
            [
                'TargetTracking' => [
                    'MetricSpecification' => [
                        'Customized' => [
                            'MetricName' => '<string>',
                            'Namespace' => '<string>',
                            'Statistic' => 'Average|Minimum|Maximum|SampleCount|Sum',
                        ],
                        'Predefined' => [
                            'PredefinedMetricType' => '<string>',
                        ],
                    ],
                    'TargetValue' => <float>,
                ],
            ],
            // ...
        ],
    ],
    'EndpointName' => '<string>',
    'InferenceRecommendationsJobName' => '<string>',
    'Metric' => [
        'InvocationsPerInstance' => <integer>,
        'ModelLatency' => <integer>,
    ],
    'RecommendationId' => '<string>',
    'ScalingPolicyObjective' => [
        'MaxInvocationsPerMinute' => <integer>,
        'MinInvocationsPerMinute' => <integer>,
    ],
    'TargetCpuUtilizationPerCore' => <integer>,
]

Result Details

Members
DynamicScalingConfiguration
Type: DynamicScalingConfiguration structure

An object with the recommended values for you to specify when creating an autoscaling policy.

EndpointName
Type: string

The name of an endpoint benchmarked during a previously completed Inference Recommender job.

InferenceRecommendationsJobName
Type: string

The name of a previously completed Inference Recommender job.

Metric
Type: ScalingPolicyMetric structure

An object with a list of metrics that were benchmarked during the previously completed Inference Recommender job.

RecommendationId
Type: string

The recommendation ID of a previously completed inference recommendation.

ScalingPolicyObjective
Type: ScalingPolicyObjective structure

An object representing the anticipated traffic pattern for an endpoint that you specified in the request.

TargetCpuUtilizationPerCore
Type: int

The percentage of how much utilization you want an instance to use before autoscaling, which you specified in the request. The default value is 50%.

Errors

ResourceNotFound:

Resource being access is not found.

GetSearchSuggestions

$result = $client->getSearchSuggestions([/* ... */]);
$promise = $client->getSearchSuggestionsAsync([/* ... */]);

An auto-complete API for the search functionality in the SageMaker console. It returns suggestions of possible matches for the property name to use in Search queries. Provides suggestions for HyperParameters, Tags, and Metrics.

Parameter Syntax

$result = $client->getSearchSuggestions([
    'Resource' => 'TrainingJob|Experiment|ExperimentTrial|ExperimentTrialComponent|Endpoint|Model|ModelPackage|ModelPackageGroup|Pipeline|PipelineExecution|FeatureGroup|FeatureMetadata|Image|ImageVersion|Project|HyperParameterTuningJob|ModelCard', // REQUIRED
    'SuggestionQuery' => [
        'PropertyNameQuery' => [
            'PropertyNameHint' => '<string>', // REQUIRED
        ],
    ],
]);

Parameter Details

Members
Resource
Required: Yes
Type: string

The name of the SageMaker resource to search for.

SuggestionQuery
Type: SuggestionQuery structure

Limits the property names that are included in the response.

Result Syntax

[
    'PropertyNameSuggestions' => [
        [
            'PropertyName' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
PropertyNameSuggestions
Type: Array of PropertyNameSuggestion structures

A list of property names for a Resource that match a SuggestionQuery.

Errors

There are no errors described for this operation.

ImportHubContent

$result = $client->importHubContent([/* ... */]);
$promise = $client->importHubContentAsync([/* ... */]);

Import hub content.

Parameter Syntax

$result = $client->importHubContent([
    'DocumentSchemaVersion' => '<string>', // REQUIRED
    'HubContentDescription' => '<string>',
    'HubContentDisplayName' => '<string>',
    'HubContentDocument' => '<string>', // REQUIRED
    'HubContentMarkdown' => '<string>',
    'HubContentName' => '<string>', // REQUIRED
    'HubContentSearchKeywords' => ['<string>', ...],
    'HubContentType' => 'Model|Notebook|ModelReference', // REQUIRED
    'HubContentVersion' => '<string>',
    'HubName' => '<string>', // REQUIRED
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
DocumentSchemaVersion
Required: Yes
Type: string

The version of the hub content schema to import.

HubContentDescription
Type: string

A description of the hub content to import.

HubContentDisplayName
Type: string

The display name of the hub content to import.

HubContentDocument
Required: Yes
Type: string

The hub content document that describes information about the hub content such as type, associated containers, scripts, and more.

HubContentMarkdown
Type: string

A string that provides a description of the hub content. This string can include links, tables, and standard markdown formating.

HubContentName
Required: Yes
Type: string

The name of the hub content to import.

HubContentSearchKeywords
Type: Array of strings

The searchable keywords of the hub content.

HubContentType
Required: Yes
Type: string

The type of hub content to import.

HubContentVersion
Type: string

The version of the hub content to import.

HubName
Required: Yes
Type: string

The name of the hub to import content into.

Tags
Type: Array of Tag structures

Any tags associated with the hub content.

Result Syntax

[
    'HubArn' => '<string>',
    'HubContentArn' => '<string>',
]

Result Details

Members
HubArn
Required: Yes
Type: string

The ARN of the hub that the content was imported into.

HubContentArn
Required: Yes
Type: string

The ARN of the hub content that was imported.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceNotFound:

Resource being access is not found.

ListActions

$result = $client->listActions([/* ... */]);
$promise = $client->listActionsAsync([/* ... */]);

Lists the actions in your account and their properties.

Parameter Syntax

$result = $client->listActions([
    'ActionType' => '<string>',
    'CreatedAfter' => <integer || string || DateTime>,
    'CreatedBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
    'SourceUri' => '<string>',
]);

Parameter Details

Members
ActionType
Type: string

A filter that returns only actions of the specified type.

CreatedAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only actions created on or after the specified time.

CreatedBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only actions created on or before the specified time.

MaxResults
Type: int

The maximum number of actions to return in the response. The default value is 10.

NextToken
Type: string

If the previous call to ListActions didn't return the full set of actions, the call returns a token for getting the next set of actions.

SortBy
Type: string

The property used to sort results. The default value is CreationTime.

SortOrder
Type: string

The sort order. The default value is Descending.

SourceUri
Type: string

A filter that returns only actions with the specified source URI.

Result Syntax

[
    'ActionSummaries' => [
        [
            'ActionArn' => '<string>',
            'ActionName' => '<string>',
            'ActionType' => '<string>',
            'CreationTime' => <DateTime>,
            'LastModifiedTime' => <DateTime>,
            'Source' => [
                'SourceId' => '<string>',
                'SourceType' => '<string>',
                'SourceUri' => '<string>',
            ],
            'Status' => 'Unknown|InProgress|Completed|Failed|Stopping|Stopped',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
ActionSummaries
Type: Array of ActionSummary structures

A list of actions and their properties.

NextToken
Type: string

A token for getting the next set of actions, if there are any.

Errors

ResourceNotFound:

Resource being access is not found.

ListAlgorithms

$result = $client->listAlgorithms([/* ... */]);
$promise = $client->listAlgorithmsAsync([/* ... */]);

Lists the machine learning algorithms that have been created.

Parameter Syntax

$result = $client->listAlgorithms([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only algorithms created after the specified time (timestamp).

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only algorithms created before the specified time (timestamp).

MaxResults
Type: int

The maximum number of algorithms to return in the response.

NameContains
Type: string

A string in the algorithm name. This filter returns only algorithms whose name contains the specified string.

NextToken
Type: string

If the response to a previous ListAlgorithms request was truncated, the response includes a NextToken. To retrieve the next set of algorithms, use the token in the next request.

SortBy
Type: string

The parameter by which to sort the results. The default is CreationTime.

SortOrder
Type: string

The sort order for the results. The default is Ascending.

Result Syntax

[
    'AlgorithmSummaryList' => [
        [
            'AlgorithmArn' => '<string>',
            'AlgorithmDescription' => '<string>',
            'AlgorithmName' => '<string>',
            'AlgorithmStatus' => 'Pending|InProgress|Completed|Failed|Deleting',
            'CreationTime' => <DateTime>,
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
AlgorithmSummaryList
Required: Yes
Type: Array of AlgorithmSummary structures

>An array of AlgorithmSummary objects, each of which lists an algorithm.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of algorithms, use it in the subsequent request.

Errors

There are no errors described for this operation.

ListAliases

$result = $client->listAliases([/* ... */]);
$promise = $client->listAliasesAsync([/* ... */]);

Lists the aliases of a specified image or image version.

Parameter Syntax

$result = $client->listAliases([
    'Alias' => '<string>',
    'ImageName' => '<string>', // REQUIRED
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'Version' => <integer>,
]);

Parameter Details

Members
Alias
Type: string

The alias of the image version.

ImageName
Required: Yes
Type: string

The name of the image.

MaxResults
Type: int

The maximum number of aliases to return.

NextToken
Type: string

If the previous call to ListAliases didn't return the full set of aliases, the call returns a token for retrieving the next set of aliases.

Version
Type: int

The version of the image. If image version is not specified, the aliases of all versions of the image are listed.

Result Syntax

[
    'NextToken' => '<string>',
    'SageMakerImageVersionAliases' => ['<string>', ...],
]

Result Details

Members
NextToken
Type: string

A token for getting the next set of aliases, if more aliases exist.

SageMakerImageVersionAliases
Type: Array of strings

A list of SageMaker AI image version aliases.

Errors

ResourceNotFound:

Resource being access is not found.

ListAppImageConfigs

$result = $client->listAppImageConfigs([/* ... */]);
$promise = $client->listAppImageConfigsAsync([/* ... */]);

Lists the AppImageConfigs in your account and their properties. The list can be filtered by creation time or modified time, and whether the AppImageConfig name contains a specified string.

Parameter Syntax

$result = $client->listAppImageConfigs([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'ModifiedTimeAfter' => <integer || string || DateTime>,
    'ModifiedTimeBefore' => <integer || string || DateTime>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'CreationTime|LastModifiedTime|Name',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only AppImageConfigs created on or after the specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only AppImageConfigs created on or before the specified time.

MaxResults
Type: int

The total number of items to return in the response. If the total number of items available is more than the value specified, a NextToken is provided in the response. To resume pagination, provide the NextToken value in the as part of a subsequent call. The default value is 10.

ModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only AppImageConfigs modified on or after the specified time.

ModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only AppImageConfigs modified on or before the specified time.

NameContains
Type: string

A filter that returns only AppImageConfigs whose name contains the specified string.

NextToken
Type: string

If the previous call to ListImages didn't return the full set of AppImageConfigs, the call returns a token for getting the next set of AppImageConfigs.

SortBy
Type: string

The property used to sort results. The default value is CreationTime.

SortOrder
Type: string

The sort order. The default value is Descending.

Result Syntax

[
    'AppImageConfigs' => [
        [
            'AppImageConfigArn' => '<string>',
            'AppImageConfigName' => '<string>',
            'CodeEditorAppImageConfig' => [
                'ContainerConfig' => [
                    'ContainerArguments' => ['<string>', ...],
                    'ContainerEntrypoint' => ['<string>', ...],
                    'ContainerEnvironmentVariables' => ['<string>', ...],
                ],
                'FileSystemConfig' => [
                    'DefaultGid' => <integer>,
                    'DefaultUid' => <integer>,
                    'MountPath' => '<string>',
                ],
            ],
            'CreationTime' => <DateTime>,
            'JupyterLabAppImageConfig' => [
                'ContainerConfig' => [
                    'ContainerArguments' => ['<string>', ...],
                    'ContainerEntrypoint' => ['<string>', ...],
                    'ContainerEnvironmentVariables' => ['<string>', ...],
                ],
                'FileSystemConfig' => [
                    'DefaultGid' => <integer>,
                    'DefaultUid' => <integer>,
                    'MountPath' => '<string>',
                ],
            ],
            'KernelGatewayImageConfig' => [
                'FileSystemConfig' => [
                    'DefaultGid' => <integer>,
                    'DefaultUid' => <integer>,
                    'MountPath' => '<string>',
                ],
                'KernelSpecs' => [
                    [
                        'DisplayName' => '<string>',
                        'Name' => '<string>',
                    ],
                    // ...
                ],
            ],
            'LastModifiedTime' => <DateTime>,
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
AppImageConfigs
Type: Array of AppImageConfigDetails structures

A list of AppImageConfigs and their properties.

NextToken
Type: string

A token for getting the next set of AppImageConfigs, if there are any.

Errors

There are no errors described for this operation.

ListApps

$result = $client->listApps([/* ... */]);
$promise = $client->listAppsAsync([/* ... */]);

Lists apps.

Parameter Syntax

$result = $client->listApps([
    'DomainIdEquals' => '<string>',
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'CreationTime',
    'SortOrder' => 'Ascending|Descending',
    'SpaceNameEquals' => '<string>',
    'UserProfileNameEquals' => '<string>',
]);

Parameter Details

Members
DomainIdEquals
Type: string

A parameter to search for the domain ID.

MaxResults
Type: int

This parameter defines the maximum number of results that can be return in a single response. The MaxResults parameter is an upper bound, not a target. If there are more results available than the value specified, a NextToken is provided in the response. The NextToken indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value for MaxResults is 10.

NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

SortBy
Type: string

The parameter by which to sort the results. The default is CreationTime.

SortOrder
Type: string

The sort order for the results. The default is Ascending.

SpaceNameEquals
Type: string

A parameter to search by space name. If UserProfileNameEquals is set, then this value cannot be set.

UserProfileNameEquals
Type: string

A parameter to search by user profile name. If SpaceNameEquals is set, then this value cannot be set.

Result Syntax

[
    'Apps' => [
        [
            'AppName' => '<string>',
            'AppType' => 'JupyterServer|KernelGateway|DetailedProfiler|TensorBoard|CodeEditor|JupyterLab|RStudioServerPro|RSessionGateway|Canvas',
            'CreationTime' => <DateTime>,
            'DomainId' => '<string>',
            'ResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'SpaceName' => '<string>',
            'Status' => 'Deleted|Deleting|Failed|InService|Pending',
            'UserProfileName' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
Apps
Type: Array of AppDetails structures

The list of apps.

NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

Errors

There are no errors described for this operation.

ListArtifacts

$result = $client->listArtifacts([/* ... */]);
$promise = $client->listArtifactsAsync([/* ... */]);

Lists the artifacts in your account and their properties.

Parameter Syntax

$result = $client->listArtifacts([
    'ArtifactType' => '<string>',
    'CreatedAfter' => <integer || string || DateTime>,
    'CreatedBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'CreationTime',
    'SortOrder' => 'Ascending|Descending',
    'SourceUri' => '<string>',
]);

Parameter Details

Members
ArtifactType
Type: string

A filter that returns only artifacts of the specified type.

CreatedAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only artifacts created on or after the specified time.

CreatedBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only artifacts created on or before the specified time.

MaxResults
Type: int

The maximum number of artifacts to return in the response. The default value is 10.

NextToken
Type: string

If the previous call to ListArtifacts didn't return the full set of artifacts, the call returns a token for getting the next set of artifacts.

SortBy
Type: string

The property used to sort results. The default value is CreationTime.

SortOrder
Type: string

The sort order. The default value is Descending.

SourceUri
Type: string

A filter that returns only artifacts with the specified source URI.

Result Syntax

[
    'ArtifactSummaries' => [
        [
            'ArtifactArn' => '<string>',
            'ArtifactName' => '<string>',
            'ArtifactType' => '<string>',
            'CreationTime' => <DateTime>,
            'LastModifiedTime' => <DateTime>,
            'Source' => [
                'SourceTypes' => [
                    [
                        'SourceIdType' => 'MD5Hash|S3ETag|S3Version|Custom',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
                'SourceUri' => '<string>',
            ],
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
ArtifactSummaries
Type: Array of ArtifactSummary structures

A list of artifacts and their properties.

NextToken
Type: string

A token for getting the next set of artifacts, if there are any.

Errors

ResourceNotFound:

Resource being access is not found.

ListAssociations

$result = $client->listAssociations([/* ... */]);
$promise = $client->listAssociationsAsync([/* ... */]);

Lists the associations in your account and their properties.

Parameter Syntax

$result = $client->listAssociations([
    'AssociationType' => 'ContributedTo|AssociatedWith|DerivedFrom|Produced|SameAs',
    'CreatedAfter' => <integer || string || DateTime>,
    'CreatedBefore' => <integer || string || DateTime>,
    'DestinationArn' => '<string>',
    'DestinationType' => '<string>',
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'SourceArn|DestinationArn|SourceType|DestinationType|CreationTime',
    'SortOrder' => 'Ascending|Descending',
    'SourceArn' => '<string>',
    'SourceType' => '<string>',
]);

Parameter Details

Members
AssociationType
Type: string

A filter that returns only associations of the specified type.

CreatedAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only associations created on or after the specified time.

CreatedBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only associations created on or before the specified time.

DestinationArn
Type: string

A filter that returns only associations with the specified destination Amazon Resource Name (ARN).

DestinationType
Type: string

A filter that returns only associations with the specified destination type.

MaxResults
Type: int

The maximum number of associations to return in the response. The default value is 10.

NextToken
Type: string

If the previous call to ListAssociations didn't return the full set of associations, the call returns a token for getting the next set of associations.

SortBy
Type: string

The property used to sort results. The default value is CreationTime.

SortOrder
Type: string

The sort order. The default value is Descending.

SourceArn
Type: string

A filter that returns only associations with the specified source ARN.

SourceType
Type: string

A filter that returns only associations with the specified source type.

Result Syntax

[
    'AssociationSummaries' => [
        [
            'AssociationType' => 'ContributedTo|AssociatedWith|DerivedFrom|Produced|SameAs',
            'CreatedBy' => [
                'DomainId' => '<string>',
                'IamIdentity' => [
                    'Arn' => '<string>',
                    'PrincipalId' => '<string>',
                    'SourceIdentity' => '<string>',
                ],
                'UserProfileArn' => '<string>',
                'UserProfileName' => '<string>',
            ],
            'CreationTime' => <DateTime>,
            'DestinationArn' => '<string>',
            'DestinationName' => '<string>',
            'DestinationType' => '<string>',
            'SourceArn' => '<string>',
            'SourceName' => '<string>',
            'SourceType' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
AssociationSummaries
Type: Array of AssociationSummary structures

A list of associations and their properties.

NextToken
Type: string

A token for getting the next set of associations, if there are any.

Errors

ResourceNotFound:

Resource being access is not found.

ListAutoMLJobs

$result = $client->listAutoMLJobs([/* ... */]);
$promise = $client->listAutoMLJobsAsync([/* ... */]);

Request a list of jobs.

Parameter Syntax

$result = $client->listAutoMLJobs([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'Completed|InProgress|Failed|Stopped|Stopping',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Request a list of jobs, using a filter for time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Request a list of jobs, using a filter for time.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Request a list of jobs, using a filter for time.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Request a list of jobs, using a filter for time.

MaxResults
Type: int

Request a list of jobs up to a specified limit.

NameContains
Type: string

Request a list of jobs, using a search filter for name.

NextToken
Type: string

If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.

SortBy
Type: string

The parameter by which to sort the results. The default is Name.

SortOrder
Type: string

The sort order for the results. The default is Descending.

StatusEquals
Type: string

Request a list of jobs, using a filter for status.

Result Syntax

[
    'AutoMLJobSummaries' => [
        [
            'AutoMLJobArn' => '<string>',
            'AutoMLJobName' => '<string>',
            'AutoMLJobSecondaryStatus' => 'Starting|MaxCandidatesReached|Failed|Stopped|MaxAutoMLJobRuntimeReached|Stopping|CandidateDefinitionsGenerated|Completed|ExplainabilityError|DeployingModel|ModelDeploymentError|GeneratingModelInsightsReport|ModelInsightsError|AnalyzingData|FeatureEngineering|ModelTuning|GeneratingExplainabilityReport|TrainingModels|PreTraining',
            'AutoMLJobStatus' => 'Completed|InProgress|Failed|Stopped|Stopping',
            'CreationTime' => <DateTime>,
            'EndTime' => <DateTime>,
            'FailureReason' => '<string>',
            'LastModifiedTime' => <DateTime>,
            'PartialFailureReasons' => [
                [
                    'PartialFailureMessage' => '<string>',
                ],
                // ...
            ],
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
AutoMLJobSummaries
Required: Yes
Type: Array of AutoMLJobSummary structures

Returns a summary list of jobs.

NextToken
Type: string

If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.

Errors

There are no errors described for this operation.

ListCandidatesForAutoMLJob

$result = $client->listCandidatesForAutoMLJob([/* ... */]);
$promise = $client->listCandidatesForAutoMLJobAsync([/* ... */]);

List the candidates created for the job.

Parameter Syntax

$result = $client->listCandidatesForAutoMLJob([
    'AutoMLJobName' => '<string>', // REQUIRED
    'CandidateNameEquals' => '<string>',
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'CreationTime|Status|FinalObjectiveMetricValue',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'Completed|InProgress|Failed|Stopped|Stopping',
]);

Parameter Details

Members
AutoMLJobName
Required: Yes
Type: string

List the candidates created for the job by providing the job's name.

CandidateNameEquals
Type: string

List the candidates for the job and filter by candidate name.

MaxResults
Type: int

List the job's candidates up to a specified limit.

NextToken
Type: string

If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.

SortBy
Type: string

The parameter by which to sort the results. The default is Descending.

SortOrder
Type: string

The sort order for the results. The default is Ascending.

StatusEquals
Type: string

List the candidates for the job and filter by status.

Result Syntax

[
    'Candidates' => [
        [
            'CandidateName' => '<string>',
            'CandidateProperties' => [
                'CandidateArtifactLocations' => [
                    'BacktestResults' => '<string>',
                    'Explainability' => '<string>',
                    'ModelInsights' => '<string>',
                ],
                'CandidateMetrics' => [
                    [
                        'MetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|BalancedAccuracy|R2|Recall|RecallMacro|Precision|PrecisionMacro|MAE|MAPE|MASE|WAPE|AverageWeightedQuantileLoss',
                        'Set' => 'Train|Validation|Test',
                        'StandardMetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|MAE|R2|BalancedAccuracy|Precision|PrecisionMacro|Recall|RecallMacro|LogLoss|InferenceLatency|MAPE|MASE|WAPE|AverageWeightedQuantileLoss|Rouge1|Rouge2|RougeL|RougeLSum|Perplexity|ValidationLoss|TrainingLoss',
                        'Value' => <float>,
                    ],
                    // ...
                ],
            ],
            'CandidateStatus' => 'Completed|InProgress|Failed|Stopped|Stopping',
            'CandidateSteps' => [
                [
                    'CandidateStepArn' => '<string>',
                    'CandidateStepName' => '<string>',
                    'CandidateStepType' => 'AWS::SageMaker::TrainingJob|AWS::SageMaker::TransformJob|AWS::SageMaker::ProcessingJob',
                ],
                // ...
            ],
            'CreationTime' => <DateTime>,
            'EndTime' => <DateTime>,
            'FailureReason' => '<string>',
            'FinalAutoMLJobObjectiveMetric' => [
                'MetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|BalancedAccuracy|R2|Recall|RecallMacro|Precision|PrecisionMacro|MAE|MAPE|MASE|WAPE|AverageWeightedQuantileLoss',
                'StandardMetricName' => 'Accuracy|MSE|F1|F1macro|AUC|RMSE|BalancedAccuracy|R2|Recall|RecallMacro|Precision|PrecisionMacro|MAE|MAPE|MASE|WAPE|AverageWeightedQuantileLoss',
                'Type' => 'Maximize|Minimize',
                'Value' => <float>,
            ],
            'InferenceContainerDefinitions' => [
                '<AutoMLProcessingUnit>' => [
                    [
                        'Environment' => ['<string>', ...],
                        'Image' => '<string>',
                        'ModelDataUrl' => '<string>',
                    ],
                    // ...
                ],
                // ...
            ],
            'InferenceContainers' => [
                [
                    'Environment' => ['<string>', ...],
                    'Image' => '<string>',
                    'ModelDataUrl' => '<string>',
                ],
                // ...
            ],
            'LastModifiedTime' => <DateTime>,
            'ObjectiveStatus' => 'Succeeded|Pending|Failed',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
Candidates
Required: Yes
Type: Array of AutoMLCandidate structures

Summaries about the AutoMLCandidates.

NextToken
Type: string

If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.

Errors

ResourceNotFound:

Resource being access is not found.

ListClusterNodes

$result = $client->listClusterNodes([/* ... */]);
$promise = $client->listClusterNodesAsync([/* ... */]);

Retrieves the list of instances (also called nodes interchangeably) in a SageMaker HyperPod cluster.

Parameter Syntax

$result = $client->listClusterNodes([
    'ClusterName' => '<string>', // REQUIRED
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'InstanceGroupNameContains' => '<string>',
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'CREATION_TIME|NAME',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
ClusterName
Required: Yes
Type: string

The string name or the Amazon Resource Name (ARN) of the SageMaker HyperPod cluster in which you want to retrieve the list of nodes.

CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns nodes in a SageMaker HyperPod cluster created after the specified time. Timestamps are formatted according to the ISO 8601 standard.

Acceptable formats include:

  • YYYY-MM-DDThh:mm:ss.sssTZD (UTC), for example, 2014-10-01T20:30:00.000Z

  • YYYY-MM-DDThh:mm:ss.sssTZD (with offset), for example, 2014-10-01T12:30:00.000-08:00

  • YYYY-MM-DD, for example, 2014-10-01

  • Unix time in seconds, for example, 1412195400. This is also referred to as Unix Epoch time and represents the number of seconds since midnight, January 1, 1970 UTC.

For more information about the timestamp format, see Timestamp in the Amazon Web Services Command Line Interface User Guide.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns nodes in a SageMaker HyperPod cluster created before the specified time. The acceptable formats are the same as the timestamp formats for CreationTimeAfter. For more information about the timestamp format, see Timestamp in the Amazon Web Services Command Line Interface User Guide.

InstanceGroupNameContains
Type: string

A filter that returns the instance groups whose name contain a specified string.

MaxResults
Type: int

The maximum number of nodes to return in the response.

NextToken
Type: string

If the result of the previous ListClusterNodes request was truncated, the response includes a NextToken. To retrieve the next set of cluster nodes, use the token in the next request.

SortBy
Type: string

The field by which to sort results. The default value is CREATION_TIME.

SortOrder
Type: string

The sort order for results. The default value is Ascending.

Result Syntax

[
    'ClusterNodeSummaries' => [
        [
            'InstanceGroupName' => '<string>',
            'InstanceId' => '<string>',
            'InstanceStatus' => [
                'Message' => '<string>',
                'Status' => 'Running|Failure|Pending|ShuttingDown|SystemUpdating|DeepHealthCheckInProgress',
            ],
            'InstanceType' => 'ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.c5n.large|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.gr6.4xlarge|ml.gr6.8xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.trn2.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge',
            'LaunchTime' => <DateTime>,
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
ClusterNodeSummaries
Required: Yes
Type: Array of ClusterNodeSummary structures

The summaries of listed instances in a SageMaker HyperPod cluster

NextToken
Required: Yes
Type: string

The next token specified for listing instances in a SageMaker HyperPod cluster.

Errors

ResourceNotFound:

Resource being access is not found.

ListClusterSchedulerConfigs

$result = $client->listClusterSchedulerConfigs([/* ... */]);
$promise = $client->listClusterSchedulerConfigsAsync([/* ... */]);

List the cluster policy configurations.

Parameter Syntax

$result = $client->listClusterSchedulerConfigs([
    'ClusterArn' => '<string>',
    'CreatedAfter' => <integer || string || DateTime>,
    'CreatedBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'Status' => 'Creating|CreateFailed|CreateRollbackFailed|Created|Updating|UpdateFailed|UpdateRollbackFailed|Updated|Deleting|DeleteFailed|DeleteRollbackFailed|Deleted',
]);

Parameter Details

Members
ClusterArn
Type: string

Filter for ARN of the cluster.

CreatedAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filter for after this creation time. The input for this parameter is a Unix timestamp. To convert a date and time into a Unix timestamp, see EpochConverter.

CreatedBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filter for before this creation time. The input for this parameter is a Unix timestamp. To convert a date and time into a Unix timestamp, see EpochConverter.

MaxResults
Type: int

The maximum number of cluster policies to list.

NameContains
Type: string

Filter for name containing this string.

NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

SortBy
Type: string

Filter for sorting the list by a given value. For example, sort by name, creation time, or status.

SortOrder
Type: string

The order of the list. By default, listed in Descending order according to by SortBy. To change the list order, you can specify SortOrder to be Ascending.

Status
Type: string

Filter for status.

Result Syntax

[
    'ClusterSchedulerConfigSummaries' => [
        [
            'ClusterArn' => '<string>',
            'ClusterSchedulerConfigArn' => '<string>',
            'ClusterSchedulerConfigId' => '<string>',
            'ClusterSchedulerConfigVersion' => <integer>,
            'CreationTime' => <DateTime>,
            'LastModifiedTime' => <DateTime>,
            'Name' => '<string>',
            'Status' => 'Creating|CreateFailed|CreateRollbackFailed|Created|Updating|UpdateFailed|UpdateRollbackFailed|Updated|Deleting|DeleteFailed|DeleteRollbackFailed|Deleted',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
ClusterSchedulerConfigSummaries
Type: Array of ClusterSchedulerConfigSummary structures

Summaries of the cluster policies.

NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

Errors

There are no errors described for this operation.

ListClusters

$result = $client->listClusters([/* ... */]);
$promise = $client->listClustersAsync([/* ... */]);

Retrieves the list of SageMaker HyperPod clusters.

Parameter Syntax

$result = $client->listClusters([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'CREATION_TIME|NAME',
    'SortOrder' => 'Ascending|Descending',
    'TrainingPlanArn' => '<string>',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Set a start time for the time range during which you want to list SageMaker HyperPod clusters. Timestamps are formatted according to the ISO 8601 standard.

Acceptable formats include:

  • YYYY-MM-DDThh:mm:ss.sssTZD (UTC), for example, 2014-10-01T20:30:00.000Z

  • YYYY-MM-DDThh:mm:ss.sssTZD (with offset), for example, 2014-10-01T12:30:00.000-08:00

  • YYYY-MM-DD, for example, 2014-10-01

  • Unix time in seconds, for example, 1412195400. This is also referred to as Unix Epoch time and represents the number of seconds since midnight, January 1, 1970 UTC.

For more information about the timestamp format, see Timestamp in the Amazon Web Services Command Line Interface User Guide.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Set an end time for the time range during which you want to list SageMaker HyperPod clusters. A filter that returns nodes in a SageMaker HyperPod cluster created before the specified time. The acceptable formats are the same as the timestamp formats for CreationTimeAfter. For more information about the timestamp format, see Timestamp in the Amazon Web Services Command Line Interface User Guide.

MaxResults
Type: int

Set the maximum number of SageMaker HyperPod clusters to list.

NameContains
Type: string

Set the maximum number of instances to print in the list.

NextToken
Type: string

Set the next token to retrieve the list of SageMaker HyperPod clusters.

SortBy
Type: string

The field by which to sort results. The default value is CREATION_TIME.

SortOrder
Type: string

The sort order for results. The default value is Ascending.

TrainingPlanArn
Type: string

The Amazon Resource Name (ARN); of the training plan to filter clusters by. For more information about reserving GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .

Result Syntax

[
    'ClusterSummaries' => [
        [
            'ClusterArn' => '<string>',
            'ClusterName' => '<string>',
            'ClusterStatus' => 'Creating|Deleting|Failed|InService|RollingBack|SystemUpdating|Updating',
            'CreationTime' => <DateTime>,
            'TrainingPlanArns' => ['<string>', ...],
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
ClusterSummaries
Required: Yes
Type: Array of ClusterSummary structures

The summaries of listed SageMaker HyperPod clusters.

NextToken
Required: Yes
Type: string

If the result of the previous ListClusters request was truncated, the response includes a NextToken. To retrieve the next set of clusters, use the token in the next request.

Errors

There are no errors described for this operation.

ListCodeRepositories

$result = $client->listCodeRepositories([/* ... */]);
$promise = $client->listCodeRepositoriesAsync([/* ... */]);

Gets a list of the Git repositories in your account.

Parameter Syntax

$result = $client->listCodeRepositories([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|LastModifiedTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only Git repositories that were created after the specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only Git repositories that were created before the specified time.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only Git repositories that were last modified after the specified time.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only Git repositories that were last modified before the specified time.

MaxResults
Type: int

The maximum number of Git repositories to return in the response.

NameContains
Type: string

A string in the Git repositories name. This filter returns only repositories whose name contains the specified string.

NextToken
Type: string

If the result of a ListCodeRepositoriesOutput request was truncated, the response includes a NextToken. To get the next set of Git repositories, use the token in the next request.

SortBy
Type: string

The field to sort results by. The default is Name.

SortOrder
Type: string

The sort order for results. The default is Ascending.

Result Syntax

[
    'CodeRepositorySummaryList' => [
        [
            'CodeRepositoryArn' => '<string>',
            'CodeRepositoryName' => '<string>',
            'CreationTime' => <DateTime>,
            'GitConfig' => [
                'Branch' => '<string>',
                'RepositoryUrl' => '<string>',
                'SecretArn' => '<string>',
            ],
            'LastModifiedTime' => <DateTime>,
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
CodeRepositorySummaryList
Required: Yes
Type: Array of CodeRepositorySummary structures

Gets a list of summaries of the Git repositories. Each summary specifies the following values for the repository:

  • Name

  • Amazon Resource Name (ARN)

  • Creation time

  • Last modified time

  • Configuration information, including the URL location of the repository and the ARN of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the repository.

NextToken
Type: string

If the result of a ListCodeRepositoriesOutput request was truncated, the response includes a NextToken. To get the next set of Git repositories, use the token in the next request.

Errors

There are no errors described for this operation.

ListCompilationJobs

$result = $client->listCompilationJobs([/* ... */]);
$promise = $client->listCompilationJobsAsync([/* ... */]);

Lists model compilation jobs that satisfy various filters.

To create a model compilation job, use CreateCompilationJob. To get information about a particular model compilation job you have created, use DescribeCompilationJob.

Parameter Syntax

$result = $client->listCompilationJobs([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'INPROGRESS|COMPLETED|FAILED|STARTING|STOPPING|STOPPED',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns the model compilation jobs that were created after a specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns the model compilation jobs that were created before a specified time.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns the model compilation jobs that were modified after a specified time.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns the model compilation jobs that were modified before a specified time.

MaxResults
Type: int

The maximum number of model compilation jobs to return in the response.

NameContains
Type: string

A filter that returns the model compilation jobs whose name contains a specified string.

NextToken
Type: string

If the result of the previous ListCompilationJobs request was truncated, the response includes a NextToken. To retrieve the next set of model compilation jobs, use the token in the next request.

SortBy
Type: string

The field by which to sort results. The default is CreationTime.

SortOrder
Type: string

The sort order for results. The default is Ascending.

StatusEquals
Type: string

A filter that retrieves model compilation jobs with a specific CompilationJobStatus status.

Result Syntax

[
    'CompilationJobSummaries' => [
        [
            'CompilationEndTime' => <DateTime>,
            'CompilationJobArn' => '<string>',
            'CompilationJobName' => '<string>',
            'CompilationJobStatus' => 'INPROGRESS|COMPLETED|FAILED|STARTING|STOPPING|STOPPED',
            'CompilationStartTime' => <DateTime>,
            'CompilationTargetDevice' => 'lambda|ml_m4|ml_m5|ml_m6g|ml_c4|ml_c5|ml_c6g|ml_p2|ml_p3|ml_g4dn|ml_inf1|ml_inf2|ml_trn1|ml_eia2|jetson_tx1|jetson_tx2|jetson_nano|jetson_xavier|rasp3b|rasp4b|imx8qm|deeplens|rk3399|rk3288|aisage|sbe_c|qcs605|qcs603|sitara_am57x|amba_cv2|amba_cv22|amba_cv25|x86_win32|x86_win64|coreml|jacinto_tda4vm|imx8mplus',
            'CompilationTargetPlatformAccelerator' => 'INTEL_GRAPHICS|MALI|NVIDIA|NNA',
            'CompilationTargetPlatformArch' => 'X86_64|X86|ARM64|ARM_EABI|ARM_EABIHF',
            'CompilationTargetPlatformOs' => 'ANDROID|LINUX',
            'CreationTime' => <DateTime>,
            'LastModifiedTime' => <DateTime>,
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
CompilationJobSummaries
Required: Yes
Type: Array of CompilationJobSummary structures

An array of CompilationJobSummary objects, each describing a model compilation job.

NextToken
Type: string

If the response is truncated, Amazon SageMaker AI returns this NextToken. To retrieve the next set of model compilation jobs, use this token in the next request.

Errors

There are no errors described for this operation.

ListComputeQuotas

$result = $client->listComputeQuotas([/* ... */]);
$promise = $client->listComputeQuotasAsync([/* ... */]);

List the resource allocation definitions.

Parameter Syntax

$result = $client->listComputeQuotas([
    'ClusterArn' => '<string>',
    'CreatedAfter' => <integer || string || DateTime>,
    'CreatedBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|Status|ClusterArn',
    'SortOrder' => 'Ascending|Descending',
    'Status' => 'Creating|CreateFailed|CreateRollbackFailed|Created|Updating|UpdateFailed|UpdateRollbackFailed|Updated|Deleting|DeleteFailed|DeleteRollbackFailed|Deleted',
]);

Parameter Details

Members
ClusterArn
Type: string

Filter for ARN of the cluster.

CreatedAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filter for after this creation time. The input for this parameter is a Unix timestamp. To convert a date and time into a Unix timestamp, see EpochConverter.

CreatedBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filter for before this creation time. The input for this parameter is a Unix timestamp. To convert a date and time into a Unix timestamp, see EpochConverter.

MaxResults
Type: int

The maximum number of compute allocation definitions to list.

NameContains
Type: string

Filter for name containing this string.

NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

SortBy
Type: string

Filter for sorting the list by a given value. For example, sort by name, creation time, or status.

SortOrder
Type: string

The order of the list. By default, listed in Descending order according to by SortBy. To change the list order, you can specify SortOrder to be Ascending.

Status
Type: string

Filter for status.

Result Syntax

[
    'ComputeQuotaSummaries' => [
        [
            'ActivationState' => 'Enabled|Disabled',
            'ClusterArn' => '<string>',
            'ComputeQuotaArn' => '<string>',
            'ComputeQuotaConfig' => [
                'ComputeQuotaResources' => [
                    [
                        'Count' => <integer>,
                        'InstanceType' => 'ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.c5n.large|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.gr6.4xlarge|ml.gr6.8xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.trn2.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge',
                    ],
                    // ...
                ],
                'PreemptTeamTasks' => 'Never|LowerPriority',
                'ResourceSharingConfig' => [
                    'BorrowLimit' => <integer>,
                    'Strategy' => 'Lend|DontLend|LendAndBorrow',
                ],
            ],
            'ComputeQuotaId' => '<string>',
            'ComputeQuotaTarget' => [
                'FairShareWeight' => <integer>,
                'TeamName' => '<string>',
            ],
            'ComputeQuotaVersion' => <integer>,
            'CreationTime' => <DateTime>,
            'LastModifiedTime' => <DateTime>,
            'Name' => '<string>',
            'Status' => 'Creating|CreateFailed|CreateRollbackFailed|Created|Updating|UpdateFailed|UpdateRollbackFailed|Updated|Deleting|DeleteFailed|DeleteRollbackFailed|Deleted',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
ComputeQuotaSummaries
Type: Array of ComputeQuotaSummary structures

Summaries of the compute allocation definitions.

NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

Errors

There are no errors described for this operation.

ListContexts

$result = $client->listContexts([/* ... */]);
$promise = $client->listContextsAsync([/* ... */]);

Lists the contexts in your account and their properties.

Parameter Syntax

$result = $client->listContexts([
    'ContextType' => '<string>',
    'CreatedAfter' => <integer || string || DateTime>,
    'CreatedBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
    'SourceUri' => '<string>',
]);

Parameter Details

Members
ContextType
Type: string

A filter that returns only contexts of the specified type.

CreatedAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only contexts created on or after the specified time.

CreatedBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only contexts created on or before the specified time.

MaxResults
Type: int

The maximum number of contexts to return in the response. The default value is 10.

NextToken
Type: string

If the previous call to ListContexts didn't return the full set of contexts, the call returns a token for getting the next set of contexts.

SortBy
Type: string

The property used to sort results. The default value is CreationTime.

SortOrder
Type: string

The sort order. The default value is Descending.

SourceUri
Type: string

A filter that returns only contexts with the specified source URI.

Result Syntax

[
    'ContextSummaries' => [
        [
            'ContextArn' => '<string>',
            'ContextName' => '<string>',
            'ContextType' => '<string>',
            'CreationTime' => <DateTime>,
            'LastModifiedTime' => <DateTime>,
            'Source' => [
                'SourceId' => '<string>',
                'SourceType' => '<string>',
                'SourceUri' => '<string>',
            ],
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
ContextSummaries
Type: Array of ContextSummary structures

A list of contexts and their properties.

NextToken
Type: string

A token for getting the next set of contexts, if there are any.

Errors

ResourceNotFound:

Resource being access is not found.

ListDataQualityJobDefinitions

$result = $client->listDataQualityJobDefinitions([/* ... */]);
$promise = $client->listDataQualityJobDefinitionsAsync([/* ... */]);

Lists the data quality job definitions in your account.

Parameter Syntax

$result = $client->listDataQualityJobDefinitions([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'EndpointName' => '<string>',
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only data quality monitoring job definitions created after the specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only data quality monitoring job definitions created before the specified time.

EndpointName
Type: string

A filter that lists the data quality job definitions associated with the specified endpoint.

MaxResults
Type: int

The maximum number of data quality monitoring job definitions to return in the response.

NameContains
Type: string

A string in the data quality monitoring job definition name. This filter returns only data quality monitoring job definitions whose name contains the specified string.

NextToken
Type: string

If the result of the previous ListDataQualityJobDefinitions request was truncated, the response includes a NextToken. To retrieve the next set of transform jobs, use the token in the next request.>

SortBy
Type: string

The field to sort results by. The default is CreationTime.

SortOrder
Type: string

Whether to sort the results in Ascending or Descending order. The default is Descending.

Result Syntax

[
    'JobDefinitionSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'EndpointName' => '<string>',
            'MonitoringJobDefinitionArn' => '<string>',
            'MonitoringJobDefinitionName' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
JobDefinitionSummaries
Required: Yes
Type: Array of MonitoringJobDefinitionSummary structures

A list of data quality monitoring job definitions.

NextToken
Type: string

If the result of the previous ListDataQualityJobDefinitions request was truncated, the response includes a NextToken. To retrieve the next set of data quality monitoring job definitions, use the token in the next request.

Errors

There are no errors described for this operation.

ListDeviceFleets

$result = $client->listDeviceFleets([/* ... */]);
$promise = $client->listDeviceFleetsAsync([/* ... */]);

Returns a list of devices in the fleet.

Parameter Syntax

$result = $client->listDeviceFleets([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'NAME|CREATION_TIME|LAST_MODIFIED_TIME',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filter fleets where packaging job was created after specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filter fleets where the edge packaging job was created before specified time.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Select fleets where the job was updated after X

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Select fleets where the job was updated before X

MaxResults
Type: int

The maximum number of results to select.

NameContains
Type: string

Filter for fleets containing this name in their fleet device name.

NextToken
Type: string

The response from the last list when returning a list large enough to need tokening.

SortBy
Type: string

The column to sort by.

SortOrder
Type: string

What direction to sort in.

Result Syntax

[
    'DeviceFleetSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'DeviceFleetArn' => '<string>',
            'DeviceFleetName' => '<string>',
            'LastModifiedTime' => <DateTime>,
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
DeviceFleetSummaries
Required: Yes
Type: Array of DeviceFleetSummary structures

Summary of the device fleet.

NextToken
Type: string

The response from the last list when returning a list large enough to need tokening.

Errors

There are no errors described for this operation.

ListDevices

$result = $client->listDevices([/* ... */]);
$promise = $client->listDevicesAsync([/* ... */]);

A list of devices.

Parameter Syntax

$result = $client->listDevices([
    'DeviceFleetName' => '<string>',
    'LatestHeartbeatAfter' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'ModelName' => '<string>',
    'NextToken' => '<string>',
]);

Parameter Details

Members
DeviceFleetName
Type: string

Filter for fleets containing this name in their device fleet name.

LatestHeartbeatAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Select fleets where the job was updated after X

MaxResults
Type: int

Maximum number of results to select.

ModelName
Type: string

A filter that searches devices that contains this name in any of their models.

NextToken
Type: string

The response from the last list when returning a list large enough to need tokening.

Result Syntax

[
    'DeviceSummaries' => [
        [
            'AgentVersion' => '<string>',
            'Description' => '<string>',
            'DeviceArn' => '<string>',
            'DeviceFleetName' => '<string>',
            'DeviceName' => '<string>',
            'IotThingName' => '<string>',
            'LatestHeartbeat' => <DateTime>,
            'Models' => [
                [
                    'ModelName' => '<string>',
                    'ModelVersion' => '<string>',
                ],
                // ...
            ],
            'RegistrationTime' => <DateTime>,
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
DeviceSummaries
Required: Yes
Type: Array of DeviceSummary structures

Summary of devices.

NextToken
Type: string

The response from the last list when returning a list large enough to need tokening.

Errors

There are no errors described for this operation.

ListDomains

$result = $client->listDomains([/* ... */]);
$promise = $client->listDomainsAsync([/* ... */]);

Lists the domains.

Parameter Syntax

$result = $client->listDomains([
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
]);

Parameter Details

Members
MaxResults
Type: int

This parameter defines the maximum number of results that can be return in a single response. The MaxResults parameter is an upper bound, not a target. If there are more results available than the value specified, a NextToken is provided in the response. The NextToken indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value for MaxResults is 10.

NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

Result Syntax

[
    'Domains' => [
        [
            'CreationTime' => <DateTime>,
            'DomainArn' => '<string>',
            'DomainId' => '<string>',
            'DomainName' => '<string>',
            'LastModifiedTime' => <DateTime>,
            'Status' => 'Deleting|Failed|InService|Pending|Updating|Update_Failed|Delete_Failed',
            'Url' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
Domains
Type: Array of DomainDetails structures

The list of domains.

NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

Errors

There are no errors described for this operation.

ListEdgeDeploymentPlans

$result = $client->listEdgeDeploymentPlans([/* ... */]);
$promise = $client->listEdgeDeploymentPlansAsync([/* ... */]);

Lists all edge deployment plans.

Parameter Syntax

$result = $client->listEdgeDeploymentPlans([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'DeviceFleetNameContains' => '<string>',
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'NAME|DEVICE_FLEET_NAME|CREATION_TIME|LAST_MODIFIED_TIME',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Selects edge deployment plans created after this time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Selects edge deployment plans created before this time.

DeviceFleetNameContains
Type: string

Selects edge deployment plans with a device fleet name containing this name.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Selects edge deployment plans that were last updated after this time.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Selects edge deployment plans that were last updated before this time.

MaxResults
Type: int

The maximum number of results to select (50 by default).

NameContains
Type: string

Selects edge deployment plans with names containing this name.

NextToken
Type: string

The response from the last list when returning a list large enough to need tokening.

SortBy
Type: string

The column by which to sort the edge deployment plans. Can be one of NAME, DEVICEFLEETNAME, CREATIONTIME, LASTMODIFIEDTIME.

SortOrder
Type: string

The direction of the sorting (ascending or descending).

Result Syntax

[
    'EdgeDeploymentPlanSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'DeviceFleetName' => '<string>',
            'EdgeDeploymentFailed' => <integer>,
            'EdgeDeploymentPending' => <integer>,
            'EdgeDeploymentPlanArn' => '<string>',
            'EdgeDeploymentPlanName' => '<string>',
            'EdgeDeploymentSuccess' => <integer>,
            'LastModifiedTime' => <DateTime>,
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
EdgeDeploymentPlanSummaries
Required: Yes
Type: Array of EdgeDeploymentPlanSummary structures

List of summaries of edge deployment plans.

NextToken
Type: string

The token to use when calling the next page of results.

Errors

There are no errors described for this operation.

ListEdgePackagingJobs

$result = $client->listEdgePackagingJobs([/* ... */]);
$promise = $client->listEdgePackagingJobsAsync([/* ... */]);

Returns a list of edge packaging jobs.

Parameter Syntax

$result = $client->listEdgePackagingJobs([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'ModelNameContains' => '<string>',
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'NAME|MODEL_NAME|CREATION_TIME|LAST_MODIFIED_TIME|STATUS',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'STARTING|INPROGRESS|COMPLETED|FAILED|STOPPING|STOPPED',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Select jobs where the job was created after specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Select jobs where the job was created before specified time.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Select jobs where the job was updated after specified time.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Select jobs where the job was updated before specified time.

MaxResults
Type: int

Maximum number of results to select.

ModelNameContains
Type: string

Filter for jobs where the model name contains this string.

NameContains
Type: string

Filter for jobs containing this name in their packaging job name.

NextToken
Type: string

The response from the last list when returning a list large enough to need tokening.

SortBy
Type: string

Use to specify what column to sort by.

SortOrder
Type: string

What direction to sort by.

StatusEquals
Type: string

The job status to filter for.

Result Syntax

[
    'EdgePackagingJobSummaries' => [
        [
            'CompilationJobName' => '<string>',
            'CreationTime' => <DateTime>,
            'EdgePackagingJobArn' => '<string>',
            'EdgePackagingJobName' => '<string>',
            'EdgePackagingJobStatus' => 'STARTING|INPROGRESS|COMPLETED|FAILED|STOPPING|STOPPED',
            'LastModifiedTime' => <DateTime>,
            'ModelName' => '<string>',
            'ModelVersion' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
EdgePackagingJobSummaries
Required: Yes
Type: Array of EdgePackagingJobSummary structures

Summaries of edge packaging jobs.

NextToken
Type: string

Token to use when calling the next page of results.

Errors

There are no errors described for this operation.

ListEndpointConfigs

$result = $client->listEndpointConfigs([/* ... */]);
$promise = $client->listEndpointConfigsAsync([/* ... */]);

Lists endpoint configurations.

Parameter Syntax

$result = $client->listEndpointConfigs([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only endpoint configurations with a creation time greater than or equal to the specified time (timestamp).

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only endpoint configurations created before the specified time (timestamp).

MaxResults
Type: int

The maximum number of training jobs to return in the response.

NameContains
Type: string

A string in the endpoint configuration name. This filter returns only endpoint configurations whose name contains the specified string.

NextToken
Type: string

If the result of the previous ListEndpointConfig request was truncated, the response includes a NextToken. To retrieve the next set of endpoint configurations, use the token in the next request.

SortBy
Type: string

The field to sort results by. The default is CreationTime.

SortOrder
Type: string

The sort order for results. The default is Descending.

Result Syntax

[
    'EndpointConfigs' => [
        [
            'CreationTime' => <DateTime>,
            'EndpointConfigArn' => '<string>',
            'EndpointConfigName' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
EndpointConfigs
Required: Yes
Type: Array of EndpointConfigSummary structures

An array of endpoint configurations.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of endpoint configurations, use it in the subsequent request

Errors

There are no errors described for this operation.

ListEndpoints

$result = $client->listEndpoints([/* ... */]);
$promise = $client->listEndpointsAsync([/* ... */]);

Lists endpoints.

Parameter Syntax

$result = $client->listEndpoints([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'OutOfService|Creating|Updating|SystemUpdating|RollingBack|InService|Deleting|Failed|UpdateRollbackFailed',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only endpoints with a creation time greater than or equal to the specified time (timestamp).

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only endpoints that were created before the specified time (timestamp).

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only endpoints that were modified after the specified timestamp.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only endpoints that were modified before the specified timestamp.

MaxResults
Type: int

The maximum number of endpoints to return in the response. This value defaults to 10.

NameContains
Type: string

A string in endpoint names. This filter returns only endpoints whose name contains the specified string.

NextToken
Type: string

If the result of a ListEndpoints request was truncated, the response includes a NextToken. To retrieve the next set of endpoints, use the token in the next request.

SortBy
Type: string

Sorts the list of results. The default is CreationTime.

SortOrder
Type: string

The sort order for results. The default is Descending.

StatusEquals
Type: string

A filter that returns only endpoints with the specified status.

Result Syntax

[
    'Endpoints' => [
        [
            'CreationTime' => <DateTime>,
            'EndpointArn' => '<string>',
            'EndpointName' => '<string>',
            'EndpointStatus' => 'OutOfService|Creating|Updating|SystemUpdating|RollingBack|InService|Deleting|Failed|UpdateRollbackFailed',
            'LastModifiedTime' => <DateTime>,
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
Endpoints
Required: Yes
Type: Array of EndpointSummary structures

An array or endpoint objects.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request.

Errors

There are no errors described for this operation.

ListExperiments

$result = $client->listExperiments([/* ... */]);
$promise = $client->listExperimentsAsync([/* ... */]);

Lists all the experiments in your account. The list can be filtered to show only experiments that were created in a specific time range. The list can be sorted by experiment name or creation time.

Parameter Syntax

$result = $client->listExperiments([
    'CreatedAfter' => <integer || string || DateTime>,
    'CreatedBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreatedAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only experiments created after the specified time.

CreatedBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only experiments created before the specified time.

MaxResults
Type: int

The maximum number of experiments to return in the response. The default value is 10.

NextToken
Type: string

If the previous call to ListExperiments didn't return the full set of experiments, the call returns a token for getting the next set of experiments.

SortBy
Type: string

The property used to sort results. The default value is CreationTime.

SortOrder
Type: string

The sort order. The default value is Descending.

Result Syntax

[
    'ExperimentSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'DisplayName' => '<string>',
            'ExperimentArn' => '<string>',
            'ExperimentName' => '<string>',
            'ExperimentSource' => [
                'SourceArn' => '<string>',
                'SourceType' => '<string>',
            ],
            'LastModifiedTime' => <DateTime>,
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
ExperimentSummaries
Type: Array of ExperimentSummary structures

A list of the summaries of your experiments.

NextToken
Type: string

A token for getting the next set of experiments, if there are any.

Errors

There are no errors described for this operation.

ListFeatureGroups

$result = $client->listFeatureGroups([/* ... */]);
$promise = $client->listFeatureGroupsAsync([/* ... */]);

List FeatureGroups based on given filter and order.

Parameter Syntax

$result = $client->listFeatureGroups([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'FeatureGroupStatusEquals' => 'Creating|Created|CreateFailed|Deleting|DeleteFailed',
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'OfflineStoreStatusEquals' => 'Active|Blocked|Disabled',
    'SortBy' => 'Name|FeatureGroupStatus|OfflineStoreStatus|CreationTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Use this parameter to search for FeatureGroupss created after a specific date and time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Use this parameter to search for FeatureGroupss created before a specific date and time.

FeatureGroupStatusEquals
Type: string

A FeatureGroup status. Filters by FeatureGroup status.

MaxResults
Type: int

The maximum number of results returned by ListFeatureGroups.

NameContains
Type: string

A string that partially matches one or more FeatureGroups names. Filters FeatureGroups by name.

NextToken
Type: string

A token to resume pagination of ListFeatureGroups results.

OfflineStoreStatusEquals
Type: string

An OfflineStore status. Filters by OfflineStore status.

SortBy
Type: string

The value on which the feature group list is sorted.

SortOrder
Type: string

The order in which feature groups are listed.

Result Syntax

[
    'FeatureGroupSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'FeatureGroupArn' => '<string>',
            'FeatureGroupName' => '<string>',
            'FeatureGroupStatus' => 'Creating|Created|CreateFailed|Deleting|DeleteFailed',
            'OfflineStoreStatus' => [
                'BlockedReason' => '<string>',
                'Status' => 'Active|Blocked|Disabled',
            ],
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
FeatureGroupSummaries
Required: Yes
Type: Array of FeatureGroupSummary structures

A summary of feature groups.

NextToken
Type: string

A token to resume pagination of ListFeatureGroups results.

Errors

There are no errors described for this operation.

ListFlowDefinitions

$result = $client->listFlowDefinitions([/* ... */]);
$promise = $client->listFlowDefinitionsAsync([/* ... */]);

Returns information about the flow definitions in your account.

Parameter Syntax

$result = $client->listFlowDefinitions([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only flow definitions with a creation time greater than or equal to the specified timestamp.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only flow definitions that were created before the specified timestamp.

MaxResults
Type: int

The total number of items to return. If the total number of available items is more than the value specified in MaxResults, then a NextToken will be provided in the output that you can use to resume pagination.

NextToken
Type: string

A token to resume pagination.

SortOrder
Type: string

An optional value that specifies whether you want the results sorted in Ascending or Descending order.

Result Syntax

[
    'FlowDefinitionSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'FailureReason' => '<string>',
            'FlowDefinitionArn' => '<string>',
            'FlowDefinitionName' => '<string>',
            'FlowDefinitionStatus' => 'Initializing|Active|Failed|Deleting',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
FlowDefinitionSummaries
Required: Yes
Type: Array of FlowDefinitionSummary structures

An array of objects describing the flow definitions.

NextToken
Type: string

A token to resume pagination.

Errors

There are no errors described for this operation.

ListHubContentVersions

$result = $client->listHubContentVersions([/* ... */]);
$promise = $client->listHubContentVersionsAsync([/* ... */]);

List hub content versions.

Parameter Syntax

$result = $client->listHubContentVersions([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'HubContentName' => '<string>', // REQUIRED
    'HubContentType' => 'Model|Notebook|ModelReference', // REQUIRED
    'HubName' => '<string>', // REQUIRED
    'MaxResults' => <integer>,
    'MaxSchemaVersion' => '<string>',
    'MinVersion' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'HubContentName|CreationTime|HubContentStatus',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Only list hub content versions that were created after the time specified.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Only list hub content versions that were created before the time specified.

HubContentName
Required: Yes
Type: string

The name of the hub content.

HubContentType
Required: Yes
Type: string

The type of hub content to list versions of.

HubName
Required: Yes
Type: string

The name of the hub to list the content versions of.

MaxResults
Type: int

The maximum number of hub content versions to list.

MaxSchemaVersion
Type: string

The upper bound of the hub content schema version.

MinVersion
Type: string

The lower bound of the hub content versions to list.

NextToken
Type: string

If the response to a previous ListHubContentVersions request was truncated, the response includes a NextToken. To retrieve the next set of hub content versions, use the token in the next request.

SortBy
Type: string

Sort hub content versions by either name or creation time.

SortOrder
Type: string

Sort hub content versions by ascending or descending order.

Result Syntax

[
    'HubContentSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'DocumentSchemaVersion' => '<string>',
            'HubContentArn' => '<string>',
            'HubContentDescription' => '<string>',
            'HubContentDisplayName' => '<string>',
            'HubContentName' => '<string>',
            'HubContentSearchKeywords' => ['<string>', ...],
            'HubContentStatus' => 'Available|Importing|Deleting|ImportFailed|DeleteFailed',
            'HubContentType' => 'Model|Notebook|ModelReference',
            'HubContentVersion' => '<string>',
            'OriginalCreationTime' => <DateTime>,
            'SageMakerPublicHubContentArn' => '<string>',
            'SupportStatus' => 'Supported|Deprecated',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
HubContentSummaries
Required: Yes
Type: Array of HubContentInfo structures

The summaries of the listed hub content versions.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of hub content versions, use it in the subsequent request.

Errors

ResourceNotFound:

Resource being access is not found.

ListHubContents

$result = $client->listHubContents([/* ... */]);
$promise = $client->listHubContentsAsync([/* ... */]);

List the contents of a hub.

Parameter Syntax

$result = $client->listHubContents([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'HubContentType' => 'Model|Notebook|ModelReference', // REQUIRED
    'HubName' => '<string>', // REQUIRED
    'MaxResults' => <integer>,
    'MaxSchemaVersion' => '<string>',
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'HubContentName|CreationTime|HubContentStatus',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Only list hub content that was created after the time specified.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Only list hub content that was created before the time specified.

HubContentType
Required: Yes
Type: string

The type of hub content to list.

HubName
Required: Yes
Type: string

The name of the hub to list the contents of.

MaxResults
Type: int

The maximum amount of hub content to list.

MaxSchemaVersion
Type: string

The upper bound of the hub content schema verion.

NameContains
Type: string

Only list hub content if the name contains the specified string.

NextToken
Type: string

If the response to a previous ListHubContents request was truncated, the response includes a NextToken. To retrieve the next set of hub content, use the token in the next request.

SortBy
Type: string

Sort hub content versions by either name or creation time.

SortOrder
Type: string

Sort hubs by ascending or descending order.

Result Syntax

[
    'HubContentSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'DocumentSchemaVersion' => '<string>',
            'HubContentArn' => '<string>',
            'HubContentDescription' => '<string>',
            'HubContentDisplayName' => '<string>',
            'HubContentName' => '<string>',
            'HubContentSearchKeywords' => ['<string>', ...],
            'HubContentStatus' => 'Available|Importing|Deleting|ImportFailed|DeleteFailed',
            'HubContentType' => 'Model|Notebook|ModelReference',
            'HubContentVersion' => '<string>',
            'OriginalCreationTime' => <DateTime>,
            'SageMakerPublicHubContentArn' => '<string>',
            'SupportStatus' => 'Supported|Deprecated',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
HubContentSummaries
Required: Yes
Type: Array of HubContentInfo structures

The summaries of the listed hub content.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of hub content, use it in the subsequent request.

Errors

ResourceNotFound:

Resource being access is not found.

ListHubs

$result = $client->listHubs([/* ... */]);
$promise = $client->listHubsAsync([/* ... */]);

List all existing hubs.

Parameter Syntax

$result = $client->listHubs([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'HubName|CreationTime|HubStatus|AccountIdOwner',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Only list hubs that were created after the time specified.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Only list hubs that were created before the time specified.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Only list hubs that were last modified after the time specified.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Only list hubs that were last modified before the time specified.

MaxResults
Type: int

The maximum number of hubs to list.

NameContains
Type: string

Only list hubs with names that contain the specified string.

NextToken
Type: string

If the response to a previous ListHubs request was truncated, the response includes a NextToken. To retrieve the next set of hubs, use the token in the next request.

SortBy
Type: string

Sort hubs by either name or creation time.

SortOrder
Type: string

Sort hubs by ascending or descending order.

Result Syntax

[
    'HubSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'HubArn' => '<string>',
            'HubDescription' => '<string>',
            'HubDisplayName' => '<string>',
            'HubName' => '<string>',
            'HubSearchKeywords' => ['<string>', ...],
            'HubStatus' => 'InService|Creating|Updating|Deleting|CreateFailed|UpdateFailed|DeleteFailed',
            'LastModifiedTime' => <DateTime>,
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
HubSummaries
Required: Yes
Type: Array of HubInfo structures

The summaries of the listed hubs.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of hubs, use it in the subsequent request.

Errors

There are no errors described for this operation.

ListHumanTaskUis

$result = $client->listHumanTaskUis([/* ... */]);
$promise = $client->listHumanTaskUisAsync([/* ... */]);

Returns information about the human task user interfaces in your account.

Parameter Syntax

$result = $client->listHumanTaskUis([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only human task user interfaces with a creation time greater than or equal to the specified timestamp.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only human task user interfaces that were created before the specified timestamp.

MaxResults
Type: int

The total number of items to return. If the total number of available items is more than the value specified in MaxResults, then a NextToken will be provided in the output that you can use to resume pagination.

NextToken
Type: string

A token to resume pagination.

SortOrder
Type: string

An optional value that specifies whether you want the results sorted in Ascending or Descending order.

Result Syntax

[
    'HumanTaskUiSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'HumanTaskUiArn' => '<string>',
            'HumanTaskUiName' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
HumanTaskUiSummaries
Required: Yes
Type: Array of HumanTaskUiSummary structures

An array of objects describing the human task user interfaces.

NextToken
Type: string

A token to resume pagination.

Errors

There are no errors described for this operation.

ListHyperParameterTuningJobs

$result = $client->listHyperParameterTuningJobs([/* ... */]);
$promise = $client->listHyperParameterTuningJobsAsync([/* ... */]);

Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.

Parameter Syntax

$result = $client->listHyperParameterTuningJobs([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|Status|CreationTime',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'Completed|InProgress|Failed|Stopped|Stopping|Deleting|DeleteFailed',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only tuning jobs that were created after the specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only tuning jobs that were created before the specified time.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only tuning jobs that were modified after the specified time.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only tuning jobs that were modified before the specified time.

MaxResults
Type: int

The maximum number of tuning jobs to return. The default value is 10.

NameContains
Type: string

A string in the tuning job name. This filter returns only tuning jobs whose name contains the specified string.

NextToken
Type: string

If the result of the previous ListHyperParameterTuningJobs request was truncated, the response includes a NextToken. To retrieve the next set of tuning jobs, use the token in the next request.

SortBy
Type: string

The field to sort results by. The default is Name.

SortOrder
Type: string

The sort order for results. The default is Ascending.

StatusEquals
Type: string

A filter that returns only tuning jobs with the specified status.

Result Syntax

[
    'HyperParameterTuningJobSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'HyperParameterTuningEndTime' => <DateTime>,
            'HyperParameterTuningJobArn' => '<string>',
            'HyperParameterTuningJobName' => '<string>',
            'HyperParameterTuningJobStatus' => 'Completed|InProgress|Failed|Stopped|Stopping|Deleting|DeleteFailed',
            'LastModifiedTime' => <DateTime>,
            'ObjectiveStatusCounters' => [
                'Failed' => <integer>,
                'Pending' => <integer>,
                'Succeeded' => <integer>,
            ],
            'ResourceLimits' => [
                'MaxNumberOfTrainingJobs' => <integer>,
                'MaxParallelTrainingJobs' => <integer>,
                'MaxRuntimeInSeconds' => <integer>,
            ],
            'Strategy' => 'Bayesian|Random|Hyperband|Grid',
            'TrainingJobStatusCounters' => [
                'Completed' => <integer>,
                'InProgress' => <integer>,
                'NonRetryableError' => <integer>,
                'RetryableError' => <integer>,
                'Stopped' => <integer>,
            ],
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
HyperParameterTuningJobSummaries
Required: Yes
Type: Array of HyperParameterTuningJobSummary structures

A list of HyperParameterTuningJobSummary objects that describe the tuning jobs that the ListHyperParameterTuningJobs request returned.

NextToken
Type: string

If the result of this ListHyperParameterTuningJobs request was truncated, the response includes a NextToken. To retrieve the next set of tuning jobs, use the token in the next request.

Errors

There are no errors described for this operation.

ListImageVersions

$result = $client->listImageVersions([/* ... */]);
$promise = $client->listImageVersionsAsync([/* ... */]);

Lists the versions of a specified image and their properties. The list can be filtered by creation time or modified time.

Parameter Syntax

$result = $client->listImageVersions([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'ImageName' => '<string>', // REQUIRED
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'CREATION_TIME|LAST_MODIFIED_TIME|VERSION',
    'SortOrder' => 'ASCENDING|DESCENDING',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only versions created on or after the specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only versions created on or before the specified time.

ImageName
Required: Yes
Type: string

The name of the image to list the versions of.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only versions modified on or after the specified time.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only versions modified on or before the specified time.

MaxResults
Type: int

The maximum number of versions to return in the response. The default value is 10.

NextToken
Type: string

If the previous call to ListImageVersions didn't return the full set of versions, the call returns a token for getting the next set of versions.

SortBy
Type: string

The property used to sort results. The default value is CREATION_TIME.

SortOrder
Type: string

The sort order. The default value is DESCENDING.

Result Syntax

[
    'ImageVersions' => [
        [
            'CreationTime' => <DateTime>,
            'FailureReason' => '<string>',
            'ImageArn' => '<string>',
            'ImageVersionArn' => '<string>',
            'ImageVersionStatus' => 'CREATING|CREATED|CREATE_FAILED|DELETING|DELETE_FAILED',
            'LastModifiedTime' => <DateTime>,
            'Version' => <integer>,
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
ImageVersions
Type: Array of ImageVersion structures

A list of versions and their properties.

NextToken
Type: string

A token for getting the next set of versions, if there are any.

Errors

ResourceNotFound:

Resource being access is not found.

ListImages

$result = $client->listImages([/* ... */]);
$promise = $client->listImagesAsync([/* ... */]);

Lists the images in your account and their properties. The list can be filtered by creation time or modified time, and whether the image name contains a specified string.

Parameter Syntax

$result = $client->listImages([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'CREATION_TIME|LAST_MODIFIED_TIME|IMAGE_NAME',
    'SortOrder' => 'ASCENDING|DESCENDING',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only images created on or after the specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only images created on or before the specified time.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only images modified on or after the specified time.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only images modified on or before the specified time.

MaxResults
Type: int

The maximum number of images to return in the response. The default value is 10.

NameContains
Type: string

A filter that returns only images whose name contains the specified string.

NextToken
Type: string

If the previous call to ListImages didn't return the full set of images, the call returns a token for getting the next set of images.

SortBy
Type: string

The property used to sort results. The default value is CREATION_TIME.

SortOrder
Type: string

The sort order. The default value is DESCENDING.

Result Syntax

[
    'Images' => [
        [
            'CreationTime' => <DateTime>,
            'Description' => '<string>',
            'DisplayName' => '<string>',
            'FailureReason' => '<string>',
            'ImageArn' => '<string>',
            'ImageName' => '<string>',
            'ImageStatus' => 'CREATING|CREATED|CREATE_FAILED|UPDATING|UPDATE_FAILED|DELETING|DELETE_FAILED',
            'LastModifiedTime' => <DateTime>,
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
Images
Type: Array of Image structures

A list of images and their properties.

NextToken
Type: string

A token for getting the next set of images, if there are any.

Errors

There are no errors described for this operation.

ListInferenceComponents

$result = $client->listInferenceComponents([/* ... */]);
$promise = $client->listInferenceComponentsAsync([/* ... */]);

Lists the inference components in your account and their properties.

Parameter Syntax

$result = $client->listInferenceComponents([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'EndpointNameEquals' => '<string>',
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'InService|Creating|Updating|Failed|Deleting',
    'VariantNameEquals' => '<string>',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filters the results to only those inference components that were created after the specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filters the results to only those inference components that were created before the specified time.

EndpointNameEquals
Type: string

An endpoint name to filter the listed inference components. The response includes only those inference components that are hosted at the specified endpoint.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filters the results to only those inference components that were updated after the specified time.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filters the results to only those inference components that were updated before the specified time.

MaxResults
Type: int

The maximum number of inference components to return in the response. This value defaults to 10.

NameContains
Type: string

Filters the results to only those inference components with a name that contains the specified string.

NextToken
Type: string

A token that you use to get the next set of results following a truncated response. If the response to the previous request was truncated, that response provides the value for this token.

SortBy
Type: string

The field by which to sort the inference components in the response. The default is CreationTime.

SortOrder
Type: string

The sort order for results. The default is Descending.

StatusEquals
Type: string

Filters the results to only those inference components with the specified status.

VariantNameEquals
Type: string

A production variant name to filter the listed inference components. The response includes only those inference components that are hosted at the specified variant.

Result Syntax

[
    'InferenceComponents' => [
        [
            'CreationTime' => <DateTime>,
            'EndpointArn' => '<string>',
            'EndpointName' => '<string>',
            'InferenceComponentArn' => '<string>',
            'InferenceComponentName' => '<string>',
            'InferenceComponentStatus' => 'InService|Creating|Updating|Failed|Deleting',
            'LastModifiedTime' => <DateTime>,
            'VariantName' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
InferenceComponents
Required: Yes
Type: Array of InferenceComponentSummary structures

A list of inference components and their properties that matches any of the filters you specified in the request.

NextToken
Type: string

The token to use in a subsequent request to get the next set of results following a truncated response.

Errors

There are no errors described for this operation.

ListInferenceExperiments

$result = $client->listInferenceExperiments([/* ... */]);
$promise = $client->listInferenceExperimentsAsync([/* ... */]);

Returns the list of all inference experiments.

Parameter Syntax

$result = $client->listInferenceExperiments([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'Creating|Created|Updating|Running|Starting|Stopping|Completed|Cancelled',
    'Type' => 'ShadowMode',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Selects inference experiments which were created after this timestamp.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Selects inference experiments which were created before this timestamp.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Selects inference experiments which were last modified after this timestamp.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Selects inference experiments which were last modified before this timestamp.

MaxResults
Type: int

The maximum number of results to select.

NameContains
Type: string

Selects inference experiments whose names contain this name.

NextToken
Type: string

The response from the last list when returning a list large enough to need tokening.

SortBy
Type: string

The column by which to sort the listed inference experiments.

SortOrder
Type: string

The direction of sorting (ascending or descending).

StatusEquals
Type: string

Selects inference experiments which are in this status. For the possible statuses, see DescribeInferenceExperiment.

Type
Type: string

Selects inference experiments of this type. For the possible types of inference experiments, see CreateInferenceExperiment.

Result Syntax

[
    'InferenceExperiments' => [
        [
            'CompletionTime' => <DateTime>,
            'CreationTime' => <DateTime>,
            'Description' => '<string>',
            'LastModifiedTime' => <DateTime>,
            'Name' => '<string>',
            'RoleArn' => '<string>',
            'Schedule' => [
                'EndTime' => <DateTime>,
                'StartTime' => <DateTime>,
            ],
            'Status' => 'Creating|Created|Updating|Running|Starting|Stopping|Completed|Cancelled',
            'StatusReason' => '<string>',
            'Type' => 'ShadowMode',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
InferenceExperiments
Type: Array of InferenceExperimentSummary structures

List of inference experiments.

NextToken
Type: string

The token to use when calling the next page of results.

Errors

There are no errors described for this operation.

ListInferenceRecommendationsJobSteps

$result = $client->listInferenceRecommendationsJobSteps([/* ... */]);
$promise = $client->listInferenceRecommendationsJobStepsAsync([/* ... */]);

Returns a list of the subtasks for an Inference Recommender job.

The supported subtasks are benchmarks, which evaluate the performance of your model on different instance types.

Parameter Syntax

$result = $client->listInferenceRecommendationsJobSteps([
    'JobName' => '<string>', // REQUIRED
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'Status' => 'PENDING|IN_PROGRESS|COMPLETED|FAILED|STOPPING|STOPPED|DELETING|DELETED',
    'StepType' => 'BENCHMARK',
]);

Parameter Details

Members
JobName
Required: Yes
Type: string

The name for the Inference Recommender job.

MaxResults
Type: int

The maximum number of results to return.

NextToken
Type: string

A token that you can specify to return more results from the list. Specify this field if you have a token that was returned from a previous request.

Status
Type: string

A filter to return benchmarks of a specified status. If this field is left empty, then all benchmarks are returned.

StepType
Type: string

A filter to return details about the specified type of subtask.

BENCHMARK: Evaluate the performance of your model on different instance types.

Result Syntax

[
    'NextToken' => '<string>',
    'Steps' => [
        [
            'InferenceBenchmark' => [
                'EndpointConfiguration' => [
                    'EndpointName' => '<string>',
                    'InitialInstanceCount' => <integer>,
                    'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.12xlarge|ml.m5d.24xlarge|ml.c4.large|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.large|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.12xlarge|ml.r5.24xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.12xlarge|ml.r5d.24xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.dl1.24xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p4d.24xlarge|ml.c7g.large|ml.c7g.xlarge|ml.c7g.2xlarge|ml.c7g.4xlarge|ml.c7g.8xlarge|ml.c7g.12xlarge|ml.c7g.16xlarge|ml.m6g.large|ml.m6g.xlarge|ml.m6g.2xlarge|ml.m6g.4xlarge|ml.m6g.8xlarge|ml.m6g.12xlarge|ml.m6g.16xlarge|ml.m6gd.large|ml.m6gd.xlarge|ml.m6gd.2xlarge|ml.m6gd.4xlarge|ml.m6gd.8xlarge|ml.m6gd.12xlarge|ml.m6gd.16xlarge|ml.c6g.large|ml.c6g.xlarge|ml.c6g.2xlarge|ml.c6g.4xlarge|ml.c6g.8xlarge|ml.c6g.12xlarge|ml.c6g.16xlarge|ml.c6gd.large|ml.c6gd.xlarge|ml.c6gd.2xlarge|ml.c6gd.4xlarge|ml.c6gd.8xlarge|ml.c6gd.12xlarge|ml.c6gd.16xlarge|ml.c6gn.large|ml.c6gn.xlarge|ml.c6gn.2xlarge|ml.c6gn.4xlarge|ml.c6gn.8xlarge|ml.c6gn.12xlarge|ml.c6gn.16xlarge|ml.r6g.large|ml.r6g.xlarge|ml.r6g.2xlarge|ml.r6g.4xlarge|ml.r6g.8xlarge|ml.r6g.12xlarge|ml.r6g.16xlarge|ml.r6gd.large|ml.r6gd.xlarge|ml.r6gd.2xlarge|ml.r6gd.4xlarge|ml.r6gd.8xlarge|ml.r6gd.12xlarge|ml.r6gd.16xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge',
                    'ServerlessConfig' => [
                        'MaxConcurrency' => <integer>,
                        'MemorySizeInMB' => <integer>,
                        'ProvisionedConcurrency' => <integer>,
                    ],
                    'VariantName' => '<string>',
                ],
                'EndpointMetrics' => [
                    'MaxInvocations' => <integer>,
                    'ModelLatency' => <integer>,
                ],
                'FailureReason' => '<string>',
                'InvocationEndTime' => <DateTime>,
                'InvocationStartTime' => <DateTime>,
                'Metrics' => [
                    'CostPerHour' => <float>,
                    'CostPerInference' => <float>,
                    'CpuUtilization' => <float>,
                    'MaxInvocations' => <integer>,
                    'MemoryUtilization' => <float>,
                    'ModelLatency' => <integer>,
                    'ModelSetupTime' => <integer>,
                ],
                'ModelConfiguration' => [
                    'CompilationJobName' => '<string>',
                    'EnvironmentParameters' => [
                        [
                            'Key' => '<string>',
                            'Value' => '<string>',
                            'ValueType' => '<string>',
                        ],
                        // ...
                    ],
                    'InferenceSpecificationName' => '<string>',
                ],
            ],
            'JobName' => '<string>',
            'Status' => 'PENDING|IN_PROGRESS|COMPLETED|FAILED|STOPPING|STOPPED|DELETING|DELETED',
            'StepType' => 'BENCHMARK',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

A token that you can specify in your next request to return more results from the list.

Steps
Type: Array of InferenceRecommendationsJobStep structures

A list of all subtask details in Inference Recommender.

Errors

ResourceNotFound:

Resource being access is not found.

ListInferenceRecommendationsJobs

$result = $client->listInferenceRecommendationsJobs([/* ... */]);
$promise = $client->listInferenceRecommendationsJobsAsync([/* ... */]);

Lists recommendation jobs that satisfy various filters.

Parameter Syntax

$result = $client->listInferenceRecommendationsJobs([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'ModelNameEquals' => '<string>',
    'ModelPackageVersionArnEquals' => '<string>',
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'PENDING|IN_PROGRESS|COMPLETED|FAILED|STOPPING|STOPPED|DELETING|DELETED',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only jobs created after the specified time (timestamp).

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only jobs created before the specified time (timestamp).

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only jobs that were last modified after the specified time (timestamp).

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only jobs that were last modified before the specified time (timestamp).

MaxResults
Type: int

The maximum number of recommendations to return in the response.

ModelNameEquals
Type: string

A filter that returns only jobs that were created for this model.

ModelPackageVersionArnEquals
Type: string

A filter that returns only jobs that were created for this versioned model package.

NameContains
Type: string

A string in the job name. This filter returns only recommendations whose name contains the specified string.

NextToken
Type: string

If the response to a previous ListInferenceRecommendationsJobsRequest request was truncated, the response includes a NextToken. To retrieve the next set of recommendations, use the token in the next request.

SortBy
Type: string

The parameter by which to sort the results.

SortOrder
Type: string

The sort order for the results.

StatusEquals
Type: string

A filter that retrieves only inference recommendations jobs with a specific status.

Result Syntax

[
    'InferenceRecommendationsJobs' => [
        [
            'CompletionTime' => <DateTime>,
            'CreationTime' => <DateTime>,
            'FailureReason' => '<string>',
            'JobArn' => '<string>',
            'JobDescription' => '<string>',
            'JobName' => '<string>',
            'JobType' => 'Default|Advanced',
            'LastModifiedTime' => <DateTime>,
            'ModelName' => '<string>',
            'ModelPackageVersionArn' => '<string>',
            'RoleArn' => '<string>',
            'SamplePayloadUrl' => '<string>',
            'Status' => 'PENDING|IN_PROGRESS|COMPLETED|FAILED|STOPPING|STOPPED|DELETING|DELETED',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
InferenceRecommendationsJobs
Required: Yes
Type: Array of InferenceRecommendationsJob structures

The recommendations created from the Amazon SageMaker Inference Recommender job.

NextToken
Type: string

A token for getting the next set of recommendations, if there are any.

Errors

There are no errors described for this operation.

ListLabelingJobs

$result = $client->listLabelingJobs([/* ... */]);
$promise = $client->listLabelingJobsAsync([/* ... */]);

Gets a list of labeling jobs.

Parameter Syntax

$result = $client->listLabelingJobs([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'Initializing|InProgress|Completed|Failed|Stopping|Stopped',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only labeling jobs created after the specified time (timestamp).

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only labeling jobs created before the specified time (timestamp).

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only labeling jobs modified after the specified time (timestamp).

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only labeling jobs modified before the specified time (timestamp).

MaxResults
Type: int

The maximum number of labeling jobs to return in each page of the response.

NameContains
Type: string

A string in the labeling job name. This filter returns only labeling jobs whose name contains the specified string.

NextToken
Type: string

If the result of the previous ListLabelingJobs request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.

SortBy
Type: string

The field to sort results by. The default is CreationTime.

SortOrder
Type: string

The sort order for results. The default is Ascending.

StatusEquals
Type: string

A filter that retrieves only labeling jobs with a specific status.

Result Syntax

[
    'LabelingJobSummaryList' => [
        [
            'AnnotationConsolidationLambdaArn' => '<string>',
            'CreationTime' => <DateTime>,
            'FailureReason' => '<string>',
            'InputConfig' => [
                'DataAttributes' => [
                    'ContentClassifiers' => ['<string>', ...],
                ],
                'DataSource' => [
                    'S3DataSource' => [
                        'ManifestS3Uri' => '<string>',
                    ],
                    'SnsDataSource' => [
                        'SnsTopicArn' => '<string>',
                    ],
                ],
            ],
            'LabelCounters' => [
                'FailedNonRetryableError' => <integer>,
                'HumanLabeled' => <integer>,
                'MachineLabeled' => <integer>,
                'TotalLabeled' => <integer>,
                'Unlabeled' => <integer>,
            ],
            'LabelingJobArn' => '<string>',
            'LabelingJobName' => '<string>',
            'LabelingJobOutput' => [
                'FinalActiveLearningModelArn' => '<string>',
                'OutputDatasetS3Uri' => '<string>',
            ],
            'LabelingJobStatus' => 'Initializing|InProgress|Completed|Failed|Stopping|Stopped',
            'LastModifiedTime' => <DateTime>,
            'PreHumanTaskLambdaArn' => '<string>',
            'WorkteamArn' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
LabelingJobSummaryList
Type: Array of LabelingJobSummary structures

An array of LabelingJobSummary objects, each describing a labeling job.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.

Errors

There are no errors described for this operation.

ListLabelingJobsForWorkteam

$result = $client->listLabelingJobsForWorkteam([/* ... */]);
$promise = $client->listLabelingJobsForWorkteamAsync([/* ... */]);

Gets a list of labeling jobs assigned to a specified work team.

Parameter Syntax

$result = $client->listLabelingJobsForWorkteam([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'JobReferenceCodeContains' => '<string>',
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'CreationTime',
    'SortOrder' => 'Ascending|Descending',
    'WorkteamArn' => '<string>', // REQUIRED
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only labeling jobs created after the specified time (timestamp).

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only labeling jobs created before the specified time (timestamp).

JobReferenceCodeContains
Type: string

A filter the limits jobs to only the ones whose job reference code contains the specified string.

MaxResults
Type: int

The maximum number of labeling jobs to return in each page of the response.

NextToken
Type: string

If the result of the previous ListLabelingJobsForWorkteam request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.

SortBy
Type: string

The field to sort results by. The default is CreationTime.

SortOrder
Type: string

The sort order for results. The default is Ascending.

WorkteamArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the work team for which you want to see labeling jobs for.

Result Syntax

[
    'LabelingJobSummaryList' => [
        [
            'CreationTime' => <DateTime>,
            'JobReferenceCode' => '<string>',
            'LabelCounters' => [
                'HumanLabeled' => <integer>,
                'PendingHuman' => <integer>,
                'Total' => <integer>,
            ],
            'LabelingJobName' => '<string>',
            'NumberOfHumanWorkersPerDataObject' => <integer>,
            'WorkRequesterAccountId' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
LabelingJobSummaryList
Required: Yes
Type: Array of LabelingJobForWorkteamSummary structures

An array of LabelingJobSummary objects, each describing a labeling job.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.

Errors

ResourceNotFound:

Resource being access is not found.

ListLineageGroups

$result = $client->listLineageGroups([/* ... */]);
$promise = $client->listLineageGroupsAsync([/* ... */]);

A list of lineage groups shared with your Amazon Web Services account. For more information, see Cross-Account Lineage Tracking in the Amazon SageMaker Developer Guide.

Parameter Syntax

$result = $client->listLineageGroups([
    'CreatedAfter' => <integer || string || DateTime>,
    'CreatedBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreatedAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp to filter against lineage groups created after a certain point in time.

CreatedBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp to filter against lineage groups created before a certain point in time.

MaxResults
Type: int

The maximum number of endpoints to return in the response. This value defaults to 10.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of algorithms, use it in the subsequent request.

SortBy
Type: string

The parameter by which to sort the results. The default is CreationTime.

SortOrder
Type: string

The sort order for the results. The default is Ascending.

Result Syntax

[
    'LineageGroupSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'DisplayName' => '<string>',
            'LastModifiedTime' => <DateTime>,
            'LineageGroupArn' => '<string>',
            'LineageGroupName' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
LineageGroupSummaries
Type: Array of LineageGroupSummary structures

A list of lineage groups and their properties.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of algorithms, use it in the subsequent request.

Errors

There are no errors described for this operation.

ListMlflowTrackingServers

$result = $client->listMlflowTrackingServers([/* ... */]);
$promise = $client->listMlflowTrackingServersAsync([/* ... */]);

Lists all MLflow Tracking Servers.

Parameter Syntax

$result = $client->listMlflowTrackingServers([
    'CreatedAfter' => <integer || string || DateTime>,
    'CreatedBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'MlflowVersion' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'TrackingServerStatus' => 'Creating|Created|CreateFailed|Updating|Updated|UpdateFailed|Deleting|DeleteFailed|Stopping|Stopped|StopFailed|Starting|Started|StartFailed|MaintenanceInProgress|MaintenanceComplete|MaintenanceFailed',
]);

Parameter Details

Members
CreatedAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Use the CreatedAfter filter to only list tracking servers created after a specific date and time. Listed tracking servers are shown with a date and time such as "2024-03-16T01:46:56+00:00". The CreatedAfter parameter takes in a Unix timestamp. To convert a date and time into a Unix timestamp, see EpochConverter.

CreatedBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Use the CreatedBefore filter to only list tracking servers created before a specific date and time. Listed tracking servers are shown with a date and time such as "2024-03-16T01:46:56+00:00". The CreatedBefore parameter takes in a Unix timestamp. To convert a date and time into a Unix timestamp, see EpochConverter.

MaxResults
Type: int

The maximum number of tracking servers to list.

MlflowVersion
Type: string

Filter for tracking servers using the specified MLflow version.

NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

SortBy
Type: string

Filter for trackings servers sorting by name, creation time, or creation status.

SortOrder
Type: string

Change the order of the listed tracking servers. By default, tracking servers are listed in Descending order by creation time. To change the list order, you can specify SortOrder to be Ascending.

TrackingServerStatus
Type: string

Filter for tracking servers with a specified creation status.

Result Syntax

[
    'NextToken' => '<string>',
    'TrackingServerSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'IsActive' => 'Active|Inactive',
            'LastModifiedTime' => <DateTime>,
            'MlflowVersion' => '<string>',
            'TrackingServerArn' => '<string>',
            'TrackingServerName' => '<string>',
            'TrackingServerStatus' => 'Creating|Created|CreateFailed|Updating|Updated|UpdateFailed|Deleting|DeleteFailed|Stopping|Stopped|StopFailed|Starting|Started|StartFailed|MaintenanceInProgress|MaintenanceComplete|MaintenanceFailed',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

TrackingServerSummaries
Type: Array of TrackingServerSummary structures

A list of tracking servers according to chosen filters.

Errors

There are no errors described for this operation.

ListModelBiasJobDefinitions

$result = $client->listModelBiasJobDefinitions([/* ... */]);
$promise = $client->listModelBiasJobDefinitionsAsync([/* ... */]);

Lists model bias jobs definitions that satisfy various filters.

Parameter Syntax

$result = $client->listModelBiasJobDefinitions([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'EndpointName' => '<string>',
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only model bias jobs created after a specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only model bias jobs created before a specified time.

EndpointName
Type: string

Name of the endpoint to monitor for model bias.

MaxResults
Type: int

The maximum number of model bias jobs to return in the response. The default value is 10.

NameContains
Type: string

Filter for model bias jobs whose name contains a specified string.

NextToken
Type: string

The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.

SortBy
Type: string

Whether to sort results by the Name or CreationTime field. The default is CreationTime.

SortOrder
Type: string

Whether to sort the results in Ascending or Descending order. The default is Descending.

Result Syntax

[
    'JobDefinitionSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'EndpointName' => '<string>',
            'MonitoringJobDefinitionArn' => '<string>',
            'MonitoringJobDefinitionName' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
JobDefinitionSummaries
Required: Yes
Type: Array of MonitoringJobDefinitionSummary structures

A JSON array in which each element is a summary for a model bias jobs.

NextToken
Type: string

The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.

Errors

There are no errors described for this operation.

ListModelCardExportJobs

$result = $client->listModelCardExportJobs([/* ... */]);
$promise = $client->listModelCardExportJobsAsync([/* ... */]);

List the export jobs for the Amazon SageMaker Model Card.

Parameter Syntax

$result = $client->listModelCardExportJobs([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'ModelCardExportJobNameContains' => '<string>',
    'ModelCardName' => '<string>', // REQUIRED
    'ModelCardVersion' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'InProgress|Completed|Failed',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Only list model card export jobs that were created after the time specified.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Only list model card export jobs that were created before the time specified.

MaxResults
Type: int

The maximum number of model card export jobs to list.

ModelCardExportJobNameContains
Type: string

Only list model card export jobs with names that contain the specified string.

ModelCardName
Required: Yes
Type: string

List export jobs for the model card with the specified name.

ModelCardVersion
Type: int

List export jobs for the model card with the specified version.

NextToken
Type: string

If the response to a previous ListModelCardExportJobs request was truncated, the response includes a NextToken. To retrieve the next set of model card export jobs, use the token in the next request.

SortBy
Type: string

Sort model card export jobs by either name or creation time. Sorts by creation time by default.

SortOrder
Type: string

Sort model card export jobs by ascending or descending order.

StatusEquals
Type: string

Only list model card export jobs with the specified status.

Result Syntax

[
    'ModelCardExportJobSummaries' => [
        [
            'CreatedAt' => <DateTime>,
            'LastModifiedAt' => <DateTime>,
            'ModelCardExportJobArn' => '<string>',
            'ModelCardExportJobName' => '<string>',
            'ModelCardName' => '<string>',
            'ModelCardVersion' => <integer>,
            'Status' => 'InProgress|Completed|Failed',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
ModelCardExportJobSummaries
Required: Yes
Type: Array of ModelCardExportJobSummary structures

The summaries of the listed model card export jobs.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of model card export jobs, use it in the subsequent request.

Errors

There are no errors described for this operation.

ListModelCardVersions

$result = $client->listModelCardVersions([/* ... */]);
$promise = $client->listModelCardVersionsAsync([/* ... */]);

List existing versions of an Amazon SageMaker Model Card.

Parameter Syntax

$result = $client->listModelCardVersions([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'ModelCardName' => '<string>', // REQUIRED
    'ModelCardStatus' => 'Draft|PendingReview|Approved|Archived',
    'NextToken' => '<string>',
    'SortBy' => 'Version',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Only list model card versions that were created after the time specified.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Only list model card versions that were created before the time specified.

MaxResults
Type: int

The maximum number of model card versions to list.

ModelCardName
Required: Yes
Type: string

List model card versions for the model card with the specified name or Amazon Resource Name (ARN).

ModelCardStatus
Type: string

Only list model card versions with the specified approval status.

NextToken
Type: string

If the response to a previous ListModelCardVersions request was truncated, the response includes a NextToken. To retrieve the next set of model card versions, use the token in the next request.

SortBy
Type: string

Sort listed model card versions by version. Sorts by version by default.

SortOrder
Type: string

Sort model card versions by ascending or descending order.

Result Syntax

[
    'ModelCardVersionSummaryList' => [
        [
            'CreationTime' => <DateTime>,
            'LastModifiedTime' => <DateTime>,
            'ModelCardArn' => '<string>',
            'ModelCardName' => '<string>',
            'ModelCardStatus' => 'Draft|PendingReview|Approved|Archived',
            'ModelCardVersion' => <integer>,
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
ModelCardVersionSummaryList
Required: Yes
Type: Array of ModelCardVersionSummary structures

The summaries of the listed versions of the model card.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of model card versions, use it in the subsequent request.

Errors

ResourceNotFound:

Resource being access is not found.

ListModelCards

$result = $client->listModelCards([/* ... */]);
$promise = $client->listModelCardsAsync([/* ... */]);

List existing model cards.

Parameter Syntax

$result = $client->listModelCards([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'ModelCardStatus' => 'Draft|PendingReview|Approved|Archived',
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Only list model cards that were created after the time specified.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Only list model cards that were created before the time specified.

MaxResults
Type: int

The maximum number of model cards to list.

ModelCardStatus
Type: string

Only list model cards with the specified approval status.

NameContains
Type: string

Only list model cards with names that contain the specified string.

NextToken
Type: string

If the response to a previous ListModelCards request was truncated, the response includes a NextToken. To retrieve the next set of model cards, use the token in the next request.

SortBy
Type: string

Sort model cards by either name or creation time. Sorts by creation time by default.

SortOrder
Type: string

Sort model cards by ascending or descending order.

Result Syntax

[
    'ModelCardSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'LastModifiedTime' => <DateTime>,
            'ModelCardArn' => '<string>',
            'ModelCardName' => '<string>',
            'ModelCardStatus' => 'Draft|PendingReview|Approved|Archived',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
ModelCardSummaries
Required: Yes
Type: Array of ModelCardSummary structures

The summaries of the listed model cards.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of model cards, use it in the subsequent request.

Errors

There are no errors described for this operation.

ListModelExplainabilityJobDefinitions

$result = $client->listModelExplainabilityJobDefinitions([/* ... */]);
$promise = $client->listModelExplainabilityJobDefinitionsAsync([/* ... */]);

Lists model explainability job definitions that satisfy various filters.

Parameter Syntax

$result = $client->listModelExplainabilityJobDefinitions([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'EndpointName' => '<string>',
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only model explainability jobs created after a specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only model explainability jobs created before a specified time.

EndpointName
Type: string

Name of the endpoint to monitor for model explainability.

MaxResults
Type: int

The maximum number of jobs to return in the response. The default value is 10.

NameContains
Type: string

Filter for model explainability jobs whose name contains a specified string.

NextToken
Type: string

The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.

SortBy
Type: string

Whether to sort results by the Name or CreationTime field. The default is CreationTime.

SortOrder
Type: string

Whether to sort the results in Ascending or Descending order. The default is Descending.

Result Syntax

[
    'JobDefinitionSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'EndpointName' => '<string>',
            'MonitoringJobDefinitionArn' => '<string>',
            'MonitoringJobDefinitionName' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
JobDefinitionSummaries
Required: Yes
Type: Array of MonitoringJobDefinitionSummary structures

A JSON array in which each element is a summary for a explainability bias jobs.

NextToken
Type: string

The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.

Errors

There are no errors described for this operation.

ListModelMetadata

$result = $client->listModelMetadata([/* ... */]);
$promise = $client->listModelMetadataAsync([/* ... */]);

Lists the domain, framework, task, and model name of standard machine learning models found in common model zoos.

Parameter Syntax

$result = $client->listModelMetadata([
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SearchExpression' => [
        'Filters' => [
            [
                'Name' => 'Domain|Framework|Task|FrameworkVersion', // REQUIRED
                'Value' => '<string>', // REQUIRED
            ],
            // ...
        ],
    ],
]);

Parameter Details

Members
MaxResults
Type: int

The maximum number of models to return in the response.

NextToken
Type: string

If the response to a previous ListModelMetadataResponse request was truncated, the response includes a NextToken. To retrieve the next set of model metadata, use the token in the next request.

SearchExpression

One or more filters that searches for the specified resource or resources in a search. All resource objects that satisfy the expression's condition are included in the search results. Specify the Framework, FrameworkVersion, Domain or Task to filter supported. Filter names and values are case-sensitive.

Result Syntax

[
    'ModelMetadataSummaries' => [
        [
            'Domain' => '<string>',
            'Framework' => '<string>',
            'FrameworkVersion' => '<string>',
            'Model' => '<string>',
            'Task' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
ModelMetadataSummaries
Required: Yes
Type: Array of ModelMetadataSummary structures

A structure that holds model metadata.

NextToken
Type: string

A token for getting the next set of recommendations, if there are any.

Errors

There are no errors described for this operation.

ListModelPackageGroups

$result = $client->listModelPackageGroups([/* ... */]);
$promise = $client->listModelPackageGroupsAsync([/* ... */]);

Gets a list of the model groups in your Amazon Web Services account.

Parameter Syntax

$result = $client->listModelPackageGroups([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'CrossAccountFilterOption' => 'SameAccount|CrossAccount',
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only model groups created after the specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only model groups created before the specified time.

CrossAccountFilterOption
Type: string

A filter that returns either model groups shared with you or model groups in your own account. When the value is CrossAccount, the results show the resources made discoverable to you from other accounts. When the value is SameAccount or null, the results show resources from your account. The default is SameAccount.

MaxResults
Type: int

The maximum number of results to return in the response.

NameContains
Type: string

A string in the model group name. This filter returns only model groups whose name contains the specified string.

NextToken
Type: string

If the result of the previous ListModelPackageGroups request was truncated, the response includes a NextToken. To retrieve the next set of model groups, use the token in the next request.

SortBy
Type: string

The field to sort results by. The default is CreationTime.

SortOrder
Type: string

The sort order for results. The default is Ascending.

Result Syntax

[
    'ModelPackageGroupSummaryList' => [
        [
            'CreationTime' => <DateTime>,
            'ModelPackageGroupArn' => '<string>',
            'ModelPackageGroupDescription' => '<string>',
            'ModelPackageGroupName' => '<string>',
            'ModelPackageGroupStatus' => 'Pending|InProgress|Completed|Failed|Deleting|DeleteFailed',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
ModelPackageGroupSummaryList
Required: Yes
Type: Array of ModelPackageGroupSummary structures

A list of summaries of the model groups in your Amazon Web Services account.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of model groups, use it in the subsequent request.

Errors

There are no errors described for this operation.

ListModelPackages

$result = $client->listModelPackages([/* ... */]);
$promise = $client->listModelPackagesAsync([/* ... */]);

Lists the model packages that have been created.

Parameter Syntax

$result = $client->listModelPackages([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'ModelApprovalStatus' => 'Approved|Rejected|PendingManualApproval',
    'ModelPackageGroupName' => '<string>',
    'ModelPackageType' => 'Versioned|Unversioned|Both',
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only model packages created after the specified time (timestamp).

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only model packages created before the specified time (timestamp).

MaxResults
Type: int

The maximum number of model packages to return in the response.

ModelApprovalStatus
Type: string

A filter that returns only the model packages with the specified approval status.

ModelPackageGroupName
Type: string

A filter that returns only model versions that belong to the specified model group.

ModelPackageType
Type: string

A filter that returns only the model packages of the specified type. This can be one of the following values.

  • UNVERSIONED - List only unversioined models. This is the default value if no ModelPackageType is specified.

  • VERSIONED - List only versioned models.

  • BOTH - List both versioned and unversioned models.

NameContains
Type: string

A string in the model package name. This filter returns only model packages whose name contains the specified string.

NextToken
Type: string

If the response to a previous ListModelPackages request was truncated, the response includes a NextToken. To retrieve the next set of model packages, use the token in the next request.

SortBy
Type: string

The parameter by which to sort the results. The default is CreationTime.

SortOrder
Type: string

The sort order for the results. The default is Ascending.

Result Syntax

[
    'ModelPackageSummaryList' => [
        [
            'CreationTime' => <DateTime>,
            'ModelApprovalStatus' => 'Approved|Rejected|PendingManualApproval',
            'ModelPackageArn' => '<string>',
            'ModelPackageDescription' => '<string>',
            'ModelPackageGroupName' => '<string>',
            'ModelPackageName' => '<string>',
            'ModelPackageStatus' => 'Pending|InProgress|Completed|Failed|Deleting',
            'ModelPackageVersion' => <integer>,
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
ModelPackageSummaryList
Required: Yes
Type: Array of ModelPackageSummary structures

An array of ModelPackageSummary objects, each of which lists a model package.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of model packages, use it in the subsequent request.

Errors

There are no errors described for this operation.

ListModelQualityJobDefinitions

$result = $client->listModelQualityJobDefinitions([/* ... */]);
$promise = $client->listModelQualityJobDefinitionsAsync([/* ... */]);

Gets a list of model quality monitoring job definitions in your account.

Parameter Syntax

$result = $client->listModelQualityJobDefinitions([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'EndpointName' => '<string>',
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only model quality monitoring job definitions created after the specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only model quality monitoring job definitions created before the specified time.

EndpointName
Type: string

A filter that returns only model quality monitoring job definitions that are associated with the specified endpoint.

MaxResults
Type: int

The maximum number of results to return in a call to ListModelQualityJobDefinitions.

NameContains
Type: string

A string in the transform job name. This filter returns only model quality monitoring job definitions whose name contains the specified string.

NextToken
Type: string

If the result of the previous ListModelQualityJobDefinitions request was truncated, the response includes a NextToken. To retrieve the next set of model quality monitoring job definitions, use the token in the next request.

SortBy
Type: string

The field to sort results by. The default is CreationTime.

SortOrder
Type: string

Whether to sort the results in Ascending or Descending order. The default is Descending.

Result Syntax

[
    'JobDefinitionSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'EndpointName' => '<string>',
            'MonitoringJobDefinitionArn' => '<string>',
            'MonitoringJobDefinitionName' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
JobDefinitionSummaries
Required: Yes
Type: Array of MonitoringJobDefinitionSummary structures

A list of summaries of model quality monitoring job definitions.

NextToken
Type: string

If the response is truncated, Amazon SageMaker AI returns this token. To retrieve the next set of model quality monitoring job definitions, use it in the next request.

Errors

There are no errors described for this operation.

ListModels

$result = $client->listModels([/* ... */]);
$promise = $client->listModelsAsync([/* ... */]);

Lists models created with the CreateModel API.

Parameter Syntax

$result = $client->listModels([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only models with a creation time greater than or equal to the specified time (timestamp).

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only models created before the specified time (timestamp).

MaxResults
Type: int

The maximum number of models to return in the response.

NameContains
Type: string

A string in the model name. This filter returns only models whose name contains the specified string.

NextToken
Type: string

If the response to a previous ListModels request was truncated, the response includes a NextToken. To retrieve the next set of models, use the token in the next request.

SortBy
Type: string

Sorts the list of results. The default is CreationTime.

SortOrder
Type: string

The sort order for results. The default is Descending.

Result Syntax

[
    'Models' => [
        [
            'CreationTime' => <DateTime>,
            'ModelArn' => '<string>',
            'ModelName' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
Models
Required: Yes
Type: Array of ModelSummary structures

An array of ModelSummary objects, each of which lists a model.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of models, use it in the subsequent request.

Errors

There are no errors described for this operation.

ListMonitoringAlertHistory

$result = $client->listMonitoringAlertHistory([/* ... */]);
$promise = $client->listMonitoringAlertHistoryAsync([/* ... */]);

Gets a list of past alerts in a model monitoring schedule.

Parameter Syntax

$result = $client->listMonitoringAlertHistory([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'MonitoringAlertName' => '<string>',
    'MonitoringScheduleName' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'InAlert|OK',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only alerts created on or after the specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only alerts created on or before the specified time.

MaxResults
Type: int

The maximum number of results to display. The default is 100.

MonitoringAlertName
Type: string

The name of a monitoring alert.

MonitoringScheduleName
Type: string

The name of a monitoring schedule.

NextToken
Type: string

If the result of the previous ListMonitoringAlertHistory request was truncated, the response includes a NextToken. To retrieve the next set of alerts in the history, use the token in the next request.

SortBy
Type: string

The field used to sort results. The default is CreationTime.

SortOrder
Type: string

The sort order, whether Ascending or Descending, of the alert history. The default is Descending.

StatusEquals
Type: string

A filter that retrieves only alerts with a specific status.

Result Syntax

[
    'MonitoringAlertHistory' => [
        [
            'AlertStatus' => 'InAlert|OK',
            'CreationTime' => <DateTime>,
            'MonitoringAlertName' => '<string>',
            'MonitoringScheduleName' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
MonitoringAlertHistory
Type: Array of MonitoringAlertHistorySummary structures

An alert history for a model monitoring schedule.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of alerts, use it in the subsequent request.

Errors

ResourceNotFound:

Resource being access is not found.

ListMonitoringAlerts

$result = $client->listMonitoringAlerts([/* ... */]);
$promise = $client->listMonitoringAlertsAsync([/* ... */]);

Gets the alerts for a single monitoring schedule.

Parameter Syntax

$result = $client->listMonitoringAlerts([
    'MaxResults' => <integer>,
    'MonitoringScheduleName' => '<string>', // REQUIRED
    'NextToken' => '<string>',
]);

Parameter Details

Members
MaxResults
Type: int

The maximum number of results to display. The default is 100.

MonitoringScheduleName
Required: Yes
Type: string

The name of a monitoring schedule.

NextToken
Type: string

If the result of the previous ListMonitoringAlerts request was truncated, the response includes a NextToken. To retrieve the next set of alerts in the history, use the token in the next request.

Result Syntax

[
    'MonitoringAlertSummaries' => [
        [
            'Actions' => [
                'ModelDashboardIndicator' => [
                    'Enabled' => true || false,
                ],
            ],
            'AlertStatus' => 'InAlert|OK',
            'CreationTime' => <DateTime>,
            'DatapointsToAlert' => <integer>,
            'EvaluationPeriod' => <integer>,
            'LastModifiedTime' => <DateTime>,
            'MonitoringAlertName' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
MonitoringAlertSummaries
Type: Array of MonitoringAlertSummary structures

A JSON array where each element is a summary for a monitoring alert.

NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of alerts, use it in the subsequent request.

Errors

ResourceNotFound:

Resource being access is not found.

ListMonitoringExecutions

$result = $client->listMonitoringExecutions([/* ... */]);
$promise = $client->listMonitoringExecutionsAsync([/* ... */]);

Returns list of all monitoring job executions.

Parameter Syntax

$result = $client->listMonitoringExecutions([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'EndpointName' => '<string>',
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'MonitoringJobDefinitionName' => '<string>',
    'MonitoringScheduleName' => '<string>',
    'MonitoringTypeEquals' => 'DataQuality|ModelQuality|ModelBias|ModelExplainability',
    'NextToken' => '<string>',
    'ScheduledTimeAfter' => <integer || string || DateTime>,
    'ScheduledTimeBefore' => <integer || string || DateTime>,
    'SortBy' => 'CreationTime|ScheduledTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'Pending|Completed|CompletedWithViolations|InProgress|Failed|Stopping|Stopped',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only jobs created after a specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only jobs created before a specified time.

EndpointName
Type: string

Name of a specific endpoint to fetch jobs for.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only jobs modified before a specified time.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only jobs modified after a specified time.

MaxResults
Type: int

The maximum number of jobs to return in the response. The default value is 10.

MonitoringJobDefinitionName
Type: string

Gets a list of the monitoring job runs of the specified monitoring job definitions.

MonitoringScheduleName
Type: string

Name of a specific schedule to fetch jobs for.

MonitoringTypeEquals
Type: string

A filter that returns only the monitoring job runs of the specified monitoring type.

NextToken
Type: string

The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.

ScheduledTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filter for jobs scheduled after a specified time.

ScheduledTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filter for jobs scheduled before a specified time.

SortBy
Type: string

Whether to sort the results by the Status, CreationTime, or ScheduledTime field. The default is CreationTime.

SortOrder
Type: string

Whether to sort the results in Ascending or Descending order. The default is Descending.

StatusEquals
Type: string

A filter that retrieves only jobs with a specific status.

Result Syntax

[
    'MonitoringExecutionSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'EndpointName' => '<string>',
            'FailureReason' => '<string>',
            'LastModifiedTime' => <DateTime>,
            'MonitoringExecutionStatus' => 'Pending|Completed|CompletedWithViolations|InProgress|Failed|Stopping|Stopped',
            'MonitoringJobDefinitionName' => '<string>',
            'MonitoringScheduleName' => '<string>',
            'MonitoringType' => 'DataQuality|ModelQuality|ModelBias|ModelExplainability',
            'ProcessingJobArn' => '<string>',
            'ScheduledTime' => <DateTime>,
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
MonitoringExecutionSummaries
Required: Yes
Type: Array of MonitoringExecutionSummary structures

A JSON array in which each element is a summary for a monitoring execution.

NextToken
Type: string

The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.

Errors

There are no errors described for this operation.

ListMonitoringSchedules

$result = $client->listMonitoringSchedules([/* ... */]);
$promise = $client->listMonitoringSchedulesAsync([/* ... */]);

Returns list of all monitoring schedules.

Parameter Syntax

$result = $client->listMonitoringSchedules([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'EndpointName' => '<string>',
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'MonitoringJobDefinitionName' => '<string>',
    'MonitoringTypeEquals' => 'DataQuality|ModelQuality|ModelBias|ModelExplainability',
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'Pending|Failed|Scheduled|Stopped',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only monitoring schedules created after a specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only monitoring schedules created before a specified time.

EndpointName
Type: string

Name of a specific endpoint to fetch schedules for.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only monitoring schedules modified after a specified time.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only monitoring schedules modified before a specified time.

MaxResults
Type: int

The maximum number of jobs to return in the response. The default value is 10.

MonitoringJobDefinitionName
Type: string

Gets a list of the monitoring schedules for the specified monitoring job definition.

MonitoringTypeEquals
Type: string

A filter that returns only the monitoring schedules for the specified monitoring type.

NameContains
Type: string

Filter for monitoring schedules whose name contains a specified string.

NextToken
Type: string

The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.

SortBy
Type: string

Whether to sort the results by the Status, CreationTime, or ScheduledTime field. The default is CreationTime.

SortOrder
Type: string

Whether to sort the results in Ascending or Descending order. The default is Descending.

StatusEquals
Type: string

A filter that returns only monitoring schedules modified before a specified time.

Result Syntax

[
    'MonitoringScheduleSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'EndpointName' => '<string>',
            'LastModifiedTime' => <DateTime>,
            'MonitoringJobDefinitionName' => '<string>',
            'MonitoringScheduleArn' => '<string>',
            'MonitoringScheduleName' => '<string>',
            'MonitoringScheduleStatus' => 'Pending|Failed|Scheduled|Stopped',
            'MonitoringType' => 'DataQuality|ModelQuality|ModelBias|ModelExplainability',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
MonitoringScheduleSummaries
Required: Yes
Type: Array of MonitoringScheduleSummary structures

A JSON array in which each element is a summary for a monitoring schedule.

NextToken
Type: string

The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.

Errors

There are no errors described for this operation.

ListNotebookInstanceLifecycleConfigs

$result = $client->listNotebookInstanceLifecycleConfigs([/* ... */]);
$promise = $client->listNotebookInstanceLifecycleConfigsAsync([/* ... */]);

Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.

Parameter Syntax

$result = $client->listNotebookInstanceLifecycleConfigs([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|LastModifiedTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only lifecycle configurations that were created after the specified time (timestamp).

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only lifecycle configurations that were created before the specified time (timestamp).

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only lifecycle configurations that were modified after the specified time (timestamp).

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only lifecycle configurations that were modified before the specified time (timestamp).

MaxResults
Type: int

The maximum number of lifecycle configurations to return in the response.

NameContains
Type: string

A string in the lifecycle configuration name. This filter returns only lifecycle configurations whose name contains the specified string.

NextToken
Type: string

If the result of a ListNotebookInstanceLifecycleConfigs request was truncated, the response includes a NextToken. To get the next set of lifecycle configurations, use the token in the next request.

SortBy
Type: string

Sorts the list of results. The default is CreationTime.

SortOrder
Type: string

The sort order for results.

Result Syntax

[
    'NextToken' => '<string>',
    'NotebookInstanceLifecycleConfigs' => [
        [
            'CreationTime' => <DateTime>,
            'LastModifiedTime' => <DateTime>,
            'NotebookInstanceLifecycleConfigArn' => '<string>',
            'NotebookInstanceLifecycleConfigName' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the response is truncated, SageMaker AI returns this token. To get the next set of lifecycle configurations, use it in the next request.

NotebookInstanceLifecycleConfigs
Type: Array of NotebookInstanceLifecycleConfigSummary structures

An array of NotebookInstanceLifecycleConfiguration objects, each listing a lifecycle configuration.

Errors

There are no errors described for this operation.

ListNotebookInstances

$result = $client->listNotebookInstances([/* ... */]);
$promise = $client->listNotebookInstancesAsync([/* ... */]);

Returns a list of the SageMaker AI notebook instances in the requester's account in an Amazon Web Services Region.

Parameter Syntax

$result = $client->listNotebookInstances([
    'AdditionalCodeRepositoryEquals' => '<string>',
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'DefaultCodeRepositoryContains' => '<string>',
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'NotebookInstanceLifecycleConfigNameContains' => '<string>',
    'SortBy' => 'Name|CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'Pending|InService|Stopping|Stopped|Failed|Deleting|Updating',
]);

Parameter Details

Members
AdditionalCodeRepositoryEquals
Type: string

A filter that returns only notebook instances with associated with the specified git repository.

CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only notebook instances that were created after the specified time (timestamp).

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only notebook instances that were created before the specified time (timestamp).

DefaultCodeRepositoryContains
Type: string

A string in the name or URL of a Git repository associated with this notebook instance. This filter returns only notebook instances associated with a git repository with a name that contains the specified string.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only notebook instances that were modified after the specified time (timestamp).

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only notebook instances that were modified before the specified time (timestamp).

MaxResults
Type: int

The maximum number of notebook instances to return.

NameContains
Type: string

A string in the notebook instances' name. This filter returns only notebook instances whose name contains the specified string.

NextToken
Type: string

If the previous call to the ListNotebookInstances is truncated, the response includes a NextToken. You can use this token in your subsequent ListNotebookInstances request to fetch the next set of notebook instances.

You might specify a filter or a sort order in your request. When response is truncated, you must use the same values for the filer and sort order in the next request.

NotebookInstanceLifecycleConfigNameContains
Type: string

A string in the name of a notebook instances lifecycle configuration associated with this notebook instance. This filter returns only notebook instances associated with a lifecycle configuration with a name that contains the specified string.

SortBy
Type: string

The field to sort results by. The default is Name.

SortOrder
Type: string

The sort order for results.

StatusEquals
Type: string

A filter that returns only notebook instances with the specified status.

Result Syntax

[
    'NextToken' => '<string>',
    'NotebookInstances' => [
        [
            'AdditionalCodeRepositories' => ['<string>', ...],
            'CreationTime' => <DateTime>,
            'DefaultCodeRepository' => '<string>',
            'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge',
            'LastModifiedTime' => <DateTime>,
            'NotebookInstanceArn' => '<string>',
            'NotebookInstanceLifecycleConfigName' => '<string>',
            'NotebookInstanceName' => '<string>',
            'NotebookInstanceStatus' => 'Pending|InService|Stopping|Stopped|Failed|Deleting|Updating',
            'Url' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the response to the previous ListNotebookInstances request was truncated, SageMaker AI returns this token. To retrieve the next set of notebook instances, use the token in the next request.

NotebookInstances
Type: Array of NotebookInstanceSummary structures

An array of NotebookInstanceSummary objects, one for each notebook instance.

Errors

There are no errors described for this operation.

ListOptimizationJobs

$result = $client->listOptimizationJobs([/* ... */]);
$promise = $client->listOptimizationJobsAsync([/* ... */]);

Lists the optimization jobs in your account and their properties.

Parameter Syntax

$result = $client->listOptimizationJobs([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'OptimizationContains' => '<string>',
    'SortBy' => 'Name|CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'INPROGRESS|COMPLETED|FAILED|STARTING|STOPPING|STOPPED',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filters the results to only those optimization jobs that were created after the specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filters the results to only those optimization jobs that were created before the specified time.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filters the results to only those optimization jobs that were updated after the specified time.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filters the results to only those optimization jobs that were updated before the specified time.

MaxResults
Type: int

The maximum number of optimization jobs to return in the response. The default is 50.

NameContains
Type: string

Filters the results to only those optimization jobs with a name that contains the specified string.

NextToken
Type: string

A token that you use to get the next set of results following a truncated response. If the response to the previous request was truncated, that response provides the value for this token.

OptimizationContains
Type: string

Filters the results to only those optimization jobs that apply the specified optimization techniques. You can specify either Quantization or Compilation.

SortBy
Type: string

The field by which to sort the optimization jobs in the response. The default is CreationTime

SortOrder
Type: string

The sort order for results. The default is Ascending

StatusEquals
Type: string

Filters the results to only those optimization jobs with the specified status.

Result Syntax

[
    'NextToken' => '<string>',
    'OptimizationJobSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'DeploymentInstanceType' => 'ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge',
            'LastModifiedTime' => <DateTime>,
            'OptimizationEndTime' => <DateTime>,
            'OptimizationJobArn' => '<string>',
            'OptimizationJobName' => '<string>',
            'OptimizationJobStatus' => 'INPROGRESS|COMPLETED|FAILED|STARTING|STOPPING|STOPPED',
            'OptimizationStartTime' => <DateTime>,
            'OptimizationTypes' => ['<string>', ...],
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

The token to use in a subsequent request to get the next set of results following a truncated response.

OptimizationJobSummaries
Required: Yes
Type: Array of OptimizationJobSummary structures

A list of optimization jobs and their properties that matches any of the filters you specified in the request.

Errors

There are no errors described for this operation.

ListPartnerApps

$result = $client->listPartnerApps([/* ... */]);
$promise = $client->listPartnerAppsAsync([/* ... */]);

Lists all of the SageMaker Partner AI Apps in an account.

Parameter Syntax

$result = $client->listPartnerApps([
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
]);

Parameter Details

Members
MaxResults
Type: int

This parameter defines the maximum number of results that can be returned in a single response. The MaxResults parameter is an upper bound, not a target. If there are more results available than the value specified, a NextToken is provided in the response. The NextToken indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value for MaxResults is 10.

NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

Result Syntax

[
    'NextToken' => '<string>',
    'Summaries' => [
        [
            'Arn' => '<string>',
            'CreationTime' => <DateTime>,
            'Name' => '<string>',
            'Status' => 'Creating|Updating|Deleting|Available|Failed|UpdateFailed|Deleted',
            'Type' => 'lakera-guard|comet|deepchecks-llm-evaluation|fiddler',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

Summaries
Type: Array of PartnerAppSummary structures

The information related to each of the SageMaker Partner AI Apps in an account.

Errors

There are no errors described for this operation.

ListPipelineExecutionSteps

$result = $client->listPipelineExecutionSteps([/* ... */]);
$promise = $client->listPipelineExecutionStepsAsync([/* ... */]);

Gets a list of PipeLineExecutionStep objects.

Parameter Syntax

$result = $client->listPipelineExecutionSteps([
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'PipelineExecutionArn' => '<string>',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
MaxResults
Type: int

The maximum number of pipeline execution steps to return in the response.

NextToken
Type: string

If the result of the previous ListPipelineExecutionSteps request was truncated, the response includes a NextToken. To retrieve the next set of pipeline execution steps, use the token in the next request.

PipelineExecutionArn
Type: string

The Amazon Resource Name (ARN) of the pipeline execution.

SortOrder
Type: string

The field by which to sort results. The default is CreatedTime.

Result Syntax

[
    'NextToken' => '<string>',
    'PipelineExecutionSteps' => [
        [
            'AttemptCount' => <integer>,
            'CacheHitResult' => [
                'SourcePipelineExecutionArn' => '<string>',
            ],
            'EndTime' => <DateTime>,
            'FailureReason' => '<string>',
            'Metadata' => [
                'AutoMLJob' => [
                    'Arn' => '<string>',
                ],
                'Callback' => [
                    'CallbackToken' => '<string>',
                    'OutputParameters' => [
                        [
                            'Name' => '<string>',
                            'Value' => '<string>',
                        ],
                        // ...
                    ],
                    'SqsQueueUrl' => '<string>',
                ],
                'ClarifyCheck' => [
                    'BaselineUsedForDriftCheckConstraints' => '<string>',
                    'CalculatedBaselineConstraints' => '<string>',
                    'CheckJobArn' => '<string>',
                    'CheckType' => '<string>',
                    'ModelPackageGroupName' => '<string>',
                    'RegisterNewBaseline' => true || false,
                    'SkipCheck' => true || false,
                    'ViolationReport' => '<string>',
                ],
                'Condition' => [
                    'Outcome' => 'True|False',
                ],
                'EMR' => [
                    'ClusterId' => '<string>',
                    'LogFilePath' => '<string>',
                    'StepId' => '<string>',
                    'StepName' => '<string>',
                ],
                'Endpoint' => [
                    'Arn' => '<string>',
                ],
                'EndpointConfig' => [
                    'Arn' => '<string>',
                ],
                'Fail' => [
                    'ErrorMessage' => '<string>',
                ],
                'Lambda' => [
                    'Arn' => '<string>',
                    'OutputParameters' => [
                        [
                            'Name' => '<string>',
                            'Value' => '<string>',
                        ],
                        // ...
                    ],
                ],
                'Model' => [
                    'Arn' => '<string>',
                ],
                'ProcessingJob' => [
                    'Arn' => '<string>',
                ],
                'QualityCheck' => [
                    'BaselineUsedForDriftCheckConstraints' => '<string>',
                    'BaselineUsedForDriftCheckStatistics' => '<string>',
                    'CalculatedBaselineConstraints' => '<string>',
                    'CalculatedBaselineStatistics' => '<string>',
                    'CheckJobArn' => '<string>',
                    'CheckType' => '<string>',
                    'ModelPackageGroupName' => '<string>',
                    'RegisterNewBaseline' => true || false,
                    'SkipCheck' => true || false,
                    'ViolationReport' => '<string>',
                ],
                'RegisterModel' => [
                    'Arn' => '<string>',
                ],
                'TrainingJob' => [
                    'Arn' => '<string>',
                ],
                'TransformJob' => [
                    'Arn' => '<string>',
                ],
                'TuningJob' => [
                    'Arn' => '<string>',
                ],
            ],
            'SelectiveExecutionResult' => [
                'SourcePipelineExecutionArn' => '<string>',
            ],
            'StartTime' => <DateTime>,
            'StepDescription' => '<string>',
            'StepDisplayName' => '<string>',
            'StepName' => '<string>',
            'StepStatus' => 'Starting|Executing|Stopping|Stopped|Failed|Succeeded',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the result of the previous ListPipelineExecutionSteps request was truncated, the response includes a NextToken. To retrieve the next set of pipeline execution steps, use the token in the next request.

PipelineExecutionSteps
Type: Array of PipelineExecutionStep structures

A list of PipeLineExecutionStep objects. Each PipeLineExecutionStep consists of StepName, StartTime, EndTime, StepStatus, and Metadata. Metadata is an object with properties for each job that contains relevant information about the job created by the step.

Errors

ResourceNotFound:

Resource being access is not found.

ListPipelineExecutions

$result = $client->listPipelineExecutions([/* ... */]);
$promise = $client->listPipelineExecutionsAsync([/* ... */]);

Gets a list of the pipeline executions.

Parameter Syntax

$result = $client->listPipelineExecutions([
    'CreatedAfter' => <integer || string || DateTime>,
    'CreatedBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'PipelineName' => '<string>', // REQUIRED
    'SortBy' => 'CreationTime|PipelineExecutionArn',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreatedAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns the pipeline executions that were created after a specified time.

CreatedBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns the pipeline executions that were created before a specified time.

MaxResults
Type: int

The maximum number of pipeline executions to return in the response.

NextToken
Type: string

If the result of the previous ListPipelineExecutions request was truncated, the response includes a NextToken. To retrieve the next set of pipeline executions, use the token in the next request.

PipelineName
Required: Yes
Type: string

The name or Amazon Resource Name (ARN) of the pipeline.

SortBy
Type: string

The field by which to sort results. The default is CreatedTime.

SortOrder
Type: string

The sort order for results.

Result Syntax

[
    'NextToken' => '<string>',
    'PipelineExecutionSummaries' => [
        [
            'PipelineExecutionArn' => '<string>',
            'PipelineExecutionDescription' => '<string>',
            'PipelineExecutionDisplayName' => '<string>',
            'PipelineExecutionFailureReason' => '<string>',
            'PipelineExecutionStatus' => 'Executing|Stopping|Stopped|Failed|Succeeded',
            'StartTime' => <DateTime>,
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the result of the previous ListPipelineExecutions request was truncated, the response includes a NextToken. To retrieve the next set of pipeline executions, use the token in the next request.

PipelineExecutionSummaries
Type: Array of PipelineExecutionSummary structures

Contains a sorted list of pipeline execution summary objects matching the specified filters. Each run summary includes the Amazon Resource Name (ARN) of the pipeline execution, the run date, and the status. This list can be empty.

Errors

ResourceNotFound:

Resource being access is not found.

ListPipelineParametersForExecution

$result = $client->listPipelineParametersForExecution([/* ... */]);
$promise = $client->listPipelineParametersForExecutionAsync([/* ... */]);

Gets a list of parameters for a pipeline execution.

Parameter Syntax

$result = $client->listPipelineParametersForExecution([
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'PipelineExecutionArn' => '<string>', // REQUIRED
]);

Parameter Details

Members
MaxResults
Type: int

The maximum number of parameters to return in the response.

NextToken
Type: string

If the result of the previous ListPipelineParametersForExecution request was truncated, the response includes a NextToken. To retrieve the next set of parameters, use the token in the next request.

PipelineExecutionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the pipeline execution.

Result Syntax

[
    'NextToken' => '<string>',
    'PipelineParameters' => [
        [
            'Name' => '<string>',
            'Value' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the result of the previous ListPipelineParametersForExecution request was truncated, the response includes a NextToken. To retrieve the next set of parameters, use the token in the next request.

PipelineParameters
Type: Array of Parameter structures

Contains a list of pipeline parameters. This list can be empty.

Errors

ResourceNotFound:

Resource being access is not found.

ListPipelines

$result = $client->listPipelines([/* ... */]);
$promise = $client->listPipelinesAsync([/* ... */]);

Gets a list of pipelines.

Parameter Syntax

$result = $client->listPipelines([
    'CreatedAfter' => <integer || string || DateTime>,
    'CreatedBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'PipelineNamePrefix' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreatedAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns the pipelines that were created after a specified time.

CreatedBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns the pipelines that were created before a specified time.

MaxResults
Type: int

The maximum number of pipelines to return in the response.

NextToken
Type: string

If the result of the previous ListPipelines request was truncated, the response includes a NextToken. To retrieve the next set of pipelines, use the token in the next request.

PipelineNamePrefix
Type: string

The prefix of the pipeline name.

SortBy
Type: string

The field by which to sort results. The default is CreatedTime.

SortOrder
Type: string

The sort order for results.

Result Syntax

[
    'NextToken' => '<string>',
    'PipelineSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'LastExecutionTime' => <DateTime>,
            'LastModifiedTime' => <DateTime>,
            'PipelineArn' => '<string>',
            'PipelineDescription' => '<string>',
            'PipelineDisplayName' => '<string>',
            'PipelineName' => '<string>',
            'RoleArn' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the result of the previous ListPipelines request was truncated, the response includes a NextToken. To retrieve the next set of pipelines, use the token in the next request.

PipelineSummaries
Type: Array of PipelineSummary structures

Contains a sorted list of PipelineSummary objects matching the specified filters. Each PipelineSummary consists of PipelineArn, PipelineName, ExperimentName, PipelineDescription, CreationTime, LastModifiedTime, LastRunTime, and RoleArn. This list can be empty.

Errors

There are no errors described for this operation.

ListProcessingJobs

$result = $client->listProcessingJobs([/* ... */]);
$promise = $client->listProcessingJobsAsync([/* ... */]);

Lists processing jobs that satisfy various filters.

Parameter Syntax

$result = $client->listProcessingJobs([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'InProgress|Completed|Failed|Stopping|Stopped',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only processing jobs created after the specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only processing jobs created after the specified time.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only processing jobs modified after the specified time.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only processing jobs modified before the specified time.

MaxResults
Type: int

The maximum number of processing jobs to return in the response.

NameContains
Type: string

A string in the processing job name. This filter returns only processing jobs whose name contains the specified string.

NextToken
Type: string

If the result of the previous ListProcessingJobs request was truncated, the response includes a NextToken. To retrieve the next set of processing jobs, use the token in the next request.

SortBy
Type: string

The field to sort results by. The default is CreationTime.

SortOrder
Type: string

The sort order for results. The default is Ascending.

StatusEquals
Type: string

A filter that retrieves only processing jobs with a specific status.

Result Syntax

[
    'NextToken' => '<string>',
    'ProcessingJobSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'ExitMessage' => '<string>',
            'FailureReason' => '<string>',
            'LastModifiedTime' => <DateTime>,
            'ProcessingEndTime' => <DateTime>,
            'ProcessingJobArn' => '<string>',
            'ProcessingJobName' => '<string>',
            'ProcessingJobStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of processing jobs, use it in the subsequent request.

ProcessingJobSummaries
Required: Yes
Type: Array of ProcessingJobSummary structures

An array of ProcessingJobSummary objects, each listing a processing job.

Errors

There are no errors described for this operation.

ListProjects

$result = $client->listProjects([/* ... */]);
$promise = $client->listProjectsAsync([/* ... */]);

Gets a list of the projects in an Amazon Web Services account.

Parameter Syntax

$result = $client->listProjects([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns the projects that were created after a specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns the projects that were created before a specified time.

MaxResults
Type: int

The maximum number of projects to return in the response.

NameContains
Type: string

A filter that returns the projects whose name contains a specified string.

NextToken
Type: string

If the result of the previous ListProjects request was truncated, the response includes a NextToken. To retrieve the next set of projects, use the token in the next request.

SortBy
Type: string

The field by which to sort results. The default is CreationTime.

SortOrder
Type: string

The sort order for results. The default is Ascending.

Result Syntax

[
    'NextToken' => '<string>',
    'ProjectSummaryList' => [
        [
            'CreationTime' => <DateTime>,
            'ProjectArn' => '<string>',
            'ProjectDescription' => '<string>',
            'ProjectId' => '<string>',
            'ProjectName' => '<string>',
            'ProjectStatus' => 'Pending|CreateInProgress|CreateCompleted|CreateFailed|DeleteInProgress|DeleteFailed|DeleteCompleted|UpdateInProgress|UpdateCompleted|UpdateFailed',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the result of the previous ListCompilationJobs request was truncated, the response includes a NextToken. To retrieve the next set of model compilation jobs, use the token in the next request.

ProjectSummaryList
Required: Yes
Type: Array of ProjectSummary structures

A list of summaries of projects.

Errors

There are no errors described for this operation.

ListResourceCatalogs

$result = $client->listResourceCatalogs([/* ... */]);
$promise = $client->listResourceCatalogsAsync([/* ... */]);

Lists Amazon SageMaker Catalogs based on given filters and orders. The maximum number of ResourceCatalogs viewable is 1000.

Parameter Syntax

$result = $client->listResourceCatalogs([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'CreationTime',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Use this parameter to search for ResourceCatalogs created after a specific date and time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Use this parameter to search for ResourceCatalogs created before a specific date and time.

MaxResults
Type: int

The maximum number of results returned by ListResourceCatalogs.

NameContains
Type: string

A string that partially matches one or more ResourceCatalogs names. Filters ResourceCatalog by name.

NextToken
Type: string

A token to resume pagination of ListResourceCatalogs results.

SortBy
Type: string

The value on which the resource catalog list is sorted.

SortOrder
Type: string

The order in which the resource catalogs are listed.

Result Syntax

[
    'NextToken' => '<string>',
    'ResourceCatalogs' => [
        [
            'CreationTime' => <DateTime>,
            'Description' => '<string>',
            'ResourceCatalogArn' => '<string>',
            'ResourceCatalogName' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

A token to resume pagination of ListResourceCatalogs results.

ResourceCatalogs
Type: Array of ResourceCatalog structures

A list of the requested ResourceCatalogs.

Errors

There are no errors described for this operation.

ListSpaces

$result = $client->listSpaces([/* ... */]);
$promise = $client->listSpacesAsync([/* ... */]);

Lists spaces.

Parameter Syntax

$result = $client->listSpaces([
    'DomainIdEquals' => '<string>',
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'CreationTime|LastModifiedTime',
    'SortOrder' => 'Ascending|Descending',
    'SpaceNameContains' => '<string>',
]);

Parameter Details

Members
DomainIdEquals
Type: string

A parameter to search for the domain ID.

MaxResults
Type: int

This parameter defines the maximum number of results that can be return in a single response. The MaxResults parameter is an upper bound, not a target. If there are more results available than the value specified, a NextToken is provided in the response. The NextToken indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value for MaxResults is 10.

NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

SortBy
Type: string

The parameter by which to sort the results. The default is CreationTime.

SortOrder
Type: string

The sort order for the results. The default is Ascending.

SpaceNameContains
Type: string

A parameter by which to filter the results.

Result Syntax

[
    'NextToken' => '<string>',
    'Spaces' => [
        [
            'CreationTime' => <DateTime>,
            'DomainId' => '<string>',
            'LastModifiedTime' => <DateTime>,
            'OwnershipSettingsSummary' => [
                'OwnerUserProfileName' => '<string>',
            ],
            'SpaceDisplayName' => '<string>',
            'SpaceName' => '<string>',
            'SpaceSettingsSummary' => [
                'AppType' => 'JupyterServer|KernelGateway|DetailedProfiler|TensorBoard|CodeEditor|JupyterLab|RStudioServerPro|RSessionGateway|Canvas',
                'SpaceStorageSettings' => [
                    'EbsStorageSettings' => [
                        'EbsVolumeSizeInGb' => <integer>,
                    ],
                ],
            ],
            'SpaceSharingSettingsSummary' => [
                'SharingType' => 'Private|Shared',
            ],
            'Status' => 'Deleting|Failed|InService|Pending|Updating|Update_Failed|Delete_Failed',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

Spaces
Type: Array of SpaceDetails structures

The list of spaces.

Errors

There are no errors described for this operation.

ListStageDevices

$result = $client->listStageDevices([/* ... */]);
$promise = $client->listStageDevicesAsync([/* ... */]);

Lists devices allocated to the stage, containing detailed device information and deployment status.

Parameter Syntax

$result = $client->listStageDevices([
    'EdgeDeploymentPlanName' => '<string>', // REQUIRED
    'ExcludeDevicesDeployedInOtherStage' => true || false,
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'StageName' => '<string>', // REQUIRED
]);

Parameter Details

Members
EdgeDeploymentPlanName
Required: Yes
Type: string

The name of the edge deployment plan.

ExcludeDevicesDeployedInOtherStage
Type: boolean

Toggle for excluding devices deployed in other stages.

MaxResults
Type: int

The maximum number of requests to select.

NextToken
Type: string

The response from the last list when returning a list large enough to neeed tokening.

StageName
Required: Yes
Type: string

The name of the stage in the deployment.

Result Syntax

[
    'DeviceDeploymentSummaries' => [
        [
            'DeployedStageName' => '<string>',
            'DeploymentStartTime' => <DateTime>,
            'Description' => '<string>',
            'DeviceArn' => '<string>',
            'DeviceDeploymentStatus' => 'READYTODEPLOY|INPROGRESS|DEPLOYED|FAILED|STOPPING|STOPPED',
            'DeviceDeploymentStatusMessage' => '<string>',
            'DeviceFleetName' => '<string>',
            'DeviceName' => '<string>',
            'EdgeDeploymentPlanArn' => '<string>',
            'EdgeDeploymentPlanName' => '<string>',
            'StageName' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
]

Result Details

Members
DeviceDeploymentSummaries
Required: Yes
Type: Array of DeviceDeploymentSummary structures

List of summaries of devices allocated to the stage.

NextToken
Type: string

The token to use when calling the next page of results.

Errors

There are no errors described for this operation.

ListStudioLifecycleConfigs

$result = $client->listStudioLifecycleConfigs([/* ... */]);
$promise = $client->listStudioLifecycleConfigsAsync([/* ... */]);

Lists the Amazon SageMaker AI Studio Lifecycle Configurations in your Amazon Web Services Account.

Parameter Syntax

$result = $client->listStudioLifecycleConfigs([
    'AppTypeEquals' => 'JupyterServer|KernelGateway|CodeEditor|JupyterLab',
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'ModifiedTimeAfter' => <integer || string || DateTime>,
    'ModifiedTimeBefore' => <integer || string || DateTime>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'CreationTime|LastModifiedTime|Name',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
AppTypeEquals
Type: string

A parameter to search for the App Type to which the Lifecycle Configuration is attached.

CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only Lifecycle Configurations created on or after the specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only Lifecycle Configurations created on or before the specified time.

MaxResults
Type: int

The total number of items to return in the response. If the total number of items available is more than the value specified, a NextToken is provided in the response. To resume pagination, provide the NextToken value in the as part of a subsequent call. The default value is 10.

ModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only Lifecycle Configurations modified after the specified time.

ModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only Lifecycle Configurations modified before the specified time.

NameContains
Type: string

A string in the Lifecycle Configuration name. This filter returns only Lifecycle Configurations whose name contains the specified string.

NextToken
Type: string

If the previous call to ListStudioLifecycleConfigs didn't return the full set of Lifecycle Configurations, the call returns a token for getting the next set of Lifecycle Configurations.

SortBy
Type: string

The property used to sort results. The default value is CreationTime.

SortOrder
Type: string

The sort order. The default value is Descending.

Result Syntax

[
    'NextToken' => '<string>',
    'StudioLifecycleConfigs' => [
        [
            'CreationTime' => <DateTime>,
            'LastModifiedTime' => <DateTime>,
            'StudioLifecycleConfigAppType' => 'JupyterServer|KernelGateway|CodeEditor|JupyterLab',
            'StudioLifecycleConfigArn' => '<string>',
            'StudioLifecycleConfigName' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

StudioLifecycleConfigs
Type: Array of StudioLifecycleConfigDetails structures

A list of Lifecycle Configurations and their properties.

Errors

ResourceInUse:

Resource being accessed is in use.

ListSubscribedWorkteams

$result = $client->listSubscribedWorkteams([/* ... */]);
$promise = $client->listSubscribedWorkteamsAsync([/* ... */]);

Gets a list of the work teams that you are subscribed to in the Amazon Web Services Marketplace. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.

Parameter Syntax

$result = $client->listSubscribedWorkteams([
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
]);

Parameter Details

Members
MaxResults
Type: int

The maximum number of work teams to return in each page of the response.

NameContains
Type: string

A string in the work team name. This filter returns only work teams whose name contains the specified string.

NextToken
Type: string

If the result of the previous ListSubscribedWorkteams request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.

Result Syntax

[
    'NextToken' => '<string>',
    'SubscribedWorkteams' => [
        [
            'ListingId' => '<string>',
            'MarketplaceDescription' => '<string>',
            'MarketplaceTitle' => '<string>',
            'SellerName' => '<string>',
            'WorkteamArn' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.

SubscribedWorkteams
Required: Yes
Type: Array of SubscribedWorkteam structures

An array of Workteam objects, each describing a work team.

Errors

There are no errors described for this operation.

ListTags

$result = $client->listTags([/* ... */]);
$promise = $client->listTagsAsync([/* ... */]);

Returns the tags for the specified SageMaker resource.

Parameter Syntax

$result = $client->listTags([
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'ResourceArn' => '<string>', // REQUIRED
]);

Parameter Details

Members
MaxResults
Type: int

Maximum number of tags to return.

NextToken
Type: string

If the response to the previous ListTags request is truncated, SageMaker returns this token. To retrieve the next set of tags, use it in the subsequent request.

ResourceArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the resource whose tags you want to retrieve.

Result Syntax

[
    'NextToken' => '<string>',
    'Tags' => [
        [
            'Key' => '<string>',
            'Value' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If response is truncated, SageMaker includes a token in the response. You can use this token in your subsequent request to fetch next set of tokens.

Tags
Type: Array of Tag structures

An array of Tag objects, each with a tag key and a value.

Errors

There are no errors described for this operation.

ListTrainingJobs

$result = $client->listTrainingJobs([/* ... */]);
$promise = $client->listTrainingJobsAsync([/* ... */]);

Lists training jobs.

When StatusEquals and MaxResults are set at the same time, the MaxResults number of training jobs are first retrieved ignoring the StatusEquals parameter and then they are filtered by the StatusEquals parameter, which is returned as a response.

For example, if ListTrainingJobs is invoked with the following parameters:

{ ... MaxResults: 100, StatusEquals: InProgress ... }

First, 100 trainings jobs with any status, including those other than InProgress, are selected (sorted according to the creation time, from the most current to the oldest). Next, those with a status of InProgress are returned.

You can quickly test the API using the following Amazon Web Services CLI code.

aws sagemaker list-training-jobs --max-results 100 --status-equals InProgress

Parameter Syntax

$result = $client->listTrainingJobs([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'InProgress|Completed|Failed|Stopping|Stopped',
    'TrainingPlanArnEquals' => '<string>',
    'WarmPoolStatusEquals' => 'Available|Terminated|Reused|InUse',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only training jobs created after the specified time (timestamp).

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only training jobs created before the specified time (timestamp).

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only training jobs modified after the specified time (timestamp).

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only training jobs modified before the specified time (timestamp).

MaxResults
Type: int

The maximum number of training jobs to return in the response.

NameContains
Type: string

A string in the training job name. This filter returns only training jobs whose name contains the specified string.

NextToken
Type: string

If the result of the previous ListTrainingJobs request was truncated, the response includes a NextToken. To retrieve the next set of training jobs, use the token in the next request.

SortBy
Type: string

The field to sort results by. The default is CreationTime.

SortOrder
Type: string

The sort order for results. The default is Ascending.

StatusEquals
Type: string

A filter that retrieves only training jobs with a specific status.

TrainingPlanArnEquals
Type: string

The Amazon Resource Name (ARN); of the training plan to filter training jobs by. For more information about reserving GPU capacity for your SageMaker training jobs using Amazon SageMaker Training Plan, see CreateTrainingPlan .

WarmPoolStatusEquals
Type: string

A filter that retrieves only training jobs with a specific warm pool status.

Result Syntax

[
    'NextToken' => '<string>',
    'TrainingJobSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'LastModifiedTime' => <DateTime>,
            'SecondaryStatus' => 'Starting|LaunchingMLInstances|PreparingTrainingStack|Downloading|DownloadingTrainingImage|Training|Uploading|Stopping|Stopped|MaxRuntimeExceeded|Completed|Failed|Interrupted|MaxWaitTimeExceeded|Updating|Restarting|Pending',
            'TrainingEndTime' => <DateTime>,
            'TrainingJobArn' => '<string>',
            'TrainingJobName' => '<string>',
            'TrainingJobStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
            'TrainingPlanArn' => '<string>',
            'WarmPoolStatus' => [
                'ResourceRetainedBillableTimeInSeconds' => <integer>,
                'ReusedByJob' => '<string>',
                'Status' => 'Available|Terminated|Reused|InUse',
            ],
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the response is truncated, SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request.

TrainingJobSummaries
Required: Yes
Type: Array of TrainingJobSummary structures

An array of TrainingJobSummary objects, each listing a training job.

Errors

There are no errors described for this operation.

ListTrainingJobsForHyperParameterTuningJob

$result = $client->listTrainingJobsForHyperParameterTuningJob([/* ... */]);
$promise = $client->listTrainingJobsForHyperParameterTuningJobAsync([/* ... */]);

Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.

Parameter Syntax

$result = $client->listTrainingJobsForHyperParameterTuningJob([
    'HyperParameterTuningJobName' => '<string>', // REQUIRED
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|Status|FinalObjectiveMetricValue',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'InProgress|Completed|Failed|Stopping|Stopped',
]);

Parameter Details

Members
HyperParameterTuningJobName
Required: Yes
Type: string

The name of the tuning job whose training jobs you want to list.

MaxResults
Type: int

The maximum number of training jobs to return. The default value is 10.

NextToken
Type: string

If the result of the previous ListTrainingJobsForHyperParameterTuningJob request was truncated, the response includes a NextToken. To retrieve the next set of training jobs, use the token in the next request.

SortBy
Type: string

The field to sort results by. The default is Name.

If the value of this field is FinalObjectiveMetricValue, any training jobs that did not return an objective metric are not listed.

SortOrder
Type: string

The sort order for results. The default is Ascending.

StatusEquals
Type: string

A filter that returns only training jobs with the specified status.

Result Syntax

[
    'NextToken' => '<string>',
    'TrainingJobSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'FailureReason' => '<string>',
            'FinalHyperParameterTuningJobObjectiveMetric' => [
                'MetricName' => '<string>',
                'Type' => 'Maximize|Minimize',
                'Value' => <float>,
            ],
            'ObjectiveStatus' => 'Succeeded|Pending|Failed',
            'TrainingEndTime' => <DateTime>,
            'TrainingJobArn' => '<string>',
            'TrainingJobDefinitionName' => '<string>',
            'TrainingJobName' => '<string>',
            'TrainingJobStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
            'TrainingStartTime' => <DateTime>,
            'TunedHyperParameters' => ['<string>', ...],
            'TuningJobName' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the result of this ListTrainingJobsForHyperParameterTuningJob request was truncated, the response includes a NextToken. To retrieve the next set of training jobs, use the token in the next request.

TrainingJobSummaries
Required: Yes
Type: Array of HyperParameterTrainingJobSummary structures

A list of TrainingJobSummary objects that describe the training jobs that the ListTrainingJobsForHyperParameterTuningJob request returned.

Errors

ResourceNotFound:

Resource being access is not found.

ListTrainingPlans

$result = $client->listTrainingPlans([/* ... */]);
$promise = $client->listTrainingPlansAsync([/* ... */]);

Retrieves a list of training plans for the current account.

Parameter Syntax

$result = $client->listTrainingPlans([
    'Filters' => [
        [
            'Name' => 'Status', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'TrainingPlanName|StartTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StartTimeAfter' => <integer || string || DateTime>,
    'StartTimeBefore' => <integer || string || DateTime>,
]);

Parameter Details

Members
Filters
Type: Array of TrainingPlanFilter structures

Additional filters to apply to the list of training plans.

MaxResults
Type: int

The maximum number of results to return in the response.

NextToken
Type: string

A token to continue pagination if more results are available.

SortBy
Type: string

The training plan field to sort the results by (e.g., StartTime, Status).

SortOrder
Type: string

The order to sort the results (Ascending or Descending).

StartTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filter to list only training plans with an actual start time after this date.

StartTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filter to list only training plans with an actual start time before this date.

Result Syntax

[
    'NextToken' => '<string>',
    'TrainingPlanSummaries' => [
        [
            'AvailableInstanceCount' => <integer>,
            'CurrencyCode' => '<string>',
            'DurationHours' => <integer>,
            'DurationMinutes' => <integer>,
            'EndTime' => <DateTime>,
            'InUseInstanceCount' => <integer>,
            'ReservedCapacitySummaries' => [
                [
                    'AvailabilityZone' => '<string>',
                    'DurationHours' => <integer>,
                    'DurationMinutes' => <integer>,
                    'EndTime' => <DateTime>,
                    'InstanceType' => 'ml.p4d.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.trn1.32xlarge|ml.trn2.48xlarge',
                    'ReservedCapacityArn' => '<string>',
                    'StartTime' => <DateTime>,
                    'Status' => 'Pending|Active|Scheduled|Expired|Failed',
                    'TotalInstanceCount' => <integer>,
                ],
                // ...
            ],
            'StartTime' => <DateTime>,
            'Status' => 'Pending|Active|Scheduled|Expired|Failed',
            'StatusMessage' => '<string>',
            'TargetResources' => ['<string>', ...],
            'TotalInstanceCount' => <integer>,
            'TrainingPlanArn' => '<string>',
            'TrainingPlanName' => '<string>',
            'UpfrontFee' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

A token to continue pagination if more results are available.

TrainingPlanSummaries
Required: Yes
Type: Array of TrainingPlanSummary structures

A list of summary information for the training plans.

Errors

There are no errors described for this operation.

ListTransformJobs

$result = $client->listTransformJobs([/* ... */]);
$promise = $client->listTransformJobsAsync([/* ... */]);

Lists transform jobs.

Parameter Syntax

$result = $client->listTransformJobs([
    'CreationTimeAfter' => <integer || string || DateTime>,
    'CreationTimeBefore' => <integer || string || DateTime>,
    'LastModifiedTimeAfter' => <integer || string || DateTime>,
    'LastModifiedTimeBefore' => <integer || string || DateTime>,
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime|Status',
    'SortOrder' => 'Ascending|Descending',
    'StatusEquals' => 'InProgress|Completed|Failed|Stopping|Stopped',
]);

Parameter Details

Members
CreationTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only transform jobs created after the specified time.

CreationTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only transform jobs created before the specified time.

LastModifiedTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only transform jobs modified after the specified time.

LastModifiedTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only transform jobs modified before the specified time.

MaxResults
Type: int

The maximum number of transform jobs to return in the response. The default value is 10.

NameContains
Type: string

A string in the transform job name. This filter returns only transform jobs whose name contains the specified string.

NextToken
Type: string

If the result of the previous ListTransformJobs request was truncated, the response includes a NextToken. To retrieve the next set of transform jobs, use the token in the next request.

SortBy
Type: string

The field to sort results by. The default is CreationTime.

SortOrder
Type: string

The sort order for results. The default is Descending.

StatusEquals
Type: string

A filter that retrieves only transform jobs with a specific status.

Result Syntax

[
    'NextToken' => '<string>',
    'TransformJobSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'FailureReason' => '<string>',
            'LastModifiedTime' => <DateTime>,
            'TransformEndTime' => <DateTime>,
            'TransformJobArn' => '<string>',
            'TransformJobName' => '<string>',
            'TransformJobStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of transform jobs, use it in the next request.

TransformJobSummaries
Required: Yes
Type: Array of TransformJobSummary structures

An array of TransformJobSummary objects.

Errors

There are no errors described for this operation.

ListTrialComponents

$result = $client->listTrialComponents([/* ... */]);
$promise = $client->listTrialComponentsAsync([/* ... */]);

Lists the trial components in your account. You can sort the list by trial component name or creation time. You can filter the list to show only components that were created in a specific time range. You can also filter on one of the following:

  • ExperimentName

  • SourceArn

  • TrialName

Parameter Syntax

$result = $client->listTrialComponents([
    'CreatedAfter' => <integer || string || DateTime>,
    'CreatedBefore' => <integer || string || DateTime>,
    'ExperimentName' => '<string>',
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
    'SourceArn' => '<string>',
    'TrialName' => '<string>',
]);

Parameter Details

Members
CreatedAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only components created after the specified time.

CreatedBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only components created before the specified time.

ExperimentName
Type: string

A filter that returns only components that are part of the specified experiment. If you specify ExperimentName, you can't filter by SourceArn or TrialName.

MaxResults
Type: int

The maximum number of components to return in the response. The default value is 10.

NextToken
Type: string

If the previous call to ListTrialComponents didn't return the full set of components, the call returns a token for getting the next set of components.

SortBy
Type: string

The property used to sort results. The default value is CreationTime.

SortOrder
Type: string

The sort order. The default value is Descending.

SourceArn
Type: string

A filter that returns only components that have the specified source Amazon Resource Name (ARN). If you specify SourceArn, you can't filter by ExperimentName or TrialName.

TrialName
Type: string

A filter that returns only components that are part of the specified trial. If you specify TrialName, you can't filter by ExperimentName or SourceArn.

Result Syntax

[
    'NextToken' => '<string>',
    'TrialComponentSummaries' => [
        [
            'CreatedBy' => [
                'DomainId' => '<string>',
                'IamIdentity' => [
                    'Arn' => '<string>',
                    'PrincipalId' => '<string>',
                    'SourceIdentity' => '<string>',
                ],
                'UserProfileArn' => '<string>',
                'UserProfileName' => '<string>',
            ],
            'CreationTime' => <DateTime>,
            'DisplayName' => '<string>',
            'EndTime' => <DateTime>,
            'LastModifiedBy' => [
                'DomainId' => '<string>',
                'IamIdentity' => [
                    'Arn' => '<string>',
                    'PrincipalId' => '<string>',
                    'SourceIdentity' => '<string>',
                ],
                'UserProfileArn' => '<string>',
                'UserProfileName' => '<string>',
            ],
            'LastModifiedTime' => <DateTime>,
            'StartTime' => <DateTime>,
            'Status' => [
                'Message' => '<string>',
                'PrimaryStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
            ],
            'TrialComponentArn' => '<string>',
            'TrialComponentName' => '<string>',
            'TrialComponentSource' => [
                'SourceArn' => '<string>',
                'SourceType' => '<string>',
            ],
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

A token for getting the next set of components, if there are any.

TrialComponentSummaries
Type: Array of TrialComponentSummary structures

A list of the summaries of your trial components.

Errors

ResourceNotFound:

Resource being access is not found.

ListTrials

$result = $client->listTrials([/* ... */]);
$promise = $client->listTrialsAsync([/* ... */]);

Lists the trials in your account. Specify an experiment name to limit the list to the trials that are part of that experiment. Specify a trial component name to limit the list to the trials that associated with that trial component. The list can be filtered to show only trials that were created in a specific time range. The list can be sorted by trial name or creation time.

Parameter Syntax

$result = $client->listTrials([
    'CreatedAfter' => <integer || string || DateTime>,
    'CreatedBefore' => <integer || string || DateTime>,
    'ExperimentName' => '<string>',
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreationTime',
    'SortOrder' => 'Ascending|Descending',
    'TrialComponentName' => '<string>',
]);

Parameter Details

Members
CreatedAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only trials created after the specified time.

CreatedBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter that returns only trials created before the specified time.

ExperimentName
Type: string

A filter that returns only trials that are part of the specified experiment.

MaxResults
Type: int

The maximum number of trials to return in the response. The default value is 10.

NextToken
Type: string

If the previous call to ListTrials didn't return the full set of trials, the call returns a token for getting the next set of trials.

SortBy
Type: string

The property used to sort results. The default value is CreationTime.

SortOrder
Type: string

The sort order. The default value is Descending.

TrialComponentName
Type: string

A filter that returns only trials that are associated with the specified trial component.

Result Syntax

[
    'NextToken' => '<string>',
    'TrialSummaries' => [
        [
            'CreationTime' => <DateTime>,
            'DisplayName' => '<string>',
            'LastModifiedTime' => <DateTime>,
            'TrialArn' => '<string>',
            'TrialName' => '<string>',
            'TrialSource' => [
                'SourceArn' => '<string>',
                'SourceType' => '<string>',
            ],
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

A token for getting the next set of trials, if there are any.

TrialSummaries
Type: Array of TrialSummary structures

A list of the summaries of your trials.

Errors

ResourceNotFound:

Resource being access is not found.

ListUserProfiles

$result = $client->listUserProfiles([/* ... */]);
$promise = $client->listUserProfilesAsync([/* ... */]);

Lists user profiles.

Parameter Syntax

$result = $client->listUserProfiles([
    'DomainIdEquals' => '<string>',
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'SortBy' => 'CreationTime|LastModifiedTime',
    'SortOrder' => 'Ascending|Descending',
    'UserProfileNameContains' => '<string>',
]);

Parameter Details

Members
DomainIdEquals
Type: string

A parameter by which to filter the results.

MaxResults
Type: int

This parameter defines the maximum number of results that can be return in a single response. The MaxResults parameter is an upper bound, not a target. If there are more results available than the value specified, a NextToken is provided in the response. The NextToken indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value for MaxResults is 10.

NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

SortBy
Type: string

The parameter by which to sort the results. The default is CreationTime.

SortOrder
Type: string

The sort order for the results. The default is Ascending.

UserProfileNameContains
Type: string

A parameter by which to filter the results.

Result Syntax

[
    'NextToken' => '<string>',
    'UserProfiles' => [
        [
            'CreationTime' => <DateTime>,
            'DomainId' => '<string>',
            'LastModifiedTime' => <DateTime>,
            'Status' => 'Deleting|Failed|InService|Pending|Updating|Update_Failed|Delete_Failed',
            'UserProfileName' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

UserProfiles
Type: Array of UserProfileDetails structures

The list of user profiles.

Errors

There are no errors described for this operation.

ListWorkforces

$result = $client->listWorkforces([/* ... */]);
$promise = $client->listWorkforcesAsync([/* ... */]);

Use this operation to list all private and vendor workforces in an Amazon Web Services Region. Note that you can only have one private workforce per Amazon Web Services Region.

Parameter Syntax

$result = $client->listWorkforces([
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreateDate',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
MaxResults
Type: int

The maximum number of workforces returned in the response.

NameContains
Type: string

A filter you can use to search for workforces using part of the workforce name.

NextToken
Type: string

A token to resume pagination.

SortBy
Type: string

Sort workforces using the workforce name or creation date.

SortOrder
Type: string

Sort workforces in ascending or descending order.

Result Syntax

[
    'NextToken' => '<string>',
    'Workforces' => [
        [
            'CognitoConfig' => [
                'ClientId' => '<string>',
                'UserPool' => '<string>',
            ],
            'CreateDate' => <DateTime>,
            'FailureReason' => '<string>',
            'LastUpdatedDate' => <DateTime>,
            'OidcConfig' => [
                'AuthenticationRequestExtraParams' => ['<string>', ...],
                'AuthorizationEndpoint' => '<string>',
                'ClientId' => '<string>',
                'Issuer' => '<string>',
                'JwksUri' => '<string>',
                'LogoutEndpoint' => '<string>',
                'Scope' => '<string>',
                'TokenEndpoint' => '<string>',
                'UserInfoEndpoint' => '<string>',
            ],
            'SourceIpConfig' => [
                'Cidrs' => ['<string>', ...],
            ],
            'Status' => 'Initializing|Updating|Deleting|Failed|Active',
            'SubDomain' => '<string>',
            'WorkforceArn' => '<string>',
            'WorkforceName' => '<string>',
            'WorkforceVpcConfig' => [
                'SecurityGroupIds' => ['<string>', ...],
                'Subnets' => ['<string>', ...],
                'VpcEndpointId' => '<string>',
                'VpcId' => '<string>',
            ],
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

A token to resume pagination.

Workforces
Required: Yes
Type: Array of Workforce structures

A list containing information about your workforce.

Errors

There are no errors described for this operation.

ListWorkteams

$result = $client->listWorkteams([/* ... */]);
$promise = $client->listWorkteamsAsync([/* ... */]);

Gets a list of private work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.

Parameter Syntax

$result = $client->listWorkteams([
    'MaxResults' => <integer>,
    'NameContains' => '<string>',
    'NextToken' => '<string>',
    'SortBy' => 'Name|CreateDate',
    'SortOrder' => 'Ascending|Descending',
]);

Parameter Details

Members
MaxResults
Type: int

The maximum number of work teams to return in each page of the response.

NameContains
Type: string

A string in the work team's name. This filter returns only work teams whose name contains the specified string.

NextToken
Type: string

If the result of the previous ListWorkteams request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.

SortBy
Type: string

The field to sort results by. The default is CreationTime.

SortOrder
Type: string

The sort order for results. The default is Ascending.

Result Syntax

[
    'NextToken' => '<string>',
    'Workteams' => [
        [
            'CreateDate' => <DateTime>,
            'Description' => '<string>',
            'LastUpdatedDate' => <DateTime>,
            'MemberDefinitions' => [
                [
                    'CognitoMemberDefinition' => [
                        'ClientId' => '<string>',
                        'UserGroup' => '<string>',
                        'UserPool' => '<string>',
                    ],
                    'OidcMemberDefinition' => [
                        'Groups' => ['<string>', ...],
                    ],
                ],
                // ...
            ],
            'NotificationConfiguration' => [
                'NotificationTopicArn' => '<string>',
            ],
            'ProductListingIds' => ['<string>', ...],
            'SubDomain' => '<string>',
            'WorkerAccessConfiguration' => [
                'S3Presign' => [
                    'IamPolicyConstraints' => [
                        'SourceIp' => 'Enabled|Disabled',
                        'VpcSourceIp' => 'Enabled|Disabled',
                    ],
                ],
            ],
            'WorkforceArn' => '<string>',
            'WorkteamArn' => '<string>',
            'WorkteamName' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.

Workteams
Required: Yes
Type: Array of Workteam structures

An array of Workteam objects, each describing a work team.

Errors

There are no errors described for this operation.

PutModelPackageGroupPolicy

$result = $client->putModelPackageGroupPolicy([/* ... */]);
$promise = $client->putModelPackageGroupPolicyAsync([/* ... */]);

Adds a resouce policy to control access to a model group. For information about resoure policies, see Identity-based policies and resource-based policies in the Amazon Web Services Identity and Access Management User Guide..

Parameter Syntax

$result = $client->putModelPackageGroupPolicy([
    'ModelPackageGroupName' => '<string>', // REQUIRED
    'ResourcePolicy' => '<string>', // REQUIRED
]);

Parameter Details

Members
ModelPackageGroupName
Required: Yes
Type: string

The name of the model group to add a resource policy to.

ResourcePolicy
Required: Yes
Type: string

The resource policy for the model group.

Result Syntax

[
    'ModelPackageGroupArn' => '<string>',
]

Result Details

Members
ModelPackageGroupArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model package group.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

QueryLineage

$result = $client->queryLineage([/* ... */]);
$promise = $client->queryLineageAsync([/* ... */]);

Use this action to inspect your lineage and discover relationships between entities. For more information, see Querying Lineage Entities in the Amazon SageMaker Developer Guide.

Parameter Syntax

$result = $client->queryLineage([
    'Direction' => 'Both|Ascendants|Descendants',
    'Filters' => [
        'CreatedAfter' => <integer || string || DateTime>,
        'CreatedBefore' => <integer || string || DateTime>,
        'LineageTypes' => ['<string>', ...],
        'ModifiedAfter' => <integer || string || DateTime>,
        'ModifiedBefore' => <integer || string || DateTime>,
        'Properties' => ['<string>', ...],
        'Types' => ['<string>', ...],
    ],
    'IncludeEdges' => true || false,
    'MaxDepth' => <integer>,
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'StartArns' => ['<string>', ...],
]);

Parameter Details

Members
Direction
Type: string

Associations between lineage entities have a direction. This parameter determines the direction from the StartArn(s) that the query traverses.

Filters
Type: QueryFilters structure

A set of filtering parameters that allow you to specify which entities should be returned.

  • Properties - Key-value pairs to match on the lineage entities' properties.

  • LineageTypes - A set of lineage entity types to match on. For example: TrialComponent, Artifact, or Context.

  • CreatedBefore - Filter entities created before this date.

  • ModifiedBefore - Filter entities modified before this date.

  • ModifiedAfter - Filter entities modified after this date.

IncludeEdges
Type: boolean

Setting this value to True retrieves not only the entities of interest but also the Associations and lineage entities on the path. Set to False to only return lineage entities that match your query.

MaxDepth
Type: int

The maximum depth in lineage relationships from the StartArns that are traversed. Depth is a measure of the number of Associations from the StartArn entity to the matched results.

MaxResults
Type: int

Limits the number of vertices in the results. Use the NextToken in a response to to retrieve the next page of results.

NextToken
Type: string

Limits the number of vertices in the request. Use the NextToken in a response to to retrieve the next page of results.

StartArns
Type: Array of strings

A list of resource Amazon Resource Name (ARN) that represent the starting point for your lineage query.

Result Syntax

[
    'Edges' => [
        [
            'AssociationType' => 'ContributedTo|AssociatedWith|DerivedFrom|Produced|SameAs',
            'DestinationArn' => '<string>',
            'SourceArn' => '<string>',
        ],
        // ...
    ],
    'NextToken' => '<string>',
    'Vertices' => [
        [
            'Arn' => '<string>',
            'LineageType' => 'TrialComponent|Artifact|Context|Action',
            'Type' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
Edges
Type: Array of Edge structures

A list of edges that connect vertices in the response.

NextToken
Type: string

Limits the number of vertices in the response. Use the NextToken in a response to to retrieve the next page of results.

Vertices
Type: Array of Vertex structures

A list of vertices connected to the start entity(ies) in the lineage graph.

Errors

ResourceNotFound:

Resource being access is not found.

RegisterDevices

$result = $client->registerDevices([/* ... */]);
$promise = $client->registerDevicesAsync([/* ... */]);

Register devices.

Parameter Syntax

$result = $client->registerDevices([
    'DeviceFleetName' => '<string>', // REQUIRED
    'Devices' => [ // REQUIRED
        [
            'Description' => '<string>',
            'DeviceName' => '<string>', // REQUIRED
            'IotThingName' => '<string>',
        ],
        // ...
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
DeviceFleetName
Required: Yes
Type: string

The name of the fleet.

Devices
Required: Yes
Type: Array of Device structures

A list of devices to register with SageMaker Edge Manager.

Tags
Type: Array of Tag structures

The tags associated with devices.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

RenderUiTemplate

$result = $client->renderUiTemplate([/* ... */]);
$promise = $client->renderUiTemplateAsync([/* ... */]);

Renders the UI template so that you can preview the worker's experience.

Parameter Syntax

$result = $client->renderUiTemplate([
    'HumanTaskUiArn' => '<string>',
    'RoleArn' => '<string>', // REQUIRED
    'Task' => [ // REQUIRED
        'Input' => '<string>', // REQUIRED
    ],
    'UiTemplate' => [
        'Content' => '<string>', // REQUIRED
    ],
]);

Parameter Details

Members
HumanTaskUiArn
Type: string

The HumanTaskUiArn of the worker UI that you want to render. Do not provide a HumanTaskUiArn if you use the UiTemplate parameter.

See a list of available Human Ui Amazon Resource Names (ARNs) in UiConfig.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) that has access to the S3 objects that are used by the template.

Task
Required: Yes
Type: RenderableTask structure

A RenderableTask object containing a representative task to render.

UiTemplate
Type: UiTemplate structure

A Template object containing the worker UI template to render.

Result Syntax

[
    'Errors' => [
        [
            'Code' => '<string>',
            'Message' => '<string>',
        ],
        // ...
    ],
    'RenderedContent' => '<string>',
]

Result Details

Members
Errors
Required: Yes
Type: Array of RenderingError structures

A list of one or more RenderingError objects if any were encountered while rendering the template. If there were no errors, the list is empty.

RenderedContent
Required: Yes
Type: string

A Liquid template that renders the HTML for the worker UI.

Errors

ResourceNotFound:

Resource being access is not found.

RetryPipelineExecution

$result = $client->retryPipelineExecution([/* ... */]);
$promise = $client->retryPipelineExecutionAsync([/* ... */]);

Retry the execution of the pipeline.

Parameter Syntax

$result = $client->retryPipelineExecution([
    'ClientRequestToken' => '<string>', // REQUIRED
    'ParallelismConfiguration' => [
        'MaxParallelExecutionSteps' => <integer>, // REQUIRED
    ],
    'PipelineExecutionArn' => '<string>', // REQUIRED
]);

Parameter Details

Members
ClientRequestToken
Required: Yes
Type: string

A unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than once.

ParallelismConfiguration
Type: ParallelismConfiguration structure

This configuration, if specified, overrides the parallelism configuration of the parent pipeline.

PipelineExecutionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the pipeline execution.

Result Syntax

[
    'PipelineExecutionArn' => '<string>',
]

Result Details

Members
PipelineExecutionArn
Type: string

The Amazon Resource Name (ARN) of the pipeline execution.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

$result = $client->search([/* ... */]);
$promise = $client->searchAsync([/* ... */]);

Finds SageMaker resources that match a search query. Matching resources are returned as a list of SearchRecord objects in the response. You can sort the search results by any resource property in a ascending or descending order.

You can query against the following value types: numeric, text, Boolean, and timestamp.

The Search API may provide access to otherwise restricted data. See Amazon SageMaker API Permissions: Actions, Permissions, and Resources Reference for more information.

Parameter Syntax

$result = $client->search([
    'CrossAccountFilterOption' => 'SameAccount|CrossAccount',
    'MaxResults' => <integer>,
    'NextToken' => '<string>',
    'Resource' => 'TrainingJob|Experiment|ExperimentTrial|ExperimentTrialComponent|Endpoint|Model|ModelPackage|ModelPackageGroup|Pipeline|PipelineExecution|FeatureGroup|FeatureMetadata|Image|ImageVersion|Project|HyperParameterTuningJob|ModelCard', // REQUIRED
    'SearchExpression' => [
        'Filters' => [
            [
                'Name' => '<string>', // REQUIRED
                'Operator' => 'Equals|NotEquals|GreaterThan|GreaterThanOrEqualTo|LessThan|LessThanOrEqualTo|Contains|Exists|NotExists|In',
                'Value' => '<string>',
            ],
            // ...
        ],
        'NestedFilters' => [
            [
                'Filters' => [ // REQUIRED
                    [
                        'Name' => '<string>', // REQUIRED
                        'Operator' => 'Equals|NotEquals|GreaterThan|GreaterThanOrEqualTo|LessThan|LessThanOrEqualTo|Contains|Exists|NotExists|In',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
                'NestedPropertyName' => '<string>', // REQUIRED
            ],
            // ...
        ],
        'Operator' => 'And|Or',
        'SubExpressions' => [
            [...], // RECURSIVE
            // ...
        ],
    ],
    'SortBy' => '<string>',
    'SortOrder' => 'Ascending|Descending',
    'VisibilityConditions' => [
        [
            'Key' => '<string>',
            'Value' => '<string>',
        ],
        // ...
    ],
]);

Parameter Details

Members
CrossAccountFilterOption
Type: string

A cross account filter option. When the value is "CrossAccount" the search results will only include resources made discoverable to you from other accounts. When the value is "SameAccount" or null the search results will only include resources from your account. Default is null. For more information on searching for resources made discoverable to your account, see Search discoverable resources in the SageMaker Developer Guide. The maximum number of ResourceCatalogs viewable is 1000.

MaxResults
Type: int

The maximum number of results to return.

NextToken
Type: string

If more than MaxResults resources match the specified SearchExpression, the response includes a NextToken. The NextToken can be passed to the next SearchRequest to continue retrieving results.

Resource
Required: Yes
Type: string

The name of the SageMaker resource to search for.

SearchExpression
Type: SearchExpression structure

A Boolean conditional statement. Resources must satisfy this condition to be included in search results. You must provide at least one subexpression, filter, or nested filter. The maximum number of recursive SubExpressions, NestedFilters, and Filters that can be included in a SearchExpression object is 50.

SortBy
Type: string

The name of the resource property used to sort the SearchResults. The default is LastModifiedTime.

SortOrder
Type: string

How SearchResults are ordered. Valid values are Ascending or Descending. The default is Descending.

VisibilityConditions
Type: Array of VisibilityConditions structures

Limits the results of your search request to the resources that you can access.

Result Syntax

[
    'NextToken' => '<string>',
    'Results' => [
        [
            'Endpoint' => [
                'CreationTime' => <DateTime>,
                'DataCaptureConfig' => [
                    'CaptureStatus' => 'Started|Stopped',
                    'CurrentSamplingPercentage' => <integer>,
                    'DestinationS3Uri' => '<string>',
                    'EnableCapture' => true || false,
                    'KmsKeyId' => '<string>',
                ],
                'EndpointArn' => '<string>',
                'EndpointConfigName' => '<string>',
                'EndpointName' => '<string>',
                'EndpointStatus' => 'OutOfService|Creating|Updating|SystemUpdating|RollingBack|InService|Deleting|Failed|UpdateRollbackFailed',
                'FailureReason' => '<string>',
                'LastModifiedTime' => <DateTime>,
                'MonitoringSchedules' => [
                    [
                        'CreationTime' => <DateTime>,
                        'EndpointName' => '<string>',
                        'FailureReason' => '<string>',
                        'LastModifiedTime' => <DateTime>,
                        'LastMonitoringExecutionSummary' => [
                            'CreationTime' => <DateTime>,
                            'EndpointName' => '<string>',
                            'FailureReason' => '<string>',
                            'LastModifiedTime' => <DateTime>,
                            'MonitoringExecutionStatus' => 'Pending|Completed|CompletedWithViolations|InProgress|Failed|Stopping|Stopped',
                            'MonitoringJobDefinitionName' => '<string>',
                            'MonitoringScheduleName' => '<string>',
                            'MonitoringType' => 'DataQuality|ModelQuality|ModelBias|ModelExplainability',
                            'ProcessingJobArn' => '<string>',
                            'ScheduledTime' => <DateTime>,
                        ],
                        'MonitoringScheduleArn' => '<string>',
                        'MonitoringScheduleConfig' => [
                            'MonitoringJobDefinition' => [
                                'BaselineConfig' => [
                                    'BaseliningJobName' => '<string>',
                                    'ConstraintsResource' => [
                                        'S3Uri' => '<string>',
                                    ],
                                    'StatisticsResource' => [
                                        'S3Uri' => '<string>',
                                    ],
                                ],
                                'Environment' => ['<string>', ...],
                                'MonitoringAppSpecification' => [
                                    'ContainerArguments' => ['<string>', ...],
                                    'ContainerEntrypoint' => ['<string>', ...],
                                    'ImageUri' => '<string>',
                                    'PostAnalyticsProcessorSourceUri' => '<string>',
                                    'RecordPreprocessorSourceUri' => '<string>',
                                ],
                                'MonitoringInputs' => [
                                    [
                                        'BatchTransformInput' => [
                                            'DataCapturedDestinationS3Uri' => '<string>',
                                            'DatasetFormat' => [
                                                'Csv' => [
                                                    'Header' => true || false,
                                                ],
                                                'Json' => [
                                                    'Line' => true || false,
                                                ],
                                                'Parquet' => [
                                                ],
                                            ],
                                            'EndTimeOffset' => '<string>',
                                            'ExcludeFeaturesAttribute' => '<string>',
                                            'FeaturesAttribute' => '<string>',
                                            'InferenceAttribute' => '<string>',
                                            'LocalPath' => '<string>',
                                            'ProbabilityAttribute' => '<string>',
                                            'ProbabilityThresholdAttribute' => <float>,
                                            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                                            'S3InputMode' => 'Pipe|File',
                                            'StartTimeOffset' => '<string>',
                                        ],
                                        'EndpointInput' => [
                                            'EndTimeOffset' => '<string>',
                                            'EndpointName' => '<string>',
                                            'ExcludeFeaturesAttribute' => '<string>',
                                            'FeaturesAttribute' => '<string>',
                                            'InferenceAttribute' => '<string>',
                                            'LocalPath' => '<string>',
                                            'ProbabilityAttribute' => '<string>',
                                            'ProbabilityThresholdAttribute' => <float>,
                                            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                                            'S3InputMode' => 'Pipe|File',
                                            'StartTimeOffset' => '<string>',
                                        ],
                                    ],
                                    // ...
                                ],
                                'MonitoringOutputConfig' => [
                                    'KmsKeyId' => '<string>',
                                    'MonitoringOutputs' => [
                                        [
                                            'S3Output' => [
                                                'LocalPath' => '<string>',
                                                'S3UploadMode' => 'Continuous|EndOfJob',
                                                'S3Uri' => '<string>',
                                            ],
                                        ],
                                        // ...
                                    ],
                                ],
                                'MonitoringResources' => [
                                    'ClusterConfig' => [
                                        'InstanceCount' => <integer>,
                                        'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge',
                                        'VolumeKmsKeyId' => '<string>',
                                        'VolumeSizeInGB' => <integer>,
                                    ],
                                ],
                                'NetworkConfig' => [
                                    'EnableInterContainerTrafficEncryption' => true || false,
                                    'EnableNetworkIsolation' => true || false,
                                    'VpcConfig' => [
                                        'SecurityGroupIds' => ['<string>', ...],
                                        'Subnets' => ['<string>', ...],
                                    ],
                                ],
                                'RoleArn' => '<string>',
                                'StoppingCondition' => [
                                    'MaxRuntimeInSeconds' => <integer>,
                                ],
                            ],
                            'MonitoringJobDefinitionName' => '<string>',
                            'MonitoringType' => 'DataQuality|ModelQuality|ModelBias|ModelExplainability',
                            'ScheduleConfig' => [
                                'DataAnalysisEndTime' => '<string>',
                                'DataAnalysisStartTime' => '<string>',
                                'ScheduleExpression' => '<string>',
                            ],
                        ],
                        'MonitoringScheduleName' => '<string>',
                        'MonitoringScheduleStatus' => 'Pending|Failed|Scheduled|Stopped',
                        'MonitoringType' => 'DataQuality|ModelQuality|ModelBias|ModelExplainability',
                        'Tags' => [
                            [
                                'Key' => '<string>',
                                'Value' => '<string>',
                            ],
                            // ...
                        ],
                    ],
                    // ...
                ],
                'ProductionVariants' => [
                    [
                        'CurrentInstanceCount' => <integer>,
                        'CurrentServerlessConfig' => [
                            'MaxConcurrency' => <integer>,
                            'MemorySizeInMB' => <integer>,
                            'ProvisionedConcurrency' => <integer>,
                        ],
                        'CurrentWeight' => <float>,
                        'DeployedImages' => [
                            [
                                'ResolutionTime' => <DateTime>,
                                'ResolvedImage' => '<string>',
                                'SpecifiedImage' => '<string>',
                            ],
                            // ...
                        ],
                        'DesiredInstanceCount' => <integer>,
                        'DesiredServerlessConfig' => [
                            'MaxConcurrency' => <integer>,
                            'MemorySizeInMB' => <integer>,
                            'ProvisionedConcurrency' => <integer>,
                        ],
                        'DesiredWeight' => <float>,
                        'ManagedInstanceScaling' => [
                            'MaxInstanceCount' => <integer>,
                            'MinInstanceCount' => <integer>,
                            'Status' => 'ENABLED|DISABLED',
                        ],
                        'RoutingConfig' => [
                            'RoutingStrategy' => 'LEAST_OUTSTANDING_REQUESTS|RANDOM',
                        ],
                        'VariantName' => '<string>',
                        'VariantStatus' => [
                            [
                                'StartTime' => <DateTime>,
                                'Status' => 'Creating|Updating|Deleting|ActivatingTraffic|Baking',
                                'StatusMessage' => '<string>',
                            ],
                            // ...
                        ],
                    ],
                    // ...
                ],
                'ShadowProductionVariants' => [
                    [
                        'CurrentInstanceCount' => <integer>,
                        'CurrentServerlessConfig' => [
                            'MaxConcurrency' => <integer>,
                            'MemorySizeInMB' => <integer>,
                            'ProvisionedConcurrency' => <integer>,
                        ],
                        'CurrentWeight' => <float>,
                        'DeployedImages' => [
                            [
                                'ResolutionTime' => <DateTime>,
                                'ResolvedImage' => '<string>',
                                'SpecifiedImage' => '<string>',
                            ],
                            // ...
                        ],
                        'DesiredInstanceCount' => <integer>,
                        'DesiredServerlessConfig' => [
                            'MaxConcurrency' => <integer>,
                            'MemorySizeInMB' => <integer>,
                            'ProvisionedConcurrency' => <integer>,
                        ],
                        'DesiredWeight' => <float>,
                        'ManagedInstanceScaling' => [
                            'MaxInstanceCount' => <integer>,
                            'MinInstanceCount' => <integer>,
                            'Status' => 'ENABLED|DISABLED',
                        ],
                        'RoutingConfig' => [
                            'RoutingStrategy' => 'LEAST_OUTSTANDING_REQUESTS|RANDOM',
                        ],
                        'VariantName' => '<string>',
                        'VariantStatus' => [
                            [
                                'StartTime' => <DateTime>,
                                'Status' => 'Creating|Updating|Deleting|ActivatingTraffic|Baking',
                                'StatusMessage' => '<string>',
                            ],
                            // ...
                        ],
                    ],
                    // ...
                ],
                'Tags' => [
                    [
                        'Key' => '<string>',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
            ],
            'Experiment' => [
                'CreatedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'CreationTime' => <DateTime>,
                'Description' => '<string>',
                'DisplayName' => '<string>',
                'ExperimentArn' => '<string>',
                'ExperimentName' => '<string>',
                'LastModifiedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'LastModifiedTime' => <DateTime>,
                'Source' => [
                    'SourceArn' => '<string>',
                    'SourceType' => '<string>',
                ],
                'Tags' => [
                    [
                        'Key' => '<string>',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
            ],
            'FeatureGroup' => [
                'CreationTime' => <DateTime>,
                'Description' => '<string>',
                'EventTimeFeatureName' => '<string>',
                'FailureReason' => '<string>',
                'FeatureDefinitions' => [
                    [
                        'CollectionConfig' => [
                            'VectorConfig' => [
                                'Dimension' => <integer>,
                            ],
                        ],
                        'CollectionType' => 'List|Set|Vector',
                        'FeatureName' => '<string>',
                        'FeatureType' => 'Integral|Fractional|String',
                    ],
                    // ...
                ],
                'FeatureGroupArn' => '<string>',
                'FeatureGroupName' => '<string>',
                'FeatureGroupStatus' => 'Creating|Created|CreateFailed|Deleting|DeleteFailed',
                'LastModifiedTime' => <DateTime>,
                'LastUpdateStatus' => [
                    'FailureReason' => '<string>',
                    'Status' => 'Successful|Failed|InProgress',
                ],
                'OfflineStoreConfig' => [
                    'DataCatalogConfig' => [
                        'Catalog' => '<string>',
                        'Database' => '<string>',
                        'TableName' => '<string>',
                    ],
                    'DisableGlueTableCreation' => true || false,
                    'S3StorageConfig' => [
                        'KmsKeyId' => '<string>',
                        'ResolvedOutputS3Uri' => '<string>',
                        'S3Uri' => '<string>',
                    ],
                    'TableFormat' => 'Default|Glue|Iceberg',
                ],
                'OfflineStoreStatus' => [
                    'BlockedReason' => '<string>',
                    'Status' => 'Active|Blocked|Disabled',
                ],
                'OnlineStoreConfig' => [
                    'EnableOnlineStore' => true || false,
                    'SecurityConfig' => [
                        'KmsKeyId' => '<string>',
                    ],
                    'StorageType' => 'Standard|InMemory',
                    'TtlDuration' => [
                        'Unit' => 'Seconds|Minutes|Hours|Days|Weeks',
                        'Value' => <integer>,
                    ],
                ],
                'RecordIdentifierFeatureName' => '<string>',
                'RoleArn' => '<string>',
                'Tags' => [
                    [
                        'Key' => '<string>',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
            ],
            'FeatureMetadata' => [
                'CreationTime' => <DateTime>,
                'Description' => '<string>',
                'FeatureGroupArn' => '<string>',
                'FeatureGroupName' => '<string>',
                'FeatureName' => '<string>',
                'FeatureType' => 'Integral|Fractional|String',
                'LastModifiedTime' => <DateTime>,
                'Parameters' => [
                    [
                        'Key' => '<string>',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
            ],
            'HyperParameterTuningJob' => [
                'BestTrainingJob' => [
                    'CreationTime' => <DateTime>,
                    'FailureReason' => '<string>',
                    'FinalHyperParameterTuningJobObjectiveMetric' => [
                        'MetricName' => '<string>',
                        'Type' => 'Maximize|Minimize',
                        'Value' => <float>,
                    ],
                    'ObjectiveStatus' => 'Succeeded|Pending|Failed',
                    'TrainingEndTime' => <DateTime>,
                    'TrainingJobArn' => '<string>',
                    'TrainingJobDefinitionName' => '<string>',
                    'TrainingJobName' => '<string>',
                    'TrainingJobStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
                    'TrainingStartTime' => <DateTime>,
                    'TunedHyperParameters' => ['<string>', ...],
                    'TuningJobName' => '<string>',
                ],
                'ConsumedResources' => [
                    'RuntimeInSeconds' => <integer>,
                ],
                'CreationTime' => <DateTime>,
                'FailureReason' => '<string>',
                'HyperParameterTuningEndTime' => <DateTime>,
                'HyperParameterTuningJobArn' => '<string>',
                'HyperParameterTuningJobConfig' => [
                    'HyperParameterTuningJobObjective' => [
                        'MetricName' => '<string>',
                        'Type' => 'Maximize|Minimize',
                    ],
                    'ParameterRanges' => [
                        'AutoParameters' => [
                            [
                                'Name' => '<string>',
                                'ValueHint' => '<string>',
                            ],
                            // ...
                        ],
                        'CategoricalParameterRanges' => [
                            [
                                'Name' => '<string>',
                                'Values' => ['<string>', ...],
                            ],
                            // ...
                        ],
                        'ContinuousParameterRanges' => [
                            [
                                'MaxValue' => '<string>',
                                'MinValue' => '<string>',
                                'Name' => '<string>',
                                'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                            ],
                            // ...
                        ],
                        'IntegerParameterRanges' => [
                            [
                                'MaxValue' => '<string>',
                                'MinValue' => '<string>',
                                'Name' => '<string>',
                                'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                            ],
                            // ...
                        ],
                    ],
                    'RandomSeed' => <integer>,
                    'ResourceLimits' => [
                        'MaxNumberOfTrainingJobs' => <integer>,
                        'MaxParallelTrainingJobs' => <integer>,
                        'MaxRuntimeInSeconds' => <integer>,
                    ],
                    'Strategy' => 'Bayesian|Random|Hyperband|Grid',
                    'StrategyConfig' => [
                        'HyperbandStrategyConfig' => [
                            'MaxResource' => <integer>,
                            'MinResource' => <integer>,
                        ],
                    ],
                    'TrainingJobEarlyStoppingType' => 'Off|Auto',
                    'TuningJobCompletionCriteria' => [
                        'BestObjectiveNotImproving' => [
                            'MaxNumberOfTrainingJobsNotImproving' => <integer>,
                        ],
                        'ConvergenceDetected' => [
                            'CompleteOnConvergence' => 'Disabled|Enabled',
                        ],
                        'TargetObjectiveMetricValue' => <float>,
                    ],
                ],
                'HyperParameterTuningJobName' => '<string>',
                'HyperParameterTuningJobStatus' => 'Completed|InProgress|Failed|Stopped|Stopping|Deleting|DeleteFailed',
                'LastModifiedTime' => <DateTime>,
                'ObjectiveStatusCounters' => [
                    'Failed' => <integer>,
                    'Pending' => <integer>,
                    'Succeeded' => <integer>,
                ],
                'OverallBestTrainingJob' => [
                    'CreationTime' => <DateTime>,
                    'FailureReason' => '<string>',
                    'FinalHyperParameterTuningJobObjectiveMetric' => [
                        'MetricName' => '<string>',
                        'Type' => 'Maximize|Minimize',
                        'Value' => <float>,
                    ],
                    'ObjectiveStatus' => 'Succeeded|Pending|Failed',
                    'TrainingEndTime' => <DateTime>,
                    'TrainingJobArn' => '<string>',
                    'TrainingJobDefinitionName' => '<string>',
                    'TrainingJobName' => '<string>',
                    'TrainingJobStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
                    'TrainingStartTime' => <DateTime>,
                    'TunedHyperParameters' => ['<string>', ...],
                    'TuningJobName' => '<string>',
                ],
                'Tags' => [
                    [
                        'Key' => '<string>',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
                'TrainingJobDefinition' => [
                    'AlgorithmSpecification' => [
                        'AlgorithmName' => '<string>',
                        'MetricDefinitions' => [
                            [
                                'Name' => '<string>',
                                'Regex' => '<string>',
                            ],
                            // ...
                        ],
                        'TrainingImage' => '<string>',
                        'TrainingInputMode' => 'Pipe|File|FastFile',
                    ],
                    'CheckpointConfig' => [
                        'LocalPath' => '<string>',
                        'S3Uri' => '<string>',
                    ],
                    'DefinitionName' => '<string>',
                    'EnableInterContainerTrafficEncryption' => true || false,
                    'EnableManagedSpotTraining' => true || false,
                    'EnableNetworkIsolation' => true || false,
                    'Environment' => ['<string>', ...],
                    'HyperParameterRanges' => [
                        'AutoParameters' => [
                            [
                                'Name' => '<string>',
                                'ValueHint' => '<string>',
                            ],
                            // ...
                        ],
                        'CategoricalParameterRanges' => [
                            [
                                'Name' => '<string>',
                                'Values' => ['<string>', ...],
                            ],
                            // ...
                        ],
                        'ContinuousParameterRanges' => [
                            [
                                'MaxValue' => '<string>',
                                'MinValue' => '<string>',
                                'Name' => '<string>',
                                'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                            ],
                            // ...
                        ],
                        'IntegerParameterRanges' => [
                            [
                                'MaxValue' => '<string>',
                                'MinValue' => '<string>',
                                'Name' => '<string>',
                                'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                            ],
                            // ...
                        ],
                    ],
                    'HyperParameterTuningResourceConfig' => [
                        'AllocationStrategy' => 'Prioritized',
                        'InstanceConfigs' => [
                            [
                                'InstanceCount' => <integer>,
                                'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                                'VolumeSizeInGB' => <integer>,
                            ],
                            // ...
                        ],
                        'InstanceCount' => <integer>,
                        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                        'VolumeKmsKeyId' => '<string>',
                        'VolumeSizeInGB' => <integer>,
                    ],
                    'InputDataConfig' => [
                        [
                            'ChannelName' => '<string>',
                            'CompressionType' => 'None|Gzip',
                            'ContentType' => '<string>',
                            'DataSource' => [
                                'FileSystemDataSource' => [
                                    'DirectoryPath' => '<string>',
                                    'FileSystemAccessMode' => 'rw|ro',
                                    'FileSystemId' => '<string>',
                                    'FileSystemType' => 'EFS|FSxLustre',
                                ],
                                'S3DataSource' => [
                                    'AttributeNames' => ['<string>', ...],
                                    'InstanceGroupNames' => ['<string>', ...],
                                    'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                                    'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile',
                                    'S3Uri' => '<string>',
                                ],
                            ],
                            'InputMode' => 'Pipe|File|FastFile',
                            'RecordWrapperType' => 'None|RecordIO',
                            'ShuffleConfig' => [
                                'Seed' => <integer>,
                            ],
                        ],
                        // ...
                    ],
                    'OutputDataConfig' => [
                        'CompressionType' => 'GZIP|NONE',
                        'KmsKeyId' => '<string>',
                        'S3OutputPath' => '<string>',
                    ],
                    'ResourceConfig' => [
                        'InstanceCount' => <integer>,
                        'InstanceGroups' => [
                            [
                                'InstanceCount' => <integer>,
                                'InstanceGroupName' => '<string>',
                                'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                            ],
                            // ...
                        ],
                        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                        'KeepAlivePeriodInSeconds' => <integer>,
                        'TrainingPlanArn' => '<string>',
                        'VolumeKmsKeyId' => '<string>',
                        'VolumeSizeInGB' => <integer>,
                    ],
                    'RetryStrategy' => [
                        'MaximumRetryAttempts' => <integer>,
                    ],
                    'RoleArn' => '<string>',
                    'StaticHyperParameters' => ['<string>', ...],
                    'StoppingCondition' => [
                        'MaxPendingTimeInSeconds' => <integer>,
                        'MaxRuntimeInSeconds' => <integer>,
                        'MaxWaitTimeInSeconds' => <integer>,
                    ],
                    'TuningObjective' => [
                        'MetricName' => '<string>',
                        'Type' => 'Maximize|Minimize',
                    ],
                    'VpcConfig' => [
                        'SecurityGroupIds' => ['<string>', ...],
                        'Subnets' => ['<string>', ...],
                    ],
                ],
                'TrainingJobDefinitions' => [
                    [
                        'AlgorithmSpecification' => [
                            'AlgorithmName' => '<string>',
                            'MetricDefinitions' => [
                                [
                                    'Name' => '<string>',
                                    'Regex' => '<string>',
                                ],
                                // ...
                            ],
                            'TrainingImage' => '<string>',
                            'TrainingInputMode' => 'Pipe|File|FastFile',
                        ],
                        'CheckpointConfig' => [
                            'LocalPath' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                        'DefinitionName' => '<string>',
                        'EnableInterContainerTrafficEncryption' => true || false,
                        'EnableManagedSpotTraining' => true || false,
                        'EnableNetworkIsolation' => true || false,
                        'Environment' => ['<string>', ...],
                        'HyperParameterRanges' => [
                            'AutoParameters' => [
                                [
                                    'Name' => '<string>',
                                    'ValueHint' => '<string>',
                                ],
                                // ...
                            ],
                            'CategoricalParameterRanges' => [
                                [
                                    'Name' => '<string>',
                                    'Values' => ['<string>', ...],
                                ],
                                // ...
                            ],
                            'ContinuousParameterRanges' => [
                                [
                                    'MaxValue' => '<string>',
                                    'MinValue' => '<string>',
                                    'Name' => '<string>',
                                    'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                                ],
                                // ...
                            ],
                            'IntegerParameterRanges' => [
                                [
                                    'MaxValue' => '<string>',
                                    'MinValue' => '<string>',
                                    'Name' => '<string>',
                                    'ScalingType' => 'Auto|Linear|Logarithmic|ReverseLogarithmic',
                                ],
                                // ...
                            ],
                        ],
                        'HyperParameterTuningResourceConfig' => [
                            'AllocationStrategy' => 'Prioritized',
                            'InstanceConfigs' => [
                                [
                                    'InstanceCount' => <integer>,
                                    'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                                    'VolumeSizeInGB' => <integer>,
                                ],
                                // ...
                            ],
                            'InstanceCount' => <integer>,
                            'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                            'VolumeKmsKeyId' => '<string>',
                            'VolumeSizeInGB' => <integer>,
                        ],
                        'InputDataConfig' => [
                            [
                                'ChannelName' => '<string>',
                                'CompressionType' => 'None|Gzip',
                                'ContentType' => '<string>',
                                'DataSource' => [
                                    'FileSystemDataSource' => [
                                        'DirectoryPath' => '<string>',
                                        'FileSystemAccessMode' => 'rw|ro',
                                        'FileSystemId' => '<string>',
                                        'FileSystemType' => 'EFS|FSxLustre',
                                    ],
                                    'S3DataSource' => [
                                        'AttributeNames' => ['<string>', ...],
                                        'InstanceGroupNames' => ['<string>', ...],
                                        'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                                        'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile',
                                        'S3Uri' => '<string>',
                                    ],
                                ],
                                'InputMode' => 'Pipe|File|FastFile',
                                'RecordWrapperType' => 'None|RecordIO',
                                'ShuffleConfig' => [
                                    'Seed' => <integer>,
                                ],
                            ],
                            // ...
                        ],
                        'OutputDataConfig' => [
                            'CompressionType' => 'GZIP|NONE',
                            'KmsKeyId' => '<string>',
                            'S3OutputPath' => '<string>',
                        ],
                        'ResourceConfig' => [
                            'InstanceCount' => <integer>,
                            'InstanceGroups' => [
                                [
                                    'InstanceCount' => <integer>,
                                    'InstanceGroupName' => '<string>',
                                    'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                                ],
                                // ...
                            ],
                            'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                            'KeepAlivePeriodInSeconds' => <integer>,
                            'TrainingPlanArn' => '<string>',
                            'VolumeKmsKeyId' => '<string>',
                            'VolumeSizeInGB' => <integer>,
                        ],
                        'RetryStrategy' => [
                            'MaximumRetryAttempts' => <integer>,
                        ],
                        'RoleArn' => '<string>',
                        'StaticHyperParameters' => ['<string>', ...],
                        'StoppingCondition' => [
                            'MaxPendingTimeInSeconds' => <integer>,
                            'MaxRuntimeInSeconds' => <integer>,
                            'MaxWaitTimeInSeconds' => <integer>,
                        ],
                        'TuningObjective' => [
                            'MetricName' => '<string>',
                            'Type' => 'Maximize|Minimize',
                        ],
                        'VpcConfig' => [
                            'SecurityGroupIds' => ['<string>', ...],
                            'Subnets' => ['<string>', ...],
                        ],
                    ],
                    // ...
                ],
                'TrainingJobStatusCounters' => [
                    'Completed' => <integer>,
                    'InProgress' => <integer>,
                    'NonRetryableError' => <integer>,
                    'RetryableError' => <integer>,
                    'Stopped' => <integer>,
                ],
                'TuningJobCompletionDetails' => [
                    'ConvergenceDetectedTime' => <DateTime>,
                    'NumberOfTrainingJobsObjectiveNotImproving' => <integer>,
                ],
                'WarmStartConfig' => [
                    'ParentHyperParameterTuningJobs' => [
                        [
                            'HyperParameterTuningJobName' => '<string>',
                        ],
                        // ...
                    ],
                    'WarmStartType' => 'IdenticalDataAndAlgorithm|TransferLearning',
                ],
            ],
            'Model' => [
                'Endpoints' => [
                    [
                        'CreationTime' => <DateTime>,
                        'EndpointArn' => '<string>',
                        'EndpointName' => '<string>',
                        'EndpointStatus' => 'OutOfService|Creating|Updating|SystemUpdating|RollingBack|InService|Deleting|Failed|UpdateRollbackFailed',
                        'LastModifiedTime' => <DateTime>,
                    ],
                    // ...
                ],
                'LastBatchTransformJob' => [
                    'AutoMLJobArn' => '<string>',
                    'BatchStrategy' => 'MultiRecord|SingleRecord',
                    'CreationTime' => <DateTime>,
                    'DataCaptureConfig' => [
                        'DestinationS3Uri' => '<string>',
                        'GenerateInferenceId' => true || false,
                        'KmsKeyId' => '<string>',
                    ],
                    'DataProcessing' => [
                        'InputFilter' => '<string>',
                        'JoinSource' => 'Input|None',
                        'OutputFilter' => '<string>',
                    ],
                    'Environment' => ['<string>', ...],
                    'ExperimentConfig' => [
                        'ExperimentName' => '<string>',
                        'RunName' => '<string>',
                        'TrialComponentDisplayName' => '<string>',
                        'TrialName' => '<string>',
                    ],
                    'FailureReason' => '<string>',
                    'LabelingJobArn' => '<string>',
                    'MaxConcurrentTransforms' => <integer>,
                    'MaxPayloadInMB' => <integer>,
                    'ModelClientConfig' => [
                        'InvocationsMaxRetries' => <integer>,
                        'InvocationsTimeoutInSeconds' => <integer>,
                    ],
                    'ModelName' => '<string>',
                    'Tags' => [
                        [
                            'Key' => '<string>',
                            'Value' => '<string>',
                        ],
                        // ...
                    ],
                    'TransformEndTime' => <DateTime>,
                    'TransformInput' => [
                        'CompressionType' => 'None|Gzip',
                        'ContentType' => '<string>',
                        'DataSource' => [
                            'S3DataSource' => [
                                'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile',
                                'S3Uri' => '<string>',
                            ],
                        ],
                        'SplitType' => 'None|Line|RecordIO|TFRecord',
                    ],
                    'TransformJobArn' => '<string>',
                    'TransformJobName' => '<string>',
                    'TransformJobStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
                    'TransformOutput' => [
                        'Accept' => '<string>',
                        'AssembleWith' => 'None|Line',
                        'KmsKeyId' => '<string>',
                        'S3OutputPath' => '<string>',
                    ],
                    'TransformResources' => [
                        'InstanceCount' => <integer>,
                        'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge',
                        'VolumeKmsKeyId' => '<string>',
                    ],
                    'TransformStartTime' => <DateTime>,
                ],
                'Model' => [
                    'Containers' => [
                        [
                            'AdditionalModelDataSources' => [
                                [
                                    'ChannelName' => '<string>',
                                    'S3DataSource' => [
                                        'CompressionType' => 'None|Gzip',
                                        'ETag' => '<string>',
                                        'HubAccessConfig' => [
                                            'HubContentArn' => '<string>',
                                        ],
                                        'ManifestEtag' => '<string>',
                                        'ManifestS3Uri' => '<string>',
                                        'ModelAccessConfig' => [
                                            'AcceptEula' => true || false,
                                        ],
                                        'S3DataType' => 'S3Prefix|S3Object',
                                        'S3Uri' => '<string>',
                                    ],
                                ],
                                // ...
                            ],
                            'ContainerHostname' => '<string>',
                            'Environment' => ['<string>', ...],
                            'Image' => '<string>',
                            'ImageConfig' => [
                                'RepositoryAccessMode' => 'Platform|Vpc',
                                'RepositoryAuthConfig' => [
                                    'RepositoryCredentialsProviderArn' => '<string>',
                                ],
                            ],
                            'InferenceSpecificationName' => '<string>',
                            'Mode' => 'SingleModel|MultiModel',
                            'ModelDataSource' => [
                                'S3DataSource' => [
                                    'CompressionType' => 'None|Gzip',
                                    'ETag' => '<string>',
                                    'HubAccessConfig' => [
                                        'HubContentArn' => '<string>',
                                    ],
                                    'ManifestEtag' => '<string>',
                                    'ManifestS3Uri' => '<string>',
                                    'ModelAccessConfig' => [
                                        'AcceptEula' => true || false,
                                    ],
                                    'S3DataType' => 'S3Prefix|S3Object',
                                    'S3Uri' => '<string>',
                                ],
                            ],
                            'ModelDataUrl' => '<string>',
                            'ModelPackageName' => '<string>',
                            'MultiModelConfig' => [
                                'ModelCacheSetting' => 'Enabled|Disabled',
                            ],
                        ],
                        // ...
                    ],
                    'CreationTime' => <DateTime>,
                    'DeploymentRecommendation' => [
                        'RealTimeInferenceRecommendations' => [
                            [
                                'Environment' => ['<string>', ...],
                                'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.12xlarge|ml.m5d.24xlarge|ml.c4.large|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.large|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.12xlarge|ml.r5.24xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.12xlarge|ml.r5d.24xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.dl1.24xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p4d.24xlarge|ml.c7g.large|ml.c7g.xlarge|ml.c7g.2xlarge|ml.c7g.4xlarge|ml.c7g.8xlarge|ml.c7g.12xlarge|ml.c7g.16xlarge|ml.m6g.large|ml.m6g.xlarge|ml.m6g.2xlarge|ml.m6g.4xlarge|ml.m6g.8xlarge|ml.m6g.12xlarge|ml.m6g.16xlarge|ml.m6gd.large|ml.m6gd.xlarge|ml.m6gd.2xlarge|ml.m6gd.4xlarge|ml.m6gd.8xlarge|ml.m6gd.12xlarge|ml.m6gd.16xlarge|ml.c6g.large|ml.c6g.xlarge|ml.c6g.2xlarge|ml.c6g.4xlarge|ml.c6g.8xlarge|ml.c6g.12xlarge|ml.c6g.16xlarge|ml.c6gd.large|ml.c6gd.xlarge|ml.c6gd.2xlarge|ml.c6gd.4xlarge|ml.c6gd.8xlarge|ml.c6gd.12xlarge|ml.c6gd.16xlarge|ml.c6gn.large|ml.c6gn.xlarge|ml.c6gn.2xlarge|ml.c6gn.4xlarge|ml.c6gn.8xlarge|ml.c6gn.12xlarge|ml.c6gn.16xlarge|ml.r6g.large|ml.r6g.xlarge|ml.r6g.2xlarge|ml.r6g.4xlarge|ml.r6g.8xlarge|ml.r6g.12xlarge|ml.r6g.16xlarge|ml.r6gd.large|ml.r6gd.xlarge|ml.r6gd.2xlarge|ml.r6gd.4xlarge|ml.r6gd.8xlarge|ml.r6gd.12xlarge|ml.r6gd.16xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge',
                                'RecommendationId' => '<string>',
                            ],
                            // ...
                        ],
                        'RecommendationStatus' => 'IN_PROGRESS|COMPLETED|FAILED|NOT_APPLICABLE',
                    ],
                    'EnableNetworkIsolation' => true || false,
                    'ExecutionRoleArn' => '<string>',
                    'InferenceExecutionConfig' => [
                        'Mode' => 'Serial|Direct',
                    ],
                    'ModelArn' => '<string>',
                    'ModelName' => '<string>',
                    'PrimaryContainer' => [
                        'AdditionalModelDataSources' => [
                            [
                                'ChannelName' => '<string>',
                                'S3DataSource' => [
                                    'CompressionType' => 'None|Gzip',
                                    'ETag' => '<string>',
                                    'HubAccessConfig' => [
                                        'HubContentArn' => '<string>',
                                    ],
                                    'ManifestEtag' => '<string>',
                                    'ManifestS3Uri' => '<string>',
                                    'ModelAccessConfig' => [
                                        'AcceptEula' => true || false,
                                    ],
                                    'S3DataType' => 'S3Prefix|S3Object',
                                    'S3Uri' => '<string>',
                                ],
                            ],
                            // ...
                        ],
                        'ContainerHostname' => '<string>',
                        'Environment' => ['<string>', ...],
                        'Image' => '<string>',
                        'ImageConfig' => [
                            'RepositoryAccessMode' => 'Platform|Vpc',
                            'RepositoryAuthConfig' => [
                                'RepositoryCredentialsProviderArn' => '<string>',
                            ],
                        ],
                        'InferenceSpecificationName' => '<string>',
                        'Mode' => 'SingleModel|MultiModel',
                        'ModelDataSource' => [
                            'S3DataSource' => [
                                'CompressionType' => 'None|Gzip',
                                'ETag' => '<string>',
                                'HubAccessConfig' => [
                                    'HubContentArn' => '<string>',
                                ],
                                'ManifestEtag' => '<string>',
                                'ManifestS3Uri' => '<string>',
                                'ModelAccessConfig' => [
                                    'AcceptEula' => true || false,
                                ],
                                'S3DataType' => 'S3Prefix|S3Object',
                                'S3Uri' => '<string>',
                            ],
                        ],
                        'ModelDataUrl' => '<string>',
                        'ModelPackageName' => '<string>',
                        'MultiModelConfig' => [
                            'ModelCacheSetting' => 'Enabled|Disabled',
                        ],
                    ],
                    'Tags' => [
                        [
                            'Key' => '<string>',
                            'Value' => '<string>',
                        ],
                        // ...
                    ],
                    'VpcConfig' => [
                        'SecurityGroupIds' => ['<string>', ...],
                        'Subnets' => ['<string>', ...],
                    ],
                ],
                'ModelCard' => [
                    'CreatedBy' => [
                        'DomainId' => '<string>',
                        'IamIdentity' => [
                            'Arn' => '<string>',
                            'PrincipalId' => '<string>',
                            'SourceIdentity' => '<string>',
                        ],
                        'UserProfileArn' => '<string>',
                        'UserProfileName' => '<string>',
                    ],
                    'CreationTime' => <DateTime>,
                    'LastModifiedBy' => [
                        'DomainId' => '<string>',
                        'IamIdentity' => [
                            'Arn' => '<string>',
                            'PrincipalId' => '<string>',
                            'SourceIdentity' => '<string>',
                        ],
                        'UserProfileArn' => '<string>',
                        'UserProfileName' => '<string>',
                    ],
                    'LastModifiedTime' => <DateTime>,
                    'ModelCardArn' => '<string>',
                    'ModelCardName' => '<string>',
                    'ModelCardStatus' => 'Draft|PendingReview|Approved|Archived',
                    'ModelCardVersion' => <integer>,
                    'ModelId' => '<string>',
                    'RiskRating' => '<string>',
                    'SecurityConfig' => [
                        'KmsKeyId' => '<string>',
                    ],
                    'Tags' => [
                        [
                            'Key' => '<string>',
                            'Value' => '<string>',
                        ],
                        // ...
                    ],
                ],
                'MonitoringSchedules' => [
                    [
                        'BatchTransformInput' => [
                            'DataCapturedDestinationS3Uri' => '<string>',
                            'DatasetFormat' => [
                                'Csv' => [
                                    'Header' => true || false,
                                ],
                                'Json' => [
                                    'Line' => true || false,
                                ],
                                'Parquet' => [
                                ],
                            ],
                            'EndTimeOffset' => '<string>',
                            'ExcludeFeaturesAttribute' => '<string>',
                            'FeaturesAttribute' => '<string>',
                            'InferenceAttribute' => '<string>',
                            'LocalPath' => '<string>',
                            'ProbabilityAttribute' => '<string>',
                            'ProbabilityThresholdAttribute' => <float>,
                            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                            'S3InputMode' => 'Pipe|File',
                            'StartTimeOffset' => '<string>',
                        ],
                        'CreationTime' => <DateTime>,
                        'EndpointName' => '<string>',
                        'FailureReason' => '<string>',
                        'LastModifiedTime' => <DateTime>,
                        'LastMonitoringExecutionSummary' => [
                            'CreationTime' => <DateTime>,
                            'EndpointName' => '<string>',
                            'FailureReason' => '<string>',
                            'LastModifiedTime' => <DateTime>,
                            'MonitoringExecutionStatus' => 'Pending|Completed|CompletedWithViolations|InProgress|Failed|Stopping|Stopped',
                            'MonitoringJobDefinitionName' => '<string>',
                            'MonitoringScheduleName' => '<string>',
                            'MonitoringType' => 'DataQuality|ModelQuality|ModelBias|ModelExplainability',
                            'ProcessingJobArn' => '<string>',
                            'ScheduledTime' => <DateTime>,
                        ],
                        'MonitoringAlertSummaries' => [
                            [
                                'Actions' => [
                                    'ModelDashboardIndicator' => [
                                        'Enabled' => true || false,
                                    ],
                                ],
                                'AlertStatus' => 'InAlert|OK',
                                'CreationTime' => <DateTime>,
                                'DatapointsToAlert' => <integer>,
                                'EvaluationPeriod' => <integer>,
                                'LastModifiedTime' => <DateTime>,
                                'MonitoringAlertName' => '<string>',
                            ],
                            // ...
                        ],
                        'MonitoringScheduleArn' => '<string>',
                        'MonitoringScheduleConfig' => [
                            'MonitoringJobDefinition' => [
                                'BaselineConfig' => [
                                    'BaseliningJobName' => '<string>',
                                    'ConstraintsResource' => [
                                        'S3Uri' => '<string>',
                                    ],
                                    'StatisticsResource' => [
                                        'S3Uri' => '<string>',
                                    ],
                                ],
                                'Environment' => ['<string>', ...],
                                'MonitoringAppSpecification' => [
                                    'ContainerArguments' => ['<string>', ...],
                                    'ContainerEntrypoint' => ['<string>', ...],
                                    'ImageUri' => '<string>',
                                    'PostAnalyticsProcessorSourceUri' => '<string>',
                                    'RecordPreprocessorSourceUri' => '<string>',
                                ],
                                'MonitoringInputs' => [
                                    [
                                        'BatchTransformInput' => [
                                            'DataCapturedDestinationS3Uri' => '<string>',
                                            'DatasetFormat' => [
                                                'Csv' => [
                                                    'Header' => true || false,
                                                ],
                                                'Json' => [
                                                    'Line' => true || false,
                                                ],
                                                'Parquet' => [
                                                ],
                                            ],
                                            'EndTimeOffset' => '<string>',
                                            'ExcludeFeaturesAttribute' => '<string>',
                                            'FeaturesAttribute' => '<string>',
                                            'InferenceAttribute' => '<string>',
                                            'LocalPath' => '<string>',
                                            'ProbabilityAttribute' => '<string>',
                                            'ProbabilityThresholdAttribute' => <float>,
                                            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                                            'S3InputMode' => 'Pipe|File',
                                            'StartTimeOffset' => '<string>',
                                        ],
                                        'EndpointInput' => [
                                            'EndTimeOffset' => '<string>',
                                            'EndpointName' => '<string>',
                                            'ExcludeFeaturesAttribute' => '<string>',
                                            'FeaturesAttribute' => '<string>',
                                            'InferenceAttribute' => '<string>',
                                            'LocalPath' => '<string>',
                                            'ProbabilityAttribute' => '<string>',
                                            'ProbabilityThresholdAttribute' => <float>,
                                            'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                                            'S3InputMode' => 'Pipe|File',
                                            'StartTimeOffset' => '<string>',
                                        ],
                                    ],
                                    // ...
                                ],
                                'MonitoringOutputConfig' => [
                                    'KmsKeyId' => '<string>',
                                    'MonitoringOutputs' => [
                                        [
                                            'S3Output' => [
                                                'LocalPath' => '<string>',
                                                'S3UploadMode' => 'Continuous|EndOfJob',
                                                'S3Uri' => '<string>',
                                            ],
                                        ],
                                        // ...
                                    ],
                                ],
                                'MonitoringResources' => [
                                    'ClusterConfig' => [
                                        'InstanceCount' => <integer>,
                                        'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge',
                                        'VolumeKmsKeyId' => '<string>',
                                        'VolumeSizeInGB' => <integer>,
                                    ],
                                ],
                                'NetworkConfig' => [
                                    'EnableInterContainerTrafficEncryption' => true || false,
                                    'EnableNetworkIsolation' => true || false,
                                    'VpcConfig' => [
                                        'SecurityGroupIds' => ['<string>', ...],
                                        'Subnets' => ['<string>', ...],
                                    ],
                                ],
                                'RoleArn' => '<string>',
                                'StoppingCondition' => [
                                    'MaxRuntimeInSeconds' => <integer>,
                                ],
                            ],
                            'MonitoringJobDefinitionName' => '<string>',
                            'MonitoringType' => 'DataQuality|ModelQuality|ModelBias|ModelExplainability',
                            'ScheduleConfig' => [
                                'DataAnalysisEndTime' => '<string>',
                                'DataAnalysisStartTime' => '<string>',
                                'ScheduleExpression' => '<string>',
                            ],
                        ],
                        'MonitoringScheduleName' => '<string>',
                        'MonitoringScheduleStatus' => 'Pending|Failed|Scheduled|Stopped',
                        'MonitoringType' => 'DataQuality|ModelQuality|ModelBias|ModelExplainability',
                    ],
                    // ...
                ],
            ],
            'ModelCard' => [
                'Content' => '<string>',
                'CreatedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'CreationTime' => <DateTime>,
                'LastModifiedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'LastModifiedTime' => <DateTime>,
                'ModelCardArn' => '<string>',
                'ModelCardName' => '<string>',
                'ModelCardStatus' => 'Draft|PendingReview|Approved|Archived',
                'ModelCardVersion' => <integer>,
                'ModelId' => '<string>',
                'ModelPackageGroupName' => '<string>',
                'RiskRating' => '<string>',
                'SecurityConfig' => [
                    'KmsKeyId' => '<string>',
                ],
                'Tags' => [
                    [
                        'Key' => '<string>',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
            ],
            'ModelPackage' => [
                'AdditionalInferenceSpecifications' => [
                    [
                        'Containers' => [
                            [
                                'AdditionalS3DataSource' => [
                                    'CompressionType' => 'None|Gzip',
                                    'ETag' => '<string>',
                                    'S3DataType' => 'S3Object|S3Prefix',
                                    'S3Uri' => '<string>',
                                ],
                                'ContainerHostname' => '<string>',
                                'Environment' => ['<string>', ...],
                                'Framework' => '<string>',
                                'FrameworkVersion' => '<string>',
                                'Image' => '<string>',
                                'ImageDigest' => '<string>',
                                'ModelDataETag' => '<string>',
                                'ModelDataSource' => [
                                    'S3DataSource' => [
                                        'CompressionType' => 'None|Gzip',
                                        'ETag' => '<string>',
                                        'HubAccessConfig' => [
                                            'HubContentArn' => '<string>',
                                        ],
                                        'ManifestEtag' => '<string>',
                                        'ManifestS3Uri' => '<string>',
                                        'ModelAccessConfig' => [
                                            'AcceptEula' => true || false,
                                        ],
                                        'S3DataType' => 'S3Prefix|S3Object',
                                        'S3Uri' => '<string>',
                                    ],
                                ],
                                'ModelDataUrl' => '<string>',
                                'ModelInput' => [
                                    'DataInputConfig' => '<string>',
                                ],
                                'NearestModelName' => '<string>',
                                'ProductId' => '<string>',
                            ],
                            // ...
                        ],
                        'Description' => '<string>',
                        'Name' => '<string>',
                        'SupportedContentTypes' => ['<string>', ...],
                        'SupportedRealtimeInferenceInstanceTypes' => ['<string>', ...],
                        'SupportedResponseMIMETypes' => ['<string>', ...],
                        'SupportedTransformInstanceTypes' => ['<string>', ...],
                    ],
                    // ...
                ],
                'ApprovalDescription' => '<string>',
                'CertifyForMarketplace' => true || false,
                'CreatedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'CreationTime' => <DateTime>,
                'CustomerMetadataProperties' => ['<string>', ...],
                'Domain' => '<string>',
                'DriftCheckBaselines' => [
                    'Bias' => [
                        'ConfigFile' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                        'PostTrainingConstraints' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                        'PreTrainingConstraints' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                    ],
                    'Explainability' => [
                        'ConfigFile' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                        'Constraints' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                    ],
                    'ModelDataQuality' => [
                        'Constraints' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                        'Statistics' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                    ],
                    'ModelQuality' => [
                        'Constraints' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                        'Statistics' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                    ],
                ],
                'InferenceSpecification' => [
                    'Containers' => [
                        [
                            'AdditionalS3DataSource' => [
                                'CompressionType' => 'None|Gzip',
                                'ETag' => '<string>',
                                'S3DataType' => 'S3Object|S3Prefix',
                                'S3Uri' => '<string>',
                            ],
                            'ContainerHostname' => '<string>',
                            'Environment' => ['<string>', ...],
                            'Framework' => '<string>',
                            'FrameworkVersion' => '<string>',
                            'Image' => '<string>',
                            'ImageDigest' => '<string>',
                            'ModelDataETag' => '<string>',
                            'ModelDataSource' => [
                                'S3DataSource' => [
                                    'CompressionType' => 'None|Gzip',
                                    'ETag' => '<string>',
                                    'HubAccessConfig' => [
                                        'HubContentArn' => '<string>',
                                    ],
                                    'ManifestEtag' => '<string>',
                                    'ManifestS3Uri' => '<string>',
                                    'ModelAccessConfig' => [
                                        'AcceptEula' => true || false,
                                    ],
                                    'S3DataType' => 'S3Prefix|S3Object',
                                    'S3Uri' => '<string>',
                                ],
                            ],
                            'ModelDataUrl' => '<string>',
                            'ModelInput' => [
                                'DataInputConfig' => '<string>',
                            ],
                            'NearestModelName' => '<string>',
                            'ProductId' => '<string>',
                        ],
                        // ...
                    ],
                    'SupportedContentTypes' => ['<string>', ...],
                    'SupportedRealtimeInferenceInstanceTypes' => ['<string>', ...],
                    'SupportedResponseMIMETypes' => ['<string>', ...],
                    'SupportedTransformInstanceTypes' => ['<string>', ...],
                ],
                'LastModifiedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'LastModifiedTime' => <DateTime>,
                'MetadataProperties' => [
                    'CommitId' => '<string>',
                    'GeneratedBy' => '<string>',
                    'ProjectId' => '<string>',
                    'Repository' => '<string>',
                ],
                'ModelApprovalStatus' => 'Approved|Rejected|PendingManualApproval',
                'ModelCard' => [
                    'ModelCardContent' => '<string>',
                    'ModelCardStatus' => 'Draft|PendingReview|Approved|Archived',
                ],
                'ModelLifeCycle' => [
                    'Stage' => '<string>',
                    'StageDescription' => '<string>',
                    'StageStatus' => '<string>',
                ],
                'ModelMetrics' => [
                    'Bias' => [
                        'PostTrainingReport' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                        'PreTrainingReport' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                        'Report' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                    ],
                    'Explainability' => [
                        'Report' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                    ],
                    'ModelDataQuality' => [
                        'Constraints' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                        'Statistics' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                    ],
                    'ModelQuality' => [
                        'Constraints' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                        'Statistics' => [
                            'ContentDigest' => '<string>',
                            'ContentType' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                    ],
                ],
                'ModelPackageArn' => '<string>',
                'ModelPackageDescription' => '<string>',
                'ModelPackageGroupName' => '<string>',
                'ModelPackageName' => '<string>',
                'ModelPackageStatus' => 'Pending|InProgress|Completed|Failed|Deleting',
                'ModelPackageStatusDetails' => [
                    'ImageScanStatuses' => [
                        [
                            'FailureReason' => '<string>',
                            'Name' => '<string>',
                            'Status' => 'NotStarted|InProgress|Completed|Failed',
                        ],
                        // ...
                    ],
                    'ValidationStatuses' => [
                        [
                            'FailureReason' => '<string>',
                            'Name' => '<string>',
                            'Status' => 'NotStarted|InProgress|Completed|Failed',
                        ],
                        // ...
                    ],
                ],
                'ModelPackageVersion' => <integer>,
                'SamplePayloadUrl' => '<string>',
                'SecurityConfig' => [
                    'KmsKeyId' => '<string>',
                ],
                'SkipModelValidation' => 'All|None',
                'SourceAlgorithmSpecification' => [
                    'SourceAlgorithms' => [
                        [
                            'AlgorithmName' => '<string>',
                            'ModelDataETag' => '<string>',
                            'ModelDataSource' => [
                                'S3DataSource' => [
                                    'CompressionType' => 'None|Gzip',
                                    'ETag' => '<string>',
                                    'HubAccessConfig' => [
                                        'HubContentArn' => '<string>',
                                    ],
                                    'ManifestEtag' => '<string>',
                                    'ManifestS3Uri' => '<string>',
                                    'ModelAccessConfig' => [
                                        'AcceptEula' => true || false,
                                    ],
                                    'S3DataType' => 'S3Prefix|S3Object',
                                    'S3Uri' => '<string>',
                                ],
                            ],
                            'ModelDataUrl' => '<string>',
                        ],
                        // ...
                    ],
                ],
                'SourceUri' => '<string>',
                'Tags' => [
                    [
                        'Key' => '<string>',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
                'Task' => '<string>',
                'ValidationSpecification' => [
                    'ValidationProfiles' => [
                        [
                            'ProfileName' => '<string>',
                            'TransformJobDefinition' => [
                                'BatchStrategy' => 'MultiRecord|SingleRecord',
                                'Environment' => ['<string>', ...],
                                'MaxConcurrentTransforms' => <integer>,
                                'MaxPayloadInMB' => <integer>,
                                'TransformInput' => [
                                    'CompressionType' => 'None|Gzip',
                                    'ContentType' => '<string>',
                                    'DataSource' => [
                                        'S3DataSource' => [
                                            'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile',
                                            'S3Uri' => '<string>',
                                        ],
                                    ],
                                    'SplitType' => 'None|Line|RecordIO|TFRecord',
                                ],
                                'TransformOutput' => [
                                    'Accept' => '<string>',
                                    'AssembleWith' => 'None|Line',
                                    'KmsKeyId' => '<string>',
                                    'S3OutputPath' => '<string>',
                                ],
                                'TransformResources' => [
                                    'InstanceCount' => <integer>,
                                    'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge',
                                    'VolumeKmsKeyId' => '<string>',
                                ],
                            ],
                        ],
                        // ...
                    ],
                    'ValidationRole' => '<string>',
                ],
            ],
            'ModelPackageGroup' => [
                'CreatedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'CreationTime' => <DateTime>,
                'ModelPackageGroupArn' => '<string>',
                'ModelPackageGroupDescription' => '<string>',
                'ModelPackageGroupName' => '<string>',
                'ModelPackageGroupStatus' => 'Pending|InProgress|Completed|Failed|Deleting|DeleteFailed',
                'Tags' => [
                    [
                        'Key' => '<string>',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
            ],
            'Pipeline' => [
                'CreatedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'CreationTime' => <DateTime>,
                'LastModifiedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'LastModifiedTime' => <DateTime>,
                'LastRunTime' => <DateTime>,
                'ParallelismConfiguration' => [
                    'MaxParallelExecutionSteps' => <integer>,
                ],
                'PipelineArn' => '<string>',
                'PipelineDescription' => '<string>',
                'PipelineDisplayName' => '<string>',
                'PipelineName' => '<string>',
                'PipelineStatus' => 'Active|Deleting',
                'RoleArn' => '<string>',
                'Tags' => [
                    [
                        'Key' => '<string>',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
            ],
            'PipelineExecution' => [
                'CreatedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'CreationTime' => <DateTime>,
                'FailureReason' => '<string>',
                'LastModifiedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'LastModifiedTime' => <DateTime>,
                'ParallelismConfiguration' => [
                    'MaxParallelExecutionSteps' => <integer>,
                ],
                'PipelineArn' => '<string>',
                'PipelineExecutionArn' => '<string>',
                'PipelineExecutionDescription' => '<string>',
                'PipelineExecutionDisplayName' => '<string>',
                'PipelineExecutionStatus' => 'Executing|Stopping|Stopped|Failed|Succeeded',
                'PipelineExperimentConfig' => [
                    'ExperimentName' => '<string>',
                    'TrialName' => '<string>',
                ],
                'PipelineParameters' => [
                    [
                        'Name' => '<string>',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
                'SelectiveExecutionConfig' => [
                    'SelectedSteps' => [
                        [
                            'StepName' => '<string>',
                        ],
                        // ...
                    ],
                    'SourcePipelineExecutionArn' => '<string>',
                ],
            ],
            'Project' => [
                'CreatedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'CreationTime' => <DateTime>,
                'LastModifiedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'LastModifiedTime' => <DateTime>,
                'ProjectArn' => '<string>',
                'ProjectDescription' => '<string>',
                'ProjectId' => '<string>',
                'ProjectName' => '<string>',
                'ProjectStatus' => 'Pending|CreateInProgress|CreateCompleted|CreateFailed|DeleteInProgress|DeleteFailed|DeleteCompleted|UpdateInProgress|UpdateCompleted|UpdateFailed',
                'ServiceCatalogProvisionedProductDetails' => [
                    'ProvisionedProductId' => '<string>',
                    'ProvisionedProductStatusMessage' => '<string>',
                ],
                'ServiceCatalogProvisioningDetails' => [
                    'PathId' => '<string>',
                    'ProductId' => '<string>',
                    'ProvisioningArtifactId' => '<string>',
                    'ProvisioningParameters' => [
                        [
                            'Key' => '<string>',
                            'Value' => '<string>',
                        ],
                        // ...
                    ],
                ],
                'Tags' => [
                    [
                        'Key' => '<string>',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
            ],
            'TrainingJob' => [
                'AlgorithmSpecification' => [
                    'AlgorithmName' => '<string>',
                    'ContainerArguments' => ['<string>', ...],
                    'ContainerEntrypoint' => ['<string>', ...],
                    'EnableSageMakerMetricsTimeSeries' => true || false,
                    'MetricDefinitions' => [
                        [
                            'Name' => '<string>',
                            'Regex' => '<string>',
                        ],
                        // ...
                    ],
                    'TrainingImage' => '<string>',
                    'TrainingImageConfig' => [
                        'TrainingRepositoryAccessMode' => 'Platform|Vpc',
                        'TrainingRepositoryAuthConfig' => [
                            'TrainingRepositoryCredentialsProviderArn' => '<string>',
                        ],
                    ],
                    'TrainingInputMode' => 'Pipe|File|FastFile',
                ],
                'AutoMLJobArn' => '<string>',
                'BillableTimeInSeconds' => <integer>,
                'CheckpointConfig' => [
                    'LocalPath' => '<string>',
                    'S3Uri' => '<string>',
                ],
                'CreationTime' => <DateTime>,
                'DebugHookConfig' => [
                    'CollectionConfigurations' => [
                        [
                            'CollectionName' => '<string>',
                            'CollectionParameters' => ['<string>', ...],
                        ],
                        // ...
                    ],
                    'HookParameters' => ['<string>', ...],
                    'LocalPath' => '<string>',
                    'S3OutputPath' => '<string>',
                ],
                'DebugRuleConfigurations' => [
                    [
                        'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge',
                        'LocalPath' => '<string>',
                        'RuleConfigurationName' => '<string>',
                        'RuleEvaluatorImage' => '<string>',
                        'RuleParameters' => ['<string>', ...],
                        'S3OutputPath' => '<string>',
                        'VolumeSizeInGB' => <integer>,
                    ],
                    // ...
                ],
                'DebugRuleEvaluationStatuses' => [
                    [
                        'LastModifiedTime' => <DateTime>,
                        'RuleConfigurationName' => '<string>',
                        'RuleEvaluationJobArn' => '<string>',
                        'RuleEvaluationStatus' => 'InProgress|NoIssuesFound|IssuesFound|Error|Stopping|Stopped',
                        'StatusDetails' => '<string>',
                    ],
                    // ...
                ],
                'EnableInterContainerTrafficEncryption' => true || false,
                'EnableManagedSpotTraining' => true || false,
                'EnableNetworkIsolation' => true || false,
                'Environment' => ['<string>', ...],
                'ExperimentConfig' => [
                    'ExperimentName' => '<string>',
                    'RunName' => '<string>',
                    'TrialComponentDisplayName' => '<string>',
                    'TrialName' => '<string>',
                ],
                'FailureReason' => '<string>',
                'FinalMetricDataList' => [
                    [
                        'MetricName' => '<string>',
                        'Timestamp' => <DateTime>,
                        'Value' => <float>,
                    ],
                    // ...
                ],
                'HyperParameters' => ['<string>', ...],
                'InputDataConfig' => [
                    [
                        'ChannelName' => '<string>',
                        'CompressionType' => 'None|Gzip',
                        'ContentType' => '<string>',
                        'DataSource' => [
                            'FileSystemDataSource' => [
                                'DirectoryPath' => '<string>',
                                'FileSystemAccessMode' => 'rw|ro',
                                'FileSystemId' => '<string>',
                                'FileSystemType' => 'EFS|FSxLustre',
                            ],
                            'S3DataSource' => [
                                'AttributeNames' => ['<string>', ...],
                                'InstanceGroupNames' => ['<string>', ...],
                                'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                                'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile',
                                'S3Uri' => '<string>',
                            ],
                        ],
                        'InputMode' => 'Pipe|File|FastFile',
                        'RecordWrapperType' => 'None|RecordIO',
                        'ShuffleConfig' => [
                            'Seed' => <integer>,
                        ],
                    ],
                    // ...
                ],
                'LabelingJobArn' => '<string>',
                'LastModifiedTime' => <DateTime>,
                'ModelArtifacts' => [
                    'S3ModelArtifacts' => '<string>',
                ],
                'OutputDataConfig' => [
                    'CompressionType' => 'GZIP|NONE',
                    'KmsKeyId' => '<string>',
                    'S3OutputPath' => '<string>',
                ],
                'ProfilerConfig' => [
                    'DisableProfiler' => true || false,
                    'ProfilingIntervalInMilliseconds' => <integer>,
                    'ProfilingParameters' => ['<string>', ...],
                    'S3OutputPath' => '<string>',
                ],
                'ResourceConfig' => [
                    'InstanceCount' => <integer>,
                    'InstanceGroups' => [
                        [
                            'InstanceCount' => <integer>,
                            'InstanceGroupName' => '<string>',
                            'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                        ],
                        // ...
                    ],
                    'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                    'KeepAlivePeriodInSeconds' => <integer>,
                    'TrainingPlanArn' => '<string>',
                    'VolumeKmsKeyId' => '<string>',
                    'VolumeSizeInGB' => <integer>,
                ],
                'RetryStrategy' => [
                    'MaximumRetryAttempts' => <integer>,
                ],
                'RoleArn' => '<string>',
                'SecondaryStatus' => 'Starting|LaunchingMLInstances|PreparingTrainingStack|Downloading|DownloadingTrainingImage|Training|Uploading|Stopping|Stopped|MaxRuntimeExceeded|Completed|Failed|Interrupted|MaxWaitTimeExceeded|Updating|Restarting|Pending',
                'SecondaryStatusTransitions' => [
                    [
                        'EndTime' => <DateTime>,
                        'StartTime' => <DateTime>,
                        'Status' => 'Starting|LaunchingMLInstances|PreparingTrainingStack|Downloading|DownloadingTrainingImage|Training|Uploading|Stopping|Stopped|MaxRuntimeExceeded|Completed|Failed|Interrupted|MaxWaitTimeExceeded|Updating|Restarting|Pending',
                        'StatusMessage' => '<string>',
                    ],
                    // ...
                ],
                'StoppingCondition' => [
                    'MaxPendingTimeInSeconds' => <integer>,
                    'MaxRuntimeInSeconds' => <integer>,
                    'MaxWaitTimeInSeconds' => <integer>,
                ],
                'Tags' => [
                    [
                        'Key' => '<string>',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
                'TensorBoardOutputConfig' => [
                    'LocalPath' => '<string>',
                    'S3OutputPath' => '<string>',
                ],
                'TrainingEndTime' => <DateTime>,
                'TrainingJobArn' => '<string>',
                'TrainingJobName' => '<string>',
                'TrainingJobStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
                'TrainingStartTime' => <DateTime>,
                'TrainingTimeInSeconds' => <integer>,
                'TuningJobArn' => '<string>',
                'VpcConfig' => [
                    'SecurityGroupIds' => ['<string>', ...],
                    'Subnets' => ['<string>', ...],
                ],
            ],
            'Trial' => [
                'CreatedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'CreationTime' => <DateTime>,
                'DisplayName' => '<string>',
                'ExperimentName' => '<string>',
                'LastModifiedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'LastModifiedTime' => <DateTime>,
                'MetadataProperties' => [
                    'CommitId' => '<string>',
                    'GeneratedBy' => '<string>',
                    'ProjectId' => '<string>',
                    'Repository' => '<string>',
                ],
                'Source' => [
                    'SourceArn' => '<string>',
                    'SourceType' => '<string>',
                ],
                'Tags' => [
                    [
                        'Key' => '<string>',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
                'TrialArn' => '<string>',
                'TrialComponentSummaries' => [
                    [
                        'CreatedBy' => [
                            'DomainId' => '<string>',
                            'IamIdentity' => [
                                'Arn' => '<string>',
                                'PrincipalId' => '<string>',
                                'SourceIdentity' => '<string>',
                            ],
                            'UserProfileArn' => '<string>',
                            'UserProfileName' => '<string>',
                        ],
                        'CreationTime' => <DateTime>,
                        'TrialComponentArn' => '<string>',
                        'TrialComponentName' => '<string>',
                        'TrialComponentSource' => [
                            'SourceArn' => '<string>',
                            'SourceType' => '<string>',
                        ],
                    ],
                    // ...
                ],
                'TrialName' => '<string>',
            ],
            'TrialComponent' => [
                'CreatedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'CreationTime' => <DateTime>,
                'DisplayName' => '<string>',
                'EndTime' => <DateTime>,
                'InputArtifacts' => [
                    '<TrialComponentKey128>' => [
                        'MediaType' => '<string>',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
                'LastModifiedBy' => [
                    'DomainId' => '<string>',
                    'IamIdentity' => [
                        'Arn' => '<string>',
                        'PrincipalId' => '<string>',
                        'SourceIdentity' => '<string>',
                    ],
                    'UserProfileArn' => '<string>',
                    'UserProfileName' => '<string>',
                ],
                'LastModifiedTime' => <DateTime>,
                'LineageGroupArn' => '<string>',
                'MetadataProperties' => [
                    'CommitId' => '<string>',
                    'GeneratedBy' => '<string>',
                    'ProjectId' => '<string>',
                    'Repository' => '<string>',
                ],
                'Metrics' => [
                    [
                        'Avg' => <float>,
                        'Count' => <integer>,
                        'Last' => <float>,
                        'Max' => <float>,
                        'MetricName' => '<string>',
                        'Min' => <float>,
                        'SourceArn' => '<string>',
                        'StdDev' => <float>,
                        'TimeStamp' => <DateTime>,
                    ],
                    // ...
                ],
                'OutputArtifacts' => [
                    '<TrialComponentKey128>' => [
                        'MediaType' => '<string>',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
                'Parameters' => [
                    '<TrialComponentKey320>' => [
                        'NumberValue' => <float>,
                        'StringValue' => '<string>',
                    ],
                    // ...
                ],
                'Parents' => [
                    [
                        'ExperimentName' => '<string>',
                        'TrialName' => '<string>',
                    ],
                    // ...
                ],
                'RunName' => '<string>',
                'Source' => [
                    'SourceArn' => '<string>',
                    'SourceType' => '<string>',
                ],
                'SourceDetail' => [
                    'ProcessingJob' => [
                        'AppSpecification' => [
                            'ContainerArguments' => ['<string>', ...],
                            'ContainerEntrypoint' => ['<string>', ...],
                            'ImageUri' => '<string>',
                        ],
                        'AutoMLJobArn' => '<string>',
                        'CreationTime' => <DateTime>,
                        'Environment' => ['<string>', ...],
                        'ExitMessage' => '<string>',
                        'ExperimentConfig' => [
                            'ExperimentName' => '<string>',
                            'RunName' => '<string>',
                            'TrialComponentDisplayName' => '<string>',
                            'TrialName' => '<string>',
                        ],
                        'FailureReason' => '<string>',
                        'LastModifiedTime' => <DateTime>,
                        'MonitoringScheduleArn' => '<string>',
                        'NetworkConfig' => [
                            'EnableInterContainerTrafficEncryption' => true || false,
                            'EnableNetworkIsolation' => true || false,
                            'VpcConfig' => [
                                'SecurityGroupIds' => ['<string>', ...],
                                'Subnets' => ['<string>', ...],
                            ],
                        ],
                        'ProcessingEndTime' => <DateTime>,
                        'ProcessingInputs' => [
                            [
                                'AppManaged' => true || false,
                                'DatasetDefinition' => [
                                    'AthenaDatasetDefinition' => [
                                        'Catalog' => '<string>',
                                        'Database' => '<string>',
                                        'KmsKeyId' => '<string>',
                                        'OutputCompression' => 'GZIP|SNAPPY|ZLIB',
                                        'OutputFormat' => 'PARQUET|ORC|AVRO|JSON|TEXTFILE',
                                        'OutputS3Uri' => '<string>',
                                        'QueryString' => '<string>',
                                        'WorkGroup' => '<string>',
                                    ],
                                    'DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                                    'InputMode' => 'Pipe|File',
                                    'LocalPath' => '<string>',
                                    'RedshiftDatasetDefinition' => [
                                        'ClusterId' => '<string>',
                                        'ClusterRoleArn' => '<string>',
                                        'Database' => '<string>',
                                        'DbUser' => '<string>',
                                        'KmsKeyId' => '<string>',
                                        'OutputCompression' => 'None|GZIP|BZIP2|ZSTD|SNAPPY',
                                        'OutputFormat' => 'PARQUET|CSV',
                                        'OutputS3Uri' => '<string>',
                                        'QueryString' => '<string>',
                                    ],
                                ],
                                'InputName' => '<string>',
                                'S3Input' => [
                                    'LocalPath' => '<string>',
                                    'S3CompressionType' => 'None|Gzip',
                                    'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                                    'S3DataType' => 'ManifestFile|S3Prefix',
                                    'S3InputMode' => 'Pipe|File',
                                    'S3Uri' => '<string>',
                                ],
                            ],
                            // ...
                        ],
                        'ProcessingJobArn' => '<string>',
                        'ProcessingJobName' => '<string>',
                        'ProcessingJobStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
                        'ProcessingOutputConfig' => [
                            'KmsKeyId' => '<string>',
                            'Outputs' => [
                                [
                                    'AppManaged' => true || false,
                                    'FeatureStoreOutput' => [
                                        'FeatureGroupName' => '<string>',
                                    ],
                                    'OutputName' => '<string>',
                                    'S3Output' => [
                                        'LocalPath' => '<string>',
                                        'S3UploadMode' => 'Continuous|EndOfJob',
                                        'S3Uri' => '<string>',
                                    ],
                                ],
                                // ...
                            ],
                        ],
                        'ProcessingResources' => [
                            'ClusterConfig' => [
                                'InstanceCount' => <integer>,
                                'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge',
                                'VolumeKmsKeyId' => '<string>',
                                'VolumeSizeInGB' => <integer>,
                            ],
                        ],
                        'ProcessingStartTime' => <DateTime>,
                        'RoleArn' => '<string>',
                        'StoppingCondition' => [
                            'MaxRuntimeInSeconds' => <integer>,
                        ],
                        'Tags' => [
                            [
                                'Key' => '<string>',
                                'Value' => '<string>',
                            ],
                            // ...
                        ],
                        'TrainingJobArn' => '<string>',
                    ],
                    'SourceArn' => '<string>',
                    'TrainingJob' => [
                        'AlgorithmSpecification' => [
                            'AlgorithmName' => '<string>',
                            'ContainerArguments' => ['<string>', ...],
                            'ContainerEntrypoint' => ['<string>', ...],
                            'EnableSageMakerMetricsTimeSeries' => true || false,
                            'MetricDefinitions' => [
                                [
                                    'Name' => '<string>',
                                    'Regex' => '<string>',
                                ],
                                // ...
                            ],
                            'TrainingImage' => '<string>',
                            'TrainingImageConfig' => [
                                'TrainingRepositoryAccessMode' => 'Platform|Vpc',
                                'TrainingRepositoryAuthConfig' => [
                                    'TrainingRepositoryCredentialsProviderArn' => '<string>',
                                ],
                            ],
                            'TrainingInputMode' => 'Pipe|File|FastFile',
                        ],
                        'AutoMLJobArn' => '<string>',
                        'BillableTimeInSeconds' => <integer>,
                        'CheckpointConfig' => [
                            'LocalPath' => '<string>',
                            'S3Uri' => '<string>',
                        ],
                        'CreationTime' => <DateTime>,
                        'DebugHookConfig' => [
                            'CollectionConfigurations' => [
                                [
                                    'CollectionName' => '<string>',
                                    'CollectionParameters' => ['<string>', ...],
                                ],
                                // ...
                            ],
                            'HookParameters' => ['<string>', ...],
                            'LocalPath' => '<string>',
                            'S3OutputPath' => '<string>',
                        ],
                        'DebugRuleConfigurations' => [
                            [
                                'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge',
                                'LocalPath' => '<string>',
                                'RuleConfigurationName' => '<string>',
                                'RuleEvaluatorImage' => '<string>',
                                'RuleParameters' => ['<string>', ...],
                                'S3OutputPath' => '<string>',
                                'VolumeSizeInGB' => <integer>,
                            ],
                            // ...
                        ],
                        'DebugRuleEvaluationStatuses' => [
                            [
                                'LastModifiedTime' => <DateTime>,
                                'RuleConfigurationName' => '<string>',
                                'RuleEvaluationJobArn' => '<string>',
                                'RuleEvaluationStatus' => 'InProgress|NoIssuesFound|IssuesFound|Error|Stopping|Stopped',
                                'StatusDetails' => '<string>',
                            ],
                            // ...
                        ],
                        'EnableInterContainerTrafficEncryption' => true || false,
                        'EnableManagedSpotTraining' => true || false,
                        'EnableNetworkIsolation' => true || false,
                        'Environment' => ['<string>', ...],
                        'ExperimentConfig' => [
                            'ExperimentName' => '<string>',
                            'RunName' => '<string>',
                            'TrialComponentDisplayName' => '<string>',
                            'TrialName' => '<string>',
                        ],
                        'FailureReason' => '<string>',
                        'FinalMetricDataList' => [
                            [
                                'MetricName' => '<string>',
                                'Timestamp' => <DateTime>,
                                'Value' => <float>,
                            ],
                            // ...
                        ],
                        'HyperParameters' => ['<string>', ...],
                        'InputDataConfig' => [
                            [
                                'ChannelName' => '<string>',
                                'CompressionType' => 'None|Gzip',
                                'ContentType' => '<string>',
                                'DataSource' => [
                                    'FileSystemDataSource' => [
                                        'DirectoryPath' => '<string>',
                                        'FileSystemAccessMode' => 'rw|ro',
                                        'FileSystemId' => '<string>',
                                        'FileSystemType' => 'EFS|FSxLustre',
                                    ],
                                    'S3DataSource' => [
                                        'AttributeNames' => ['<string>', ...],
                                        'InstanceGroupNames' => ['<string>', ...],
                                        'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                                        'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile',
                                        'S3Uri' => '<string>',
                                    ],
                                ],
                                'InputMode' => 'Pipe|File|FastFile',
                                'RecordWrapperType' => 'None|RecordIO',
                                'ShuffleConfig' => [
                                    'Seed' => <integer>,
                                ],
                            ],
                            // ...
                        ],
                        'LabelingJobArn' => '<string>',
                        'LastModifiedTime' => <DateTime>,
                        'ModelArtifacts' => [
                            'S3ModelArtifacts' => '<string>',
                        ],
                        'OutputDataConfig' => [
                            'CompressionType' => 'GZIP|NONE',
                            'KmsKeyId' => '<string>',
                            'S3OutputPath' => '<string>',
                        ],
                        'ProfilerConfig' => [
                            'DisableProfiler' => true || false,
                            'ProfilingIntervalInMilliseconds' => <integer>,
                            'ProfilingParameters' => ['<string>', ...],
                            'S3OutputPath' => '<string>',
                        ],
                        'ResourceConfig' => [
                            'InstanceCount' => <integer>,
                            'InstanceGroups' => [
                                [
                                    'InstanceCount' => <integer>,
                                    'InstanceGroupName' => '<string>',
                                    'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                                ],
                                // ...
                            ],
                            'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5n.xlarge|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.trn2.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.8xlarge|ml.c6i.4xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge',
                            'KeepAlivePeriodInSeconds' => <integer>,
                            'TrainingPlanArn' => '<string>',
                            'VolumeKmsKeyId' => '<string>',
                            'VolumeSizeInGB' => <integer>,
                        ],
                        'RetryStrategy' => [
                            'MaximumRetryAttempts' => <integer>,
                        ],
                        'RoleArn' => '<string>',
                        'SecondaryStatus' => 'Starting|LaunchingMLInstances|PreparingTrainingStack|Downloading|DownloadingTrainingImage|Training|Uploading|Stopping|Stopped|MaxRuntimeExceeded|Completed|Failed|Interrupted|MaxWaitTimeExceeded|Updating|Restarting|Pending',
                        'SecondaryStatusTransitions' => [
                            [
                                'EndTime' => <DateTime>,
                                'StartTime' => <DateTime>,
                                'Status' => 'Starting|LaunchingMLInstances|PreparingTrainingStack|Downloading|DownloadingTrainingImage|Training|Uploading|Stopping|Stopped|MaxRuntimeExceeded|Completed|Failed|Interrupted|MaxWaitTimeExceeded|Updating|Restarting|Pending',
                                'StatusMessage' => '<string>',
                            ],
                            // ...
                        ],
                        'StoppingCondition' => [
                            'MaxPendingTimeInSeconds' => <integer>,
                            'MaxRuntimeInSeconds' => <integer>,
                            'MaxWaitTimeInSeconds' => <integer>,
                        ],
                        'Tags' => [
                            [
                                'Key' => '<string>',
                                'Value' => '<string>',
                            ],
                            // ...
                        ],
                        'TensorBoardOutputConfig' => [
                            'LocalPath' => '<string>',
                            'S3OutputPath' => '<string>',
                        ],
                        'TrainingEndTime' => <DateTime>,
                        'TrainingJobArn' => '<string>',
                        'TrainingJobName' => '<string>',
                        'TrainingJobStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
                        'TrainingStartTime' => <DateTime>,
                        'TrainingTimeInSeconds' => <integer>,
                        'TuningJobArn' => '<string>',
                        'VpcConfig' => [
                            'SecurityGroupIds' => ['<string>', ...],
                            'Subnets' => ['<string>', ...],
                        ],
                    ],
                    'TransformJob' => [
                        'AutoMLJobArn' => '<string>',
                        'BatchStrategy' => 'MultiRecord|SingleRecord',
                        'CreationTime' => <DateTime>,
                        'DataCaptureConfig' => [
                            'DestinationS3Uri' => '<string>',
                            'GenerateInferenceId' => true || false,
                            'KmsKeyId' => '<string>',
                        ],
                        'DataProcessing' => [
                            'InputFilter' => '<string>',
                            'JoinSource' => 'Input|None',
                            'OutputFilter' => '<string>',
                        ],
                        'Environment' => ['<string>', ...],
                        'ExperimentConfig' => [
                            'ExperimentName' => '<string>',
                            'RunName' => '<string>',
                            'TrialComponentDisplayName' => '<string>',
                            'TrialName' => '<string>',
                        ],
                        'FailureReason' => '<string>',
                        'LabelingJobArn' => '<string>',
                        'MaxConcurrentTransforms' => <integer>,
                        'MaxPayloadInMB' => <integer>,
                        'ModelClientConfig' => [
                            'InvocationsMaxRetries' => <integer>,
                            'InvocationsTimeoutInSeconds' => <integer>,
                        ],
                        'ModelName' => '<string>',
                        'Tags' => [
                            [
                                'Key' => '<string>',
                                'Value' => '<string>',
                            ],
                            // ...
                        ],
                        'TransformEndTime' => <DateTime>,
                        'TransformInput' => [
                            'CompressionType' => 'None|Gzip',
                            'ContentType' => '<string>',
                            'DataSource' => [
                                'S3DataSource' => [
                                    'S3DataType' => 'ManifestFile|S3Prefix|AugmentedManifestFile',
                                    'S3Uri' => '<string>',
                                ],
                            ],
                            'SplitType' => 'None|Line|RecordIO|TFRecord',
                        ],
                        'TransformJobArn' => '<string>',
                        'TransformJobName' => '<string>',
                        'TransformJobStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
                        'TransformOutput' => [
                            'Accept' => '<string>',
                            'AssembleWith' => 'None|Line',
                            'KmsKeyId' => '<string>',
                            'S3OutputPath' => '<string>',
                        ],
                        'TransformResources' => [
                            'InstanceCount' => <integer>,
                            'InstanceType' => 'ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge',
                            'VolumeKmsKeyId' => '<string>',
                        ],
                        'TransformStartTime' => <DateTime>,
                    ],
                ],
                'StartTime' => <DateTime>,
                'Status' => [
                    'Message' => '<string>',
                    'PrimaryStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
                ],
                'Tags' => [
                    [
                        'Key' => '<string>',
                        'Value' => '<string>',
                    ],
                    // ...
                ],
                'TrialComponentArn' => '<string>',
                'TrialComponentName' => '<string>',
            ],
        ],
        // ...
    ],
]

Result Details

Members
NextToken
Type: string

If the result of the previous Search request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request.

Results
Type: Array of SearchRecord structures

A list of SearchRecord objects.

Errors

There are no errors described for this operation.

SearchTrainingPlanOfferings

$result = $client->searchTrainingPlanOfferings([/* ... */]);
$promise = $client->searchTrainingPlanOfferingsAsync([/* ... */]);

Searches for available training plan offerings based on specified criteria.

  • Users search for available plan offerings based on their requirements (e.g., instance type, count, start time, duration).

  • And then, they create a plan that best matches their needs using the ID of the plan offering they want to use.

For more information about how to reserve GPU capacity for your SageMaker training jobs or SageMaker HyperPod clusters using Amazon SageMaker Training Plan , see CreateTrainingPlan .

Parameter Syntax

$result = $client->searchTrainingPlanOfferings([
    'DurationHours' => <integer>,
    'EndTimeBefore' => <integer || string || DateTime>,
    'InstanceCount' => <integer>, // REQUIRED
    'InstanceType' => 'ml.p4d.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.trn1.32xlarge|ml.trn2.48xlarge', // REQUIRED
    'StartTimeAfter' => <integer || string || DateTime>,
    'TargetResources' => ['<string>', ...], // REQUIRED
]);

Parameter Details

Members
DurationHours
Type: long (int|float)

The desired duration in hours for the training plan offerings.

EndTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter to search for reserved capacity offerings with an end time before a specified date.

InstanceCount
Required: Yes
Type: int

The number of instances you want to reserve in the training plan offerings. This allows you to specify the quantity of compute resources needed for your SageMaker training jobs or SageMaker HyperPod clusters, helping you find reserved capacity offerings that match your requirements.

InstanceType
Required: Yes
Type: string

The type of instance you want to search for in the available training plan offerings. This field allows you to filter the search results based on the specific compute resources you require for your SageMaker training jobs or SageMaker HyperPod clusters. When searching for training plan offerings, specifying the instance type helps you find Reserved Instances that match your computational needs.

StartTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

A filter to search for training plan offerings with a start time after a specified date.

TargetResources
Required: Yes
Type: Array of strings

The target resources (e.g., SageMaker Training Jobs, SageMaker HyperPod) to search for in the offerings.

Training plans are specific to their target resource.

  • A training plan designed for SageMaker training jobs can only be used to schedule and run training jobs.

  • A training plan for HyperPod clusters can be used exclusively to provide compute resources to a cluster's instance group.

Result Syntax

[
    'TrainingPlanOfferings' => [
        [
            'CurrencyCode' => '<string>',
            'DurationHours' => <integer>,
            'DurationMinutes' => <integer>,
            'RequestedEndTimeBefore' => <DateTime>,
            'RequestedStartTimeAfter' => <DateTime>,
            'ReservedCapacityOfferings' => [
                [
                    'AvailabilityZone' => '<string>',
                    'DurationHours' => <integer>,
                    'DurationMinutes' => <integer>,
                    'EndTime' => <DateTime>,
                    'InstanceCount' => <integer>,
                    'InstanceType' => 'ml.p4d.24xlarge|ml.p5.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.trn1.32xlarge|ml.trn2.48xlarge',
                    'StartTime' => <DateTime>,
                ],
                // ...
            ],
            'TargetResources' => ['<string>', ...],
            'TrainingPlanOfferingId' => '<string>',
            'UpfrontFee' => '<string>',
        ],
        // ...
    ],
]

Result Details

Members
TrainingPlanOfferings
Required: Yes
Type: Array of TrainingPlanOffering structures

A list of training plan offerings that match the search criteria.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

SendPipelineExecutionStepFailure

$result = $client->sendPipelineExecutionStepFailure([/* ... */]);
$promise = $client->sendPipelineExecutionStepFailureAsync([/* ... */]);

Notifies the pipeline that the execution of a callback step failed, along with a message describing why. When a callback step is run, the pipeline generates a callback token and includes the token in a message sent to Amazon Simple Queue Service (Amazon SQS).

Parameter Syntax

$result = $client->sendPipelineExecutionStepFailure([
    'CallbackToken' => '<string>', // REQUIRED
    'ClientRequestToken' => '<string>',
    'FailureReason' => '<string>',
]);

Parameter Details

Members
CallbackToken
Required: Yes
Type: string

The pipeline generated token from the Amazon SQS queue.

ClientRequestToken
Type: string

A unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than one time.

FailureReason
Type: string

A message describing why the step failed.

Result Syntax

[
    'PipelineExecutionArn' => '<string>',
]

Result Details

Members
PipelineExecutionArn
Type: string

The Amazon Resource Name (ARN) of the pipeline execution.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

SendPipelineExecutionStepSuccess

$result = $client->sendPipelineExecutionStepSuccess([/* ... */]);
$promise = $client->sendPipelineExecutionStepSuccessAsync([/* ... */]);

Notifies the pipeline that the execution of a callback step succeeded and provides a list of the step's output parameters. When a callback step is run, the pipeline generates a callback token and includes the token in a message sent to Amazon Simple Queue Service (Amazon SQS).

Parameter Syntax

$result = $client->sendPipelineExecutionStepSuccess([
    'CallbackToken' => '<string>', // REQUIRED
    'ClientRequestToken' => '<string>',
    'OutputParameters' => [
        [
            'Name' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
CallbackToken
Required: Yes
Type: string

The pipeline generated token from the Amazon SQS queue.

ClientRequestToken
Type: string

A unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than one time.

OutputParameters
Type: Array of OutputParameter structures

A list of the output parameters of the callback step.

Result Syntax

[
    'PipelineExecutionArn' => '<string>',
]

Result Details

Members
PipelineExecutionArn
Type: string

The Amazon Resource Name (ARN) of the pipeline execution.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

StartEdgeDeploymentStage

$result = $client->startEdgeDeploymentStage([/* ... */]);
$promise = $client->startEdgeDeploymentStageAsync([/* ... */]);

Starts a stage in an edge deployment plan.

Parameter Syntax

$result = $client->startEdgeDeploymentStage([
    'EdgeDeploymentPlanName' => '<string>', // REQUIRED
    'StageName' => '<string>', // REQUIRED
]);

Parameter Details

Members
EdgeDeploymentPlanName
Required: Yes
Type: string

The name of the edge deployment plan to start.

StageName
Required: Yes
Type: string

The name of the stage to start.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

StartInferenceExperiment

$result = $client->startInferenceExperiment([/* ... */]);
$promise = $client->startInferenceExperimentAsync([/* ... */]);

Starts an inference experiment.

Parameter Syntax

$result = $client->startInferenceExperiment([
    'Name' => '<string>', // REQUIRED
]);

Parameter Details

Members
Name
Required: Yes
Type: string

The name of the inference experiment to start.

Result Syntax

[
    'InferenceExperimentArn' => '<string>',
]

Result Details

Members
InferenceExperimentArn
Required: Yes
Type: string

The ARN of the started inference experiment to start.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

ResourceNotFound:

Resource being access is not found.

StartMlflowTrackingServer

$result = $client->startMlflowTrackingServer([/* ... */]);
$promise = $client->startMlflowTrackingServerAsync([/* ... */]);

Programmatically start an MLflow Tracking Server.

Parameter Syntax

$result = $client->startMlflowTrackingServer([
    'TrackingServerName' => '<string>', // REQUIRED
]);

Parameter Details

Members
TrackingServerName
Required: Yes
Type: string

The name of the tracking server to start.

Result Syntax

[
    'TrackingServerArn' => '<string>',
]

Result Details

Members
TrackingServerArn
Type: string

The ARN of the started tracking server.

Errors

ResourceNotFound:

Resource being access is not found.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

StartMonitoringSchedule

$result = $client->startMonitoringSchedule([/* ... */]);
$promise = $client->startMonitoringScheduleAsync([/* ... */]);

Starts a previously stopped monitoring schedule.

By default, when you successfully create a new schedule, the status of a monitoring schedule is scheduled.

Parameter Syntax

$result = $client->startMonitoringSchedule([
    'MonitoringScheduleName' => '<string>', // REQUIRED
]);

Parameter Details

Members
MonitoringScheduleName
Required: Yes
Type: string

The name of the schedule to start.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

StartNotebookInstance

$result = $client->startNotebookInstance([/* ... */]);
$promise = $client->startNotebookInstanceAsync([/* ... */]);

Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, SageMaker AI sets the notebook instance status to InService. A notebook instance's status must be InService before you can connect to your Jupyter notebook.

Parameter Syntax

$result = $client->startNotebookInstance([
    'NotebookInstanceName' => '<string>', // REQUIRED
]);

Parameter Details

Members
NotebookInstanceName
Required: Yes
Type: string

The name of the notebook instance to start.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

StartPipelineExecution

$result = $client->startPipelineExecution([/* ... */]);
$promise = $client->startPipelineExecutionAsync([/* ... */]);

Starts a pipeline execution.

Parameter Syntax

$result = $client->startPipelineExecution([
    'ClientRequestToken' => '<string>', // REQUIRED
    'ParallelismConfiguration' => [
        'MaxParallelExecutionSteps' => <integer>, // REQUIRED
    ],
    'PipelineExecutionDescription' => '<string>',
    'PipelineExecutionDisplayName' => '<string>',
    'PipelineName' => '<string>', // REQUIRED
    'PipelineParameters' => [
        [
            'Name' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'SelectiveExecutionConfig' => [
        'SelectedSteps' => [ // REQUIRED
            [
                'StepName' => '<string>', // REQUIRED
            ],
            // ...
        ],
        'SourcePipelineExecutionArn' => '<string>',
    ],
]);

Parameter Details

Members
ClientRequestToken
Required: Yes
Type: string

A unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than once.

ParallelismConfiguration
Type: ParallelismConfiguration structure

This configuration, if specified, overrides the parallelism configuration of the parent pipeline for this specific run.

PipelineExecutionDescription
Type: string

The description of the pipeline execution.

PipelineExecutionDisplayName
Type: string

The display name of the pipeline execution.

PipelineName
Required: Yes
Type: string

The name or Amazon Resource Name (ARN) of the pipeline.

PipelineParameters
Type: Array of Parameter structures

Contains a list of pipeline parameters. This list can be empty.

SelectiveExecutionConfig
Type: SelectiveExecutionConfig structure

The selective execution configuration applied to the pipeline run.

Result Syntax

[
    'PipelineExecutionArn' => '<string>',
]

Result Details

Members
PipelineExecutionArn
Type: string

The Amazon Resource Name (ARN) of the pipeline execution.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

StopAutoMLJob

$result = $client->stopAutoMLJob([/* ... */]);
$promise = $client->stopAutoMLJobAsync([/* ... */]);

A method for forcing a running job to shut down.

Parameter Syntax

$result = $client->stopAutoMLJob([
    'AutoMLJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
AutoMLJobName
Required: Yes
Type: string

The name of the object you are requesting.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

StopCompilationJob

$result = $client->stopCompilationJob([/* ... */]);
$promise = $client->stopCompilationJobAsync([/* ... */]);

Stops a model compilation job.

To stop a job, Amazon SageMaker AI sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal.

When it receives a StopCompilationJob request, Amazon SageMaker AI changes the CompilationJobStatus of the job to Stopping. After Amazon SageMaker stops the job, it sets the CompilationJobStatus to Stopped.

Parameter Syntax

$result = $client->stopCompilationJob([
    'CompilationJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
CompilationJobName
Required: Yes
Type: string

The name of the model compilation job to stop.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

StopEdgeDeploymentStage

$result = $client->stopEdgeDeploymentStage([/* ... */]);
$promise = $client->stopEdgeDeploymentStageAsync([/* ... */]);

Stops a stage in an edge deployment plan.

Parameter Syntax

$result = $client->stopEdgeDeploymentStage([
    'EdgeDeploymentPlanName' => '<string>', // REQUIRED
    'StageName' => '<string>', // REQUIRED
]);

Parameter Details

Members
EdgeDeploymentPlanName
Required: Yes
Type: string

The name of the edge deployment plan to stop.

StageName
Required: Yes
Type: string

The name of the stage to stop.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

StopEdgePackagingJob

$result = $client->stopEdgePackagingJob([/* ... */]);
$promise = $client->stopEdgePackagingJobAsync([/* ... */]);

Request to stop an edge packaging job.

Parameter Syntax

$result = $client->stopEdgePackagingJob([
    'EdgePackagingJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
EdgePackagingJobName
Required: Yes
Type: string

The name of the edge packaging job.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

StopHyperParameterTuningJob

$result = $client->stopHyperParameterTuningJob([/* ... */]);
$promise = $client->stopHyperParameterTuningJobAsync([/* ... */]);

Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched.

All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the Stopped state, it releases all reserved resources for the tuning job.

Parameter Syntax

$result = $client->stopHyperParameterTuningJob([
    'HyperParameterTuningJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
HyperParameterTuningJobName
Required: Yes
Type: string

The name of the tuning job to stop.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

StopInferenceExperiment

$result = $client->stopInferenceExperiment([/* ... */]);
$promise = $client->stopInferenceExperimentAsync([/* ... */]);

Stops an inference experiment.

Parameter Syntax

$result = $client->stopInferenceExperiment([
    'DesiredModelVariants' => [
        [
            'InfrastructureConfig' => [ // REQUIRED
                'InfrastructureType' => 'RealTimeInference', // REQUIRED
                'RealTimeInferenceConfig' => [ // REQUIRED
                    'InstanceCount' => <integer>, // REQUIRED
                    'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge', // REQUIRED
                ],
            ],
            'ModelName' => '<string>', // REQUIRED
            'VariantName' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'DesiredState' => 'Completed|Cancelled',
    'ModelVariantActions' => ['<string>', ...], // REQUIRED
    'Name' => '<string>', // REQUIRED
    'Reason' => '<string>',
]);

Parameter Details

Members
DesiredModelVariants
Type: Array of ModelVariantConfig structures

An array of ModelVariantConfig objects. There is one for each variant that you want to deploy after the inference experiment stops. Each ModelVariantConfig describes the infrastructure configuration for deploying the corresponding variant.

DesiredState
Type: string

The desired state of the experiment after stopping. The possible states are the following:

  • Completed: The experiment completed successfully

  • Cancelled: The experiment was canceled

ModelVariantActions
Required: Yes
Type: Associative array of custom strings keys (ModelVariantName) to strings

Array of key-value pairs, with names of variants mapped to actions. The possible actions are the following:

  • Promote - Promote the shadow variant to a production variant

  • Remove - Delete the variant

  • Retain - Keep the variant as it is

Name
Required: Yes
Type: string

The name of the inference experiment to stop.

Reason
Type: string

The reason for stopping the experiment.

Result Syntax

[
    'InferenceExperimentArn' => '<string>',
]

Result Details

Members
InferenceExperimentArn
Required: Yes
Type: string

The ARN of the stopped inference experiment.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

ResourceNotFound:

Resource being access is not found.

StopInferenceRecommendationsJob

$result = $client->stopInferenceRecommendationsJob([/* ... */]);
$promise = $client->stopInferenceRecommendationsJobAsync([/* ... */]);

Stops an Inference Recommender job.

Parameter Syntax

$result = $client->stopInferenceRecommendationsJob([
    'JobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
JobName
Required: Yes
Type: string

The name of the job you want to stop.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

StopLabelingJob

$result = $client->stopLabelingJob([/* ... */]);
$promise = $client->stopLabelingJobAsync([/* ... */]);

Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.

Parameter Syntax

$result = $client->stopLabelingJob([
    'LabelingJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
LabelingJobName
Required: Yes
Type: string

The name of the labeling job to stop.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

StopMlflowTrackingServer

$result = $client->stopMlflowTrackingServer([/* ... */]);
$promise = $client->stopMlflowTrackingServerAsync([/* ... */]);

Programmatically stop an MLflow Tracking Server.

Parameter Syntax

$result = $client->stopMlflowTrackingServer([
    'TrackingServerName' => '<string>', // REQUIRED
]);

Parameter Details

Members
TrackingServerName
Required: Yes
Type: string

The name of the tracking server to stop.

Result Syntax

[
    'TrackingServerArn' => '<string>',
]

Result Details

Members
TrackingServerArn
Type: string

The ARN of the stopped tracking server.

Errors

ResourceNotFound:

Resource being access is not found.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

StopMonitoringSchedule

$result = $client->stopMonitoringSchedule([/* ... */]);
$promise = $client->stopMonitoringScheduleAsync([/* ... */]);

Stops a previously started monitoring schedule.

Parameter Syntax

$result = $client->stopMonitoringSchedule([
    'MonitoringScheduleName' => '<string>', // REQUIRED
]);

Parameter Details

Members
MonitoringScheduleName
Required: Yes
Type: string

The name of the schedule to stop.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

StopNotebookInstance

$result = $client->stopNotebookInstance([/* ... */]);
$promise = $client->stopNotebookInstanceAsync([/* ... */]);

Terminates the ML compute instance. Before terminating the instance, SageMaker AI disconnects the ML storage volume from it. SageMaker AI preserves the ML storage volume. SageMaker AI stops charging you for the ML compute instance when you call StopNotebookInstance.

To access data on the ML storage volume for a notebook instance that has been terminated, call the StartNotebookInstance API. StartNotebookInstance launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work.

Parameter Syntax

$result = $client->stopNotebookInstance([
    'NotebookInstanceName' => '<string>', // REQUIRED
]);

Parameter Details

Members
NotebookInstanceName
Required: Yes
Type: string

The name of the notebook instance to terminate.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

StopOptimizationJob

$result = $client->stopOptimizationJob([/* ... */]);
$promise = $client->stopOptimizationJobAsync([/* ... */]);

Ends a running inference optimization job.

Parameter Syntax

$result = $client->stopOptimizationJob([
    'OptimizationJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
OptimizationJobName
Required: Yes
Type: string

The name that you assigned to the optimization job.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

StopPipelineExecution

$result = $client->stopPipelineExecution([/* ... */]);
$promise = $client->stopPipelineExecutionAsync([/* ... */]);

Stops a pipeline execution.

Callback Step

A pipeline execution won't stop while a callback step is running. When you call StopPipelineExecution on a pipeline execution with a running callback step, SageMaker Pipelines sends an additional Amazon SQS message to the specified SQS queue. The body of the SQS message contains a "Status" field which is set to "Stopping".

You should add logic to your Amazon SQS message consumer to take any needed action (for example, resource cleanup) upon receipt of the message followed by a call to SendPipelineExecutionStepSuccess or SendPipelineExecutionStepFailure.

Only when SageMaker Pipelines receives one of these calls will it stop the pipeline execution.

Lambda Step

A pipeline execution can't be stopped while a lambda step is running because the Lambda function invoked by the lambda step can't be stopped. If you attempt to stop the execution while the Lambda function is running, the pipeline waits for the Lambda function to finish or until the timeout is hit, whichever occurs first, and then stops. If the Lambda function finishes, the pipeline execution status is Stopped. If the timeout is hit the pipeline execution status is Failed.

Parameter Syntax

$result = $client->stopPipelineExecution([
    'ClientRequestToken' => '<string>', // REQUIRED
    'PipelineExecutionArn' => '<string>', // REQUIRED
]);

Parameter Details

Members
ClientRequestToken
Required: Yes
Type: string

A unique, case-sensitive identifier that you provide to ensure the idempotency of the operation. An idempotent operation completes no more than once.

PipelineExecutionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the pipeline execution.

Result Syntax

[
    'PipelineExecutionArn' => '<string>',
]

Result Details

Members
PipelineExecutionArn
Type: string

The Amazon Resource Name (ARN) of the pipeline execution.

Errors

ResourceNotFound:

Resource being access is not found.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

StopProcessingJob

$result = $client->stopProcessingJob([/* ... */]);
$promise = $client->stopProcessingJobAsync([/* ... */]);

Stops a processing job.

Parameter Syntax

$result = $client->stopProcessingJob([
    'ProcessingJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ProcessingJobName
Required: Yes
Type: string

The name of the processing job to stop.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

StopTrainingJob

$result = $client->stopTrainingJob([/* ... */]);
$promise = $client->stopTrainingJobAsync([/* ... */]);

Stops a training job. To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost.

When it receives a StopTrainingJob request, SageMaker changes the status of the job to Stopping. After SageMaker stops the job, it sets the status to Stopped.

Parameter Syntax

$result = $client->stopTrainingJob([
    'TrainingJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
TrainingJobName
Required: Yes
Type: string

The name of the training job to stop.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

StopTransformJob

$result = $client->stopTransformJob([/* ... */]);
$promise = $client->stopTransformJobAsync([/* ... */]);

Stops a batch transform job.

When Amazon SageMaker receives a StopTransformJob request, the status of the job changes to Stopping. After Amazon SageMaker stops the job, the status is set to Stopped. When you stop a batch transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.

Parameter Syntax

$result = $client->stopTransformJob([
    'TransformJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
TransformJobName
Required: Yes
Type: string

The name of the batch transform job to stop.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

UpdateAction

$result = $client->updateAction([/* ... */]);
$promise = $client->updateActionAsync([/* ... */]);

Updates an action.

Parameter Syntax

$result = $client->updateAction([
    'ActionName' => '<string>', // REQUIRED
    'Description' => '<string>',
    'Properties' => ['<string>', ...],
    'PropertiesToRemove' => ['<string>', ...],
    'Status' => 'Unknown|InProgress|Completed|Failed|Stopping|Stopped',
]);

Parameter Details

Members
ActionName
Required: Yes
Type: string

The name of the action to update.

Description
Type: string

The new description for the action.

Properties
Type: Associative array of custom strings keys (StringParameterValue) to strings

The new list of properties. Overwrites the current property list.

PropertiesToRemove
Type: Array of strings

A list of properties to remove.

Status
Type: string

The new status for the action.

Result Syntax

[
    'ActionArn' => '<string>',
]

Result Details

Members
ActionArn
Type: string

The Amazon Resource Name (ARN) of the action.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

ResourceNotFound:

Resource being access is not found.

UpdateAppImageConfig

$result = $client->updateAppImageConfig([/* ... */]);
$promise = $client->updateAppImageConfigAsync([/* ... */]);

Updates the properties of an AppImageConfig.

Parameter Syntax

$result = $client->updateAppImageConfig([
    'AppImageConfigName' => '<string>', // REQUIRED
    'CodeEditorAppImageConfig' => [
        'ContainerConfig' => [
            'ContainerArguments' => ['<string>', ...],
            'ContainerEntrypoint' => ['<string>', ...],
            'ContainerEnvironmentVariables' => ['<string>', ...],
        ],
        'FileSystemConfig' => [
            'DefaultGid' => <integer>,
            'DefaultUid' => <integer>,
            'MountPath' => '<string>',
        ],
    ],
    'JupyterLabAppImageConfig' => [
        'ContainerConfig' => [
            'ContainerArguments' => ['<string>', ...],
            'ContainerEntrypoint' => ['<string>', ...],
            'ContainerEnvironmentVariables' => ['<string>', ...],
        ],
        'FileSystemConfig' => [
            'DefaultGid' => <integer>,
            'DefaultUid' => <integer>,
            'MountPath' => '<string>',
        ],
    ],
    'KernelGatewayImageConfig' => [
        'FileSystemConfig' => [
            'DefaultGid' => <integer>,
            'DefaultUid' => <integer>,
            'MountPath' => '<string>',
        ],
        'KernelSpecs' => [ // REQUIRED
            [
                'DisplayName' => '<string>',
                'Name' => '<string>', // REQUIRED
            ],
            // ...
        ],
    ],
]);

Parameter Details

Members
AppImageConfigName
Required: Yes
Type: string

The name of the AppImageConfig to update.

CodeEditorAppImageConfig
Type: CodeEditorAppImageConfig structure

The Code Editor app running on the image.

JupyterLabAppImageConfig
Type: JupyterLabAppImageConfig structure

The JupyterLab app running on the image.

KernelGatewayImageConfig
Type: KernelGatewayImageConfig structure

The new KernelGateway app to run on the image.

Result Syntax

[
    'AppImageConfigArn' => '<string>',
]

Result Details

Members
AppImageConfigArn
Type: string

The ARN for the AppImageConfig.

Errors

ResourceNotFound:

Resource being access is not found.

UpdateArtifact

$result = $client->updateArtifact([/* ... */]);
$promise = $client->updateArtifactAsync([/* ... */]);

Updates an artifact.

Parameter Syntax

$result = $client->updateArtifact([
    'ArtifactArn' => '<string>', // REQUIRED
    'ArtifactName' => '<string>',
    'Properties' => ['<string>', ...],
    'PropertiesToRemove' => ['<string>', ...],
]);

Parameter Details

Members
ArtifactArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the artifact to update.

ArtifactName
Type: string

The new name for the artifact.

Properties
Type: Associative array of custom strings keys (StringParameterValue) to strings

The new list of properties. Overwrites the current property list.

PropertiesToRemove
Type: Array of strings

A list of properties to remove.

Result Syntax

[
    'ArtifactArn' => '<string>',
]

Result Details

Members
ArtifactArn
Type: string

The Amazon Resource Name (ARN) of the artifact.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

ResourceNotFound:

Resource being access is not found.

UpdateCluster

$result = $client->updateCluster([/* ... */]);
$promise = $client->updateClusterAsync([/* ... */]);

Updates a SageMaker HyperPod cluster.

Parameter Syntax

$result = $client->updateCluster([
    'ClusterName' => '<string>', // REQUIRED
    'InstanceGroups' => [ // REQUIRED
        [
            'ExecutionRole' => '<string>', // REQUIRED
            'InstanceCount' => <integer>, // REQUIRED
            'InstanceGroupName' => '<string>', // REQUIRED
            'InstanceStorageConfigs' => [
                [
                    'EbsVolumeConfig' => [
                        'VolumeSizeInGB' => <integer>, // REQUIRED
                    ],
                ],
                // ...
            ],
            'InstanceType' => 'ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.c5n.large|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.gr6.4xlarge|ml.gr6.8xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.trn2.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge', // REQUIRED
            'LifeCycleConfig' => [ // REQUIRED
                'OnCreate' => '<string>', // REQUIRED
                'SourceS3Uri' => '<string>', // REQUIRED
            ],
            'OnStartDeepHealthChecks' => ['<string>', ...],
            'OverrideVpcConfig' => [
                'SecurityGroupIds' => ['<string>', ...], // REQUIRED
                'Subnets' => ['<string>', ...], // REQUIRED
            ],
            'ThreadsPerCore' => <integer>,
            'TrainingPlanArn' => '<string>',
        ],
        // ...
    ],
    'NodeRecovery' => 'Automatic|None',
]);

Parameter Details

Members
ClusterName
Required: Yes
Type: string

Specify the name of the SageMaker HyperPod cluster you want to update.

InstanceGroups
Required: Yes
Type: Array of ClusterInstanceGroupSpecification structures

Specify the instance groups to update.

NodeRecovery
Type: string

The node recovery mode to be applied to the SageMaker HyperPod cluster.

Result Syntax

[
    'ClusterArn' => '<string>',
]

Result Details

Members
ClusterArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the updated SageMaker HyperPod cluster.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceNotFound:

Resource being access is not found.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

UpdateClusterSchedulerConfig

$result = $client->updateClusterSchedulerConfig([/* ... */]);
$promise = $client->updateClusterSchedulerConfigAsync([/* ... */]);

Update the cluster policy configuration.

Parameter Syntax

$result = $client->updateClusterSchedulerConfig([
    'ClusterSchedulerConfigId' => '<string>', // REQUIRED
    'Description' => '<string>',
    'SchedulerConfig' => [
        'FairShare' => 'Enabled|Disabled',
        'PriorityClasses' => [
            [
                'Name' => '<string>', // REQUIRED
                'Weight' => <integer>, // REQUIRED
            ],
            // ...
        ],
    ],
    'TargetVersion' => <integer>, // REQUIRED
]);

Parameter Details

Members
ClusterSchedulerConfigId
Required: Yes
Type: string

ID of the cluster policy.

Description
Type: string

Description of the cluster policy.

SchedulerConfig
Type: SchedulerConfig structure

Cluster policy configuration.

TargetVersion
Required: Yes
Type: int

Target version.

Result Syntax

[
    'ClusterSchedulerConfigArn' => '<string>',
    'ClusterSchedulerConfigVersion' => <integer>,
]

Result Details

Members
ClusterSchedulerConfigArn
Required: Yes
Type: string

ARN of the cluster policy.

ClusterSchedulerConfigVersion
Required: Yes
Type: int

Version of the cluster policy.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

UpdateClusterSoftware

$result = $client->updateClusterSoftware([/* ... */]);
$promise = $client->updateClusterSoftwareAsync([/* ... */]);

Updates the platform software of a SageMaker HyperPod cluster for security patching. To learn how to use this API, see Update the SageMaker HyperPod platform software of a cluster.

The UpgradeClusterSoftware API call may impact your SageMaker HyperPod cluster uptime and availability. Plan accordingly to mitigate potential disruptions to your workloads.

Parameter Syntax

$result = $client->updateClusterSoftware([
    'ClusterName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ClusterName
Required: Yes
Type: string

Specify the name or the Amazon Resource Name (ARN) of the SageMaker HyperPod cluster you want to update for security patching.

Result Syntax

[
    'ClusterArn' => '<string>',
]

Result Details

Members
ClusterArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the SageMaker HyperPod cluster being updated for security patching.

Errors

ResourceNotFound:

Resource being access is not found.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

UpdateCodeRepository

$result = $client->updateCodeRepository([/* ... */]);
$promise = $client->updateCodeRepositoryAsync([/* ... */]);

Updates the specified Git repository with the specified values.

Parameter Syntax

$result = $client->updateCodeRepository([
    'CodeRepositoryName' => '<string>', // REQUIRED
    'GitConfig' => [
        'SecretArn' => '<string>',
    ],
]);

Parameter Details

Members
CodeRepositoryName
Required: Yes
Type: string

The name of the Git repository to update.

GitConfig
Type: GitConfigForUpdate structure

The configuration of the git repository, including the URL and the Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the repository. The secret must have a staging label of AWSCURRENT and must be in the following format:

{"username": UserName, "password": Password}

Result Syntax

[
    'CodeRepositoryArn' => '<string>',
]

Result Details

Members
CodeRepositoryArn
Required: Yes
Type: string

The ARN of the Git repository.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

UpdateComputeQuota

$result = $client->updateComputeQuota([/* ... */]);
$promise = $client->updateComputeQuotaAsync([/* ... */]);

Update the compute allocation definition.

Parameter Syntax

$result = $client->updateComputeQuota([
    'ActivationState' => 'Enabled|Disabled',
    'ComputeQuotaConfig' => [
        'ComputeQuotaResources' => [
            [
                'Count' => <integer>, // REQUIRED
                'InstanceType' => 'ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.12xlarge|ml.g5.16xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.c5n.large|ml.c5n.2xlarge|ml.c5n.4xlarge|ml.c5n.9xlarge|ml.c5n.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.16xlarge|ml.g6.12xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.gr6.4xlarge|ml.gr6.8xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.16xlarge|ml.g6e.12xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.p5e.48xlarge|ml.p5en.48xlarge|ml.trn2.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge', // REQUIRED
            ],
            // ...
        ],
        'PreemptTeamTasks' => 'Never|LowerPriority',
        'ResourceSharingConfig' => [
            'BorrowLimit' => <integer>,
            'Strategy' => 'Lend|DontLend|LendAndBorrow', // REQUIRED
        ],
    ],
    'ComputeQuotaId' => '<string>', // REQUIRED
    'ComputeQuotaTarget' => [
        'FairShareWeight' => <integer>,
        'TeamName' => '<string>', // REQUIRED
    ],
    'Description' => '<string>',
    'TargetVersion' => <integer>, // REQUIRED
]);

Parameter Details

Members
ActivationState
Type: string

The state of the compute allocation being described. Use to enable or disable compute allocation.

Default is Enabled.

ComputeQuotaConfig
Type: ComputeQuotaConfig structure

Configuration of the compute allocation definition. This includes the resource sharing option, and the setting to preempt low priority tasks.

ComputeQuotaId
Required: Yes
Type: string

ID of the compute allocation definition.

ComputeQuotaTarget
Type: ComputeQuotaTarget structure

The target entity to allocate compute resources to.

Description
Type: string

Description of the compute allocation definition.

TargetVersion
Required: Yes
Type: int

Target version.

Result Syntax

[
    'ComputeQuotaArn' => '<string>',
    'ComputeQuotaVersion' => <integer>,
]

Result Details

Members
ComputeQuotaArn
Required: Yes
Type: string

ARN of the compute allocation definition.

ComputeQuotaVersion
Required: Yes
Type: int

Version of the compute allocation definition.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

UpdateContext

$result = $client->updateContext([/* ... */]);
$promise = $client->updateContextAsync([/* ... */]);

Updates a context.

Parameter Syntax

$result = $client->updateContext([
    'ContextName' => '<string>', // REQUIRED
    'Description' => '<string>',
    'Properties' => ['<string>', ...],
    'PropertiesToRemove' => ['<string>', ...],
]);

Parameter Details

Members
ContextName
Required: Yes
Type: string

The name of the context to update.

Description
Type: string

The new description for the context.

Properties
Type: Associative array of custom strings keys (StringParameterValue) to strings

The new list of properties. Overwrites the current property list.

PropertiesToRemove
Type: Array of strings

A list of properties to remove.

Result Syntax

[
    'ContextArn' => '<string>',
]

Result Details

Members
ContextArn
Type: string

The Amazon Resource Name (ARN) of the context.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

ResourceNotFound:

Resource being access is not found.

UpdateDeviceFleet

$result = $client->updateDeviceFleet([/* ... */]);
$promise = $client->updateDeviceFleetAsync([/* ... */]);

Updates a fleet of devices.

Parameter Syntax

$result = $client->updateDeviceFleet([
    'Description' => '<string>',
    'DeviceFleetName' => '<string>', // REQUIRED
    'EnableIotRoleAlias' => true || false,
    'OutputConfig' => [ // REQUIRED
        'KmsKeyId' => '<string>',
        'PresetDeploymentConfig' => '<string>',
        'PresetDeploymentType' => 'GreengrassV2Component',
        'S3OutputLocation' => '<string>', // REQUIRED
    ],
    'RoleArn' => '<string>',
]);

Parameter Details

Members
Description
Type: string

Description of the fleet.

DeviceFleetName
Required: Yes
Type: string

The name of the fleet.

EnableIotRoleAlias
Type: boolean

Whether to create an Amazon Web Services IoT Role Alias during device fleet creation. The name of the role alias generated will match this pattern: "SageMakerEdge-{DeviceFleetName}".

For example, if your device fleet is called "demo-fleet", the name of the role alias will be "SageMakerEdge-demo-fleet".

OutputConfig
Required: Yes
Type: EdgeOutputConfig structure

Output configuration for storing sample data collected by the fleet.

RoleArn
Type: string

The Amazon Resource Name (ARN) of the device.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceInUse:

Resource being accessed is in use.

UpdateDevices

$result = $client->updateDevices([/* ... */]);
$promise = $client->updateDevicesAsync([/* ... */]);

Updates one or more devices in a fleet.

Parameter Syntax

$result = $client->updateDevices([
    'DeviceFleetName' => '<string>', // REQUIRED
    'Devices' => [ // REQUIRED
        [
            'Description' => '<string>',
            'DeviceName' => '<string>', // REQUIRED
            'IotThingName' => '<string>',
        ],
        // ...
    ],
]);

Parameter Details

Members
DeviceFleetName
Required: Yes
Type: string

The name of the fleet the devices belong to.

Devices
Required: Yes
Type: Array of Device structures

List of devices to register with Edge Manager agent.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

There are no errors described for this operation.

UpdateDomain

$result = $client->updateDomain([/* ... */]);
$promise = $client->updateDomainAsync([/* ... */]);

Updates the default settings for new user profiles in the domain.

Parameter Syntax

$result = $client->updateDomain([
    'AppNetworkAccessType' => 'PublicInternetOnly|VpcOnly',
    'AppSecurityGroupManagement' => 'Service|Customer',
    'DefaultSpaceSettings' => [
        'CustomFileSystemConfigs' => [
            [
                'EFSFileSystemConfig' => [
                    'FileSystemId' => '<string>', // REQUIRED
                    'FileSystemPath' => '<string>',
                ],
                'FSxLustreFileSystemConfig' => [
                    'FileSystemId' => '<string>', // REQUIRED
                    'FileSystemPath' => '<string>',
                ],
            ],
            // ...
        ],
        'CustomPosixUserConfig' => [
            'Gid' => <integer>, // REQUIRED
            'Uid' => <integer>, // REQUIRED
        ],
        'ExecutionRole' => '<string>',
        'JupyterLabAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                    'LifecycleManagement' => 'ENABLED|DISABLED',
                    'MaxIdleTimeoutInMinutes' => <integer>,
                    'MinIdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'BuiltInLifecycleConfigArn' => '<string>',
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'EmrSettings' => [
                'AssumableRoleArns' => ['<string>', ...],
                'ExecutionRoleArns' => ['<string>', ...],
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'JupyterServerAppSettings' => [
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'KernelGatewayAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'SecurityGroups' => ['<string>', ...],
        'SpaceStorageSettings' => [
            'DefaultEbsStorageSettings' => [
                'DefaultEbsVolumeSizeInGb' => <integer>, // REQUIRED
                'MaximumEbsVolumeSizeInGb' => <integer>, // REQUIRED
            ],
        ],
    ],
    'DefaultUserSettings' => [
        'AutoMountHomeEFS' => 'Enabled|Disabled|DefaultAsDomain',
        'CanvasAppSettings' => [
            'DirectDeploySettings' => [
                'Status' => 'ENABLED|DISABLED',
            ],
            'EmrServerlessSettings' => [
                'ExecutionRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'GenerativeAiSettings' => [
                'AmazonBedrockRoleArn' => '<string>',
            ],
            'IdentityProviderOAuthSettings' => [
                [
                    'DataSourceName' => 'SalesforceGenie|Snowflake',
                    'SecretArn' => '<string>',
                    'Status' => 'ENABLED|DISABLED',
                ],
                // ...
            ],
            'KendraSettings' => [
                'Status' => 'ENABLED|DISABLED',
            ],
            'ModelRegisterSettings' => [
                'CrossAccountModelRegisterRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'TimeSeriesForecastingSettings' => [
                'AmazonForecastRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'WorkspaceSettings' => [
                'S3ArtifactPath' => '<string>',
                'S3KmsKeyId' => '<string>',
            ],
        ],
        'CodeEditorAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                    'LifecycleManagement' => 'ENABLED|DISABLED',
                    'MaxIdleTimeoutInMinutes' => <integer>,
                    'MinIdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'BuiltInLifecycleConfigArn' => '<string>',
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'CustomFileSystemConfigs' => [
            [
                'EFSFileSystemConfig' => [
                    'FileSystemId' => '<string>', // REQUIRED
                    'FileSystemPath' => '<string>',
                ],
                'FSxLustreFileSystemConfig' => [
                    'FileSystemId' => '<string>', // REQUIRED
                    'FileSystemPath' => '<string>',
                ],
            ],
            // ...
        ],
        'CustomPosixUserConfig' => [
            'Gid' => <integer>, // REQUIRED
            'Uid' => <integer>, // REQUIRED
        ],
        'DefaultLandingUri' => '<string>',
        'ExecutionRole' => '<string>',
        'JupyterLabAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                    'LifecycleManagement' => 'ENABLED|DISABLED',
                    'MaxIdleTimeoutInMinutes' => <integer>,
                    'MinIdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'BuiltInLifecycleConfigArn' => '<string>',
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'EmrSettings' => [
                'AssumableRoleArns' => ['<string>', ...],
                'ExecutionRoleArns' => ['<string>', ...],
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'JupyterServerAppSettings' => [
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'KernelGatewayAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'RSessionAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
        'RStudioServerProAppSettings' => [
            'AccessStatus' => 'ENABLED|DISABLED',
            'UserGroup' => 'R_STUDIO_ADMIN|R_STUDIO_USER',
        ],
        'SecurityGroups' => ['<string>', ...],
        'SharingSettings' => [
            'NotebookOutputOption' => 'Allowed|Disabled',
            'S3KmsKeyId' => '<string>',
            'S3OutputPath' => '<string>',
        ],
        'SpaceStorageSettings' => [
            'DefaultEbsStorageSettings' => [
                'DefaultEbsVolumeSizeInGb' => <integer>, // REQUIRED
                'MaximumEbsVolumeSizeInGb' => <integer>, // REQUIRED
            ],
        ],
        'StudioWebPortal' => 'ENABLED|DISABLED',
        'StudioWebPortalSettings' => [
            'HiddenAppTypes' => ['<string>', ...],
            'HiddenInstanceTypes' => ['<string>', ...],
            'HiddenMlTools' => ['<string>', ...],
            'HiddenSageMakerImageVersionAliases' => [
                [
                    'SageMakerImageName' => 'sagemaker_distribution',
                    'VersionAliases' => ['<string>', ...],
                ],
                // ...
            ],
        ],
        'TensorBoardAppSettings' => [
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
    ],
    'DomainId' => '<string>', // REQUIRED
    'DomainSettingsForUpdate' => [
        'AmazonQSettings' => [
            'QProfileArn' => '<string>',
            'Status' => 'ENABLED|DISABLED',
        ],
        'DockerSettings' => [
            'EnableDockerAccess' => 'ENABLED|DISABLED',
            'VpcOnlyTrustedAccounts' => ['<string>', ...],
        ],
        'ExecutionRoleIdentityConfig' => 'USER_PROFILE_NAME|DISABLED',
        'RStudioServerProDomainSettingsForUpdate' => [
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'DomainExecutionRoleArn' => '<string>', // REQUIRED
            'RStudioConnectUrl' => '<string>',
            'RStudioPackageManagerUrl' => '<string>',
        ],
        'SecurityGroupIds' => ['<string>', ...],
    ],
    'SubnetIds' => ['<string>', ...],
    'TagPropagation' => 'ENABLED|DISABLED',
]);

Parameter Details

Members
AppNetworkAccessType
Type: string

Specifies the VPC used for non-EFS traffic.

  • PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker AI, which allows direct internet access.

  • VpcOnly - All Studio traffic is through the specified VPC and subnets.

This configuration can only be modified if there are no apps in the InService, Pending, or Deleting state. The configuration cannot be updated if DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is already set or DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided as part of the same request.

AppSecurityGroupManagement
Type: string

The entity that creates and manages the required security groups for inter-app communication in VPCOnly mode. Required when CreateDomain.AppNetworkAccessType is VPCOnly and DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided. If setting up the domain for use with RStudio, this value must be set to Service.

DefaultSpaceSettings
Type: DefaultSpaceSettings structure

The default settings for shared spaces that users create in the domain.

DefaultUserSettings
Type: UserSettings structure

A collection of settings.

DomainId
Required: Yes
Type: string

The ID of the domain to be updated.

DomainSettingsForUpdate
Type: DomainSettingsForUpdate structure

A collection of DomainSettings configuration values to update.

SubnetIds
Type: Array of strings

The VPC subnets that Studio uses for communication.

If removing subnets, ensure there are no apps in the InService, Pending, or Deleting state.

TagPropagation
Type: string

Indicates whether custom tag propagation is supported for the domain. Defaults to DISABLED.

Result Syntax

[
    'DomainArn' => '<string>',
]

Result Details

Members
DomainArn
Type: string

The Amazon Resource Name (ARN) of the domain.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceInUse:

Resource being accessed is in use.

ResourceNotFound:

Resource being access is not found.

UpdateEndpoint

$result = $client->updateEndpoint([/* ... */]);
$promise = $client->updateEndpointAsync([/* ... */]);

Deploys the EndpointConfig specified in the request to a new fleet of instances. SageMaker shifts endpoint traffic to the new instances with the updated endpoint configuration and then deletes the old instances using the previous EndpointConfig (there is no availability loss). For more information about how to control the update and traffic shifting process, see Update models in production.

When SageMaker receives the request, it sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API.

You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig.

If you delete the EndpointConfig of an endpoint that is active or being created or updated you may lose visibility into the instance type the endpoint is using. The endpoint must be deleted in order to stop incurring charges.

Parameter Syntax

$result = $client->updateEndpoint([
    'DeploymentConfig' => [
        'AutoRollbackConfiguration' => [
            'Alarms' => [
                [
                    'AlarmName' => '<string>',
                ],
                // ...
            ],
        ],
        'BlueGreenUpdatePolicy' => [
            'MaximumExecutionTimeoutInSeconds' => <integer>,
            'TerminationWaitInSeconds' => <integer>,
            'TrafficRoutingConfiguration' => [ // REQUIRED
                'CanarySize' => [
                    'Type' => 'INSTANCE_COUNT|CAPACITY_PERCENT', // REQUIRED
                    'Value' => <integer>, // REQUIRED
                ],
                'LinearStepSize' => [
                    'Type' => 'INSTANCE_COUNT|CAPACITY_PERCENT', // REQUIRED
                    'Value' => <integer>, // REQUIRED
                ],
                'Type' => 'ALL_AT_ONCE|CANARY|LINEAR', // REQUIRED
                'WaitIntervalInSeconds' => <integer>, // REQUIRED
            ],
        ],
        'RollingUpdatePolicy' => [
            'MaximumBatchSize' => [ // REQUIRED
                'Type' => 'INSTANCE_COUNT|CAPACITY_PERCENT', // REQUIRED
                'Value' => <integer>, // REQUIRED
            ],
            'MaximumExecutionTimeoutInSeconds' => <integer>,
            'RollbackMaximumBatchSize' => [
                'Type' => 'INSTANCE_COUNT|CAPACITY_PERCENT', // REQUIRED
                'Value' => <integer>, // REQUIRED
            ],
            'WaitIntervalInSeconds' => <integer>, // REQUIRED
        ],
    ],
    'EndpointConfigName' => '<string>', // REQUIRED
    'EndpointName' => '<string>', // REQUIRED
    'ExcludeRetainedVariantProperties' => [
        [
            'VariantPropertyType' => 'DesiredInstanceCount|DesiredWeight|DataCaptureConfig', // REQUIRED
        ],
        // ...
    ],
    'RetainAllVariantProperties' => true || false,
    'RetainDeploymentConfig' => true || false,
]);

Parameter Details

Members
DeploymentConfig
Type: DeploymentConfig structure

The deployment configuration for an endpoint, which contains the desired deployment strategy and rollback configurations.

EndpointConfigName
Required: Yes
Type: string

The name of the new endpoint configuration.

EndpointName
Required: Yes
Type: string

The name of the endpoint whose configuration you want to update.

ExcludeRetainedVariantProperties
Type: Array of VariantProperty structures

When you are updating endpoint resources with RetainAllVariantProperties, whose value is set to true, ExcludeRetainedVariantProperties specifies the list of type VariantProperty to override with the values provided by EndpointConfig. If you don't specify a value for ExcludeRetainedVariantProperties, no variant properties are overridden.

RetainAllVariantProperties
Type: boolean

When updating endpoint resources, enables or disables the retention of variant properties, such as the instance count or the variant weight. To retain the variant properties of an endpoint when updating it, set RetainAllVariantProperties to true. To use the variant properties specified in a new EndpointConfig call when updating an endpoint, set RetainAllVariantProperties to false. The default is false.

RetainDeploymentConfig
Type: boolean

Specifies whether to reuse the last deployment configuration. The default value is false (the configuration is not reused).

Result Syntax

[
    'EndpointArn' => '<string>',
]

Result Details

Members
EndpointArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the endpoint.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

UpdateEndpointWeightsAndCapacities

$result = $client->updateEndpointWeightsAndCapacities([/* ... */]);
$promise = $client->updateEndpointWeightsAndCapacitiesAsync([/* ... */]);

Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, SageMaker sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API.

Parameter Syntax

$result = $client->updateEndpointWeightsAndCapacities([
    'DesiredWeightsAndCapacities' => [ // REQUIRED
        [
            'DesiredInstanceCount' => <integer>,
            'DesiredWeight' => <float>,
            'ServerlessUpdateConfig' => [
                'MaxConcurrency' => <integer>,
                'ProvisionedConcurrency' => <integer>,
            ],
            'VariantName' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'EndpointName' => '<string>', // REQUIRED
]);

Parameter Details

Members
DesiredWeightsAndCapacities
Required: Yes
Type: Array of DesiredWeightAndCapacity structures

An object that provides new capacity and weight values for a variant.

EndpointName
Required: Yes
Type: string

The name of an existing SageMaker endpoint.

Result Syntax

[
    'EndpointArn' => '<string>',
]

Result Details

Members
EndpointArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the updated endpoint.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

UpdateExperiment

$result = $client->updateExperiment([/* ... */]);
$promise = $client->updateExperimentAsync([/* ... */]);

Adds, updates, or removes the description of an experiment. Updates the display name of an experiment.

Parameter Syntax

$result = $client->updateExperiment([
    'Description' => '<string>',
    'DisplayName' => '<string>',
    'ExperimentName' => '<string>', // REQUIRED
]);

Parameter Details

Members
Description
Type: string

The description of the experiment.

DisplayName
Type: string

The name of the experiment as displayed. The name doesn't need to be unique. If DisplayName isn't specified, ExperimentName is displayed.

ExperimentName
Required: Yes
Type: string

The name of the experiment to update.

Result Syntax

[
    'ExperimentArn' => '<string>',
]

Result Details

Members
ExperimentArn
Type: string

The Amazon Resource Name (ARN) of the experiment.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

ResourceNotFound:

Resource being access is not found.

UpdateFeatureGroup

$result = $client->updateFeatureGroup([/* ... */]);
$promise = $client->updateFeatureGroupAsync([/* ... */]);

Updates the feature group by either adding features or updating the online store configuration. Use one of the following request parameters at a time while using the UpdateFeatureGroup API.

You can add features for your feature group using the FeatureAdditions request parameter. Features cannot be removed from a feature group.

You can update the online store configuration by using the OnlineStoreConfig request parameter. If a TtlDuration is specified, the default TtlDuration applies for all records added to the feature group after the feature group is updated. If a record level TtlDuration exists from using the PutRecord API, the record level TtlDuration applies to that record instead of the default TtlDuration. To remove the default TtlDuration from an existing feature group, use the UpdateFeatureGroup API and set the TtlDuration Unit and Value to null.

Parameter Syntax

$result = $client->updateFeatureGroup([
    'FeatureAdditions' => [
        [
            'CollectionConfig' => [
                'VectorConfig' => [
                    'Dimension' => <integer>, // REQUIRED
                ],
            ],
            'CollectionType' => 'List|Set|Vector',
            'FeatureName' => '<string>', // REQUIRED
            'FeatureType' => 'Integral|Fractional|String', // REQUIRED
        ],
        // ...
    ],
    'FeatureGroupName' => '<string>', // REQUIRED
    'OnlineStoreConfig' => [
        'TtlDuration' => [
            'Unit' => 'Seconds|Minutes|Hours|Days|Weeks',
            'Value' => <integer>,
        ],
    ],
    'ThroughputConfig' => [
        'ProvisionedReadCapacityUnits' => <integer>,
        'ProvisionedWriteCapacityUnits' => <integer>,
        'ThroughputMode' => 'OnDemand|Provisioned',
    ],
]);

Parameter Details

Members
FeatureAdditions
Type: Array of FeatureDefinition structures

Updates the feature group. Updating a feature group is an asynchronous operation. When you get an HTTP 200 response, you've made a valid request. It takes some time after you've made a valid request for Feature Store to update the feature group.

FeatureGroupName
Required: Yes
Type: string

The name or Amazon Resource Name (ARN) of the feature group that you're updating.

OnlineStoreConfig
Type: OnlineStoreConfigUpdate structure

Updates the feature group online store configuration.

ThroughputConfig
Type: ThroughputConfigUpdate structure

The new throughput configuration for the feature group. You can switch between on-demand and provisioned modes or update the read / write capacity of provisioned feature groups. You can switch a feature group to on-demand only once in a 24 hour period.

Result Syntax

[
    'FeatureGroupArn' => '<string>',
]

Result Details

Members
FeatureGroupArn
Required: Yes
Type: string

The Amazon Resource Number (ARN) of the feature group that you're updating.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

UpdateFeatureMetadata

$result = $client->updateFeatureMetadata([/* ... */]);
$promise = $client->updateFeatureMetadataAsync([/* ... */]);

Updates the description and parameters of the feature group.

Parameter Syntax

$result = $client->updateFeatureMetadata([
    'Description' => '<string>',
    'FeatureGroupName' => '<string>', // REQUIRED
    'FeatureName' => '<string>', // REQUIRED
    'ParameterAdditions' => [
        [
            'Key' => '<string>',
            'Value' => '<string>',
        ],
        // ...
    ],
    'ParameterRemovals' => ['<string>', ...],
]);

Parameter Details

Members
Description
Type: string

A description that you can write to better describe the feature.

FeatureGroupName
Required: Yes
Type: string

The name or Amazon Resource Name (ARN) of the feature group containing the feature that you're updating.

FeatureName
Required: Yes
Type: string

The name of the feature that you're updating.

ParameterAdditions
Type: Array of FeatureParameter structures

A list of key-value pairs that you can add to better describe the feature.

ParameterRemovals
Type: Array of strings

A list of parameter keys that you can specify to remove parameters that describe your feature.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceNotFound:

Resource being access is not found.

UpdateHub

$result = $client->updateHub([/* ... */]);
$promise = $client->updateHubAsync([/* ... */]);

Update a hub.

Parameter Syntax

$result = $client->updateHub([
    'HubDescription' => '<string>',
    'HubDisplayName' => '<string>',
    'HubName' => '<string>', // REQUIRED
    'HubSearchKeywords' => ['<string>', ...],
]);

Parameter Details

Members
HubDescription
Type: string

A description of the updated hub.

HubDisplayName
Type: string

The display name of the hub.

HubName
Required: Yes
Type: string

The name of the hub to update.

HubSearchKeywords
Type: Array of strings

The searchable keywords for the hub.

Result Syntax

[
    'HubArn' => '<string>',
]

Result Details

Members
HubArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the updated hub.

Errors

ResourceNotFound:

Resource being access is not found.

UpdateImage

$result = $client->updateImage([/* ... */]);
$promise = $client->updateImageAsync([/* ... */]);

Updates the properties of a SageMaker AI image. To change the image's tags, use the AddTags and DeleteTags APIs.

Parameter Syntax

$result = $client->updateImage([
    'DeleteProperties' => ['<string>', ...],
    'Description' => '<string>',
    'DisplayName' => '<string>',
    'ImageName' => '<string>', // REQUIRED
    'RoleArn' => '<string>',
]);

Parameter Details

Members
DeleteProperties
Type: Array of strings

A list of properties to delete. Only the Description and DisplayName properties can be deleted.

Description
Type: string

The new description for the image.

DisplayName
Type: string

The new display name for the image.

ImageName
Required: Yes
Type: string

The name of the image to update.

RoleArn
Type: string

The new ARN for the IAM role that enables Amazon SageMaker AI to perform tasks on your behalf.

Result Syntax

[
    'ImageArn' => '<string>',
]

Result Details

Members
ImageArn
Type: string

The ARN of the image.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceNotFound:

Resource being access is not found.

UpdateImageVersion

$result = $client->updateImageVersion([/* ... */]);
$promise = $client->updateImageVersionAsync([/* ... */]);

Updates the properties of a SageMaker AI image version.

Parameter Syntax

$result = $client->updateImageVersion([
    'Alias' => '<string>',
    'AliasesToAdd' => ['<string>', ...],
    'AliasesToDelete' => ['<string>', ...],
    'Horovod' => true || false,
    'ImageName' => '<string>', // REQUIRED
    'JobType' => 'TRAINING|INFERENCE|NOTEBOOK_KERNEL',
    'MLFramework' => '<string>',
    'Processor' => 'CPU|GPU',
    'ProgrammingLang' => '<string>',
    'ReleaseNotes' => '<string>',
    'VendorGuidance' => 'NOT_PROVIDED|STABLE|TO_BE_ARCHIVED|ARCHIVED',
    'Version' => <integer>,
]);

Parameter Details

Members
Alias
Type: string

The alias of the image version.

AliasesToAdd
Type: Array of strings

A list of aliases to add.

AliasesToDelete
Type: Array of strings

A list of aliases to delete.

Horovod
Type: boolean

Indicates Horovod compatibility.

ImageName
Required: Yes
Type: string

The name of the image.

JobType
Type: string

Indicates SageMaker AI job type compatibility.

  • TRAINING: The image version is compatible with SageMaker AI training jobs.

  • INFERENCE: The image version is compatible with SageMaker AI inference jobs.

  • NOTEBOOK_KERNEL: The image version is compatible with SageMaker AI notebook kernels.

MLFramework
Type: string

The machine learning framework vended in the image version.

Processor
Type: string

Indicates CPU or GPU compatibility.

  • CPU: The image version is compatible with CPU.

  • GPU: The image version is compatible with GPU.

ProgrammingLang
Type: string

The supported programming language and its version.

ReleaseNotes
Type: string

The maintainer description of the image version.

VendorGuidance
Type: string

The availability of the image version specified by the maintainer.

  • NOT_PROVIDED: The maintainers did not provide a status for image version stability.

  • STABLE: The image version is stable.

  • TO_BE_ARCHIVED: The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months.

  • ARCHIVED: The image version is archived. Archived image versions are not searchable and are no longer actively supported.

Version
Type: int

The version of the image.

Result Syntax

[
    'ImageVersionArn' => '<string>',
]

Result Details

Members
ImageVersionArn
Type: string

The ARN of the image version.

Errors

ResourceInUse:

Resource being accessed is in use.

ResourceNotFound:

Resource being access is not found.

UpdateInferenceComponent

$result = $client->updateInferenceComponent([/* ... */]);
$promise = $client->updateInferenceComponentAsync([/* ... */]);

Updates an inference component.

Parameter Syntax

$result = $client->updateInferenceComponent([
    'InferenceComponentName' => '<string>', // REQUIRED
    'RuntimeConfig' => [
        'CopyCount' => <integer>, // REQUIRED
    ],
    'Specification' => [
        'BaseInferenceComponentName' => '<string>',
        'ComputeResourceRequirements' => [
            'MaxMemoryRequiredInMb' => <integer>,
            'MinMemoryRequiredInMb' => <integer>, // REQUIRED
            'NumberOfAcceleratorDevicesRequired' => <float>,
            'NumberOfCpuCoresRequired' => <float>,
        ],
        'Container' => [
            'ArtifactUrl' => '<string>',
            'Environment' => ['<string>', ...],
            'Image' => '<string>',
        ],
        'ModelName' => '<string>',
        'StartupParameters' => [
            'ContainerStartupHealthCheckTimeoutInSeconds' => <integer>,
            'ModelDataDownloadTimeoutInSeconds' => <integer>,
        ],
    ],
]);

Parameter Details

Members
InferenceComponentName
Required: Yes
Type: string

The name of the inference component.

RuntimeConfig

Runtime settings for a model that is deployed with an inference component.

Specification

Details about the resources to deploy with this inference component, including the model, container, and compute resources.

Result Syntax

[
    'InferenceComponentArn' => '<string>',
]

Result Details

Members
InferenceComponentArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the inference component.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

UpdateInferenceComponentRuntimeConfig

$result = $client->updateInferenceComponentRuntimeConfig([/* ... */]);
$promise = $client->updateInferenceComponentRuntimeConfigAsync([/* ... */]);

Runtime settings for a model that is deployed with an inference component.

Parameter Syntax

$result = $client->updateInferenceComponentRuntimeConfig([
    'DesiredRuntimeConfig' => [ // REQUIRED
        'CopyCount' => <integer>, // REQUIRED
    ],
    'InferenceComponentName' => '<string>', // REQUIRED
]);

Parameter Details

Members
DesiredRuntimeConfig
Required: Yes
Type: InferenceComponentRuntimeConfig structure

Runtime settings for a model that is deployed with an inference component.

InferenceComponentName
Required: Yes
Type: string

The name of the inference component to update.

Result Syntax

[
    'InferenceComponentArn' => '<string>',
]

Result Details

Members
InferenceComponentArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the inference component.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

UpdateInferenceExperiment

$result = $client->updateInferenceExperiment([/* ... */]);
$promise = $client->updateInferenceExperimentAsync([/* ... */]);

Updates an inference experiment that you created. The status of the inference experiment has to be either Created, Running. For more information on the status of an inference experiment, see DescribeInferenceExperiment.

Parameter Syntax

$result = $client->updateInferenceExperiment([
    'DataStorageConfig' => [
        'ContentType' => [
            'CsvContentTypes' => ['<string>', ...],
            'JsonContentTypes' => ['<string>', ...],
        ],
        'Destination' => '<string>', // REQUIRED
        'KmsKey' => '<string>',
    ],
    'Description' => '<string>',
    'ModelVariants' => [
        [
            'InfrastructureConfig' => [ // REQUIRED
                'InfrastructureType' => 'RealTimeInference', // REQUIRED
                'RealTimeInferenceConfig' => [ // REQUIRED
                    'InstanceCount' => <integer>, // REQUIRED
                    'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge', // REQUIRED
                ],
            ],
            'ModelName' => '<string>', // REQUIRED
            'VariantName' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'Name' => '<string>', // REQUIRED
    'Schedule' => [
        'EndTime' => <integer || string || DateTime>,
        'StartTime' => <integer || string || DateTime>,
    ],
    'ShadowModeConfig' => [
        'ShadowModelVariants' => [ // REQUIRED
            [
                'SamplingPercentage' => <integer>, // REQUIRED
                'ShadowModelVariantName' => '<string>', // REQUIRED
            ],
            // ...
        ],
        'SourceModelVariantName' => '<string>', // REQUIRED
    ],
]);

Parameter Details

Members
DataStorageConfig

The Amazon S3 location and configuration for storing inference request and response data.

Description
Type: string

The description of the inference experiment.

ModelVariants
Type: Array of ModelVariantConfig structures

An array of ModelVariantConfig objects. There is one for each variant, whose infrastructure configuration you want to update.

Name
Required: Yes
Type: string

The name of the inference experiment to be updated.

Schedule
Type: InferenceExperimentSchedule structure

The duration for which the inference experiment will run. If the status of the inference experiment is Created, then you can update both the start and end dates. If the status of the inference experiment is Running, then you can update only the end date.

ShadowModeConfig
Type: ShadowModeConfig structure

The configuration of ShadowMode inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates.

Result Syntax

[
    'InferenceExperimentArn' => '<string>',
]

Result Details

Members
InferenceExperimentArn
Required: Yes
Type: string

The ARN of the updated inference experiment.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

ResourceNotFound:

Resource being access is not found.

UpdateMlflowTrackingServer

$result = $client->updateMlflowTrackingServer([/* ... */]);
$promise = $client->updateMlflowTrackingServerAsync([/* ... */]);

Updates properties of an existing MLflow Tracking Server.

Parameter Syntax

$result = $client->updateMlflowTrackingServer([
    'ArtifactStoreUri' => '<string>',
    'AutomaticModelRegistration' => true || false,
    'TrackingServerName' => '<string>', // REQUIRED
    'TrackingServerSize' => 'Small|Medium|Large',
    'WeeklyMaintenanceWindowStart' => '<string>',
]);

Parameter Details

Members
ArtifactStoreUri
Type: string

The new S3 URI for the general purpose bucket to use as the artifact store for the MLflow Tracking Server.

AutomaticModelRegistration
Type: boolean

Whether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to True. To disable automatic model registration, set this value to False. If not specified, AutomaticModelRegistration defaults to False

TrackingServerName
Required: Yes
Type: string

The name of the MLflow Tracking Server to update.

TrackingServerSize
Type: string

The new size for the MLflow Tracking Server.

WeeklyMaintenanceWindowStart
Type: string

The new weekly maintenance window start day and time to update. The maintenance window day and time should be in Coordinated Universal Time (UTC) 24-hour standard time. For example: TUE:03:30.

Result Syntax

[
    'TrackingServerArn' => '<string>',
]

Result Details

Members
TrackingServerArn
Type: string

The ARN of the updated MLflow Tracking Server.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

UpdateModelCard

$result = $client->updateModelCard([/* ... */]);
$promise = $client->updateModelCardAsync([/* ... */]);

Update an Amazon SageMaker Model Card.

You cannot update both model card content and model card status in a single call.

Parameter Syntax

$result = $client->updateModelCard([
    'Content' => '<string>',
    'ModelCardName' => '<string>', // REQUIRED
    'ModelCardStatus' => 'Draft|PendingReview|Approved|Archived',
]);

Parameter Details

Members
Content
Type: string

The updated model card content. Content must be in model card JSON schema and provided as a string.

When updating model card content, be sure to include the full content and not just updated content.

ModelCardName
Required: Yes
Type: string

The name or Amazon Resource Name (ARN) of the model card to update.

ModelCardStatus
Type: string

The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.

  • Draft: The model card is a work in progress.

  • PendingReview: The model card is pending review.

  • Approved: The model card is approved.

  • Archived: The model card is archived. No more updates should be made to the model card, but it can still be exported.

Result Syntax

[
    'ModelCardArn' => '<string>',
]

Result Details

Members
ModelCardArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the updated model card.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

UpdateModelPackage

$result = $client->updateModelPackage([/* ... */]);
$promise = $client->updateModelPackageAsync([/* ... */]);

Updates a versioned model.

Parameter Syntax

$result = $client->updateModelPackage([
    'AdditionalInferenceSpecificationsToAdd' => [
        [
            'Containers' => [ // REQUIRED
                [
                    'AdditionalS3DataSource' => [
                        'CompressionType' => 'None|Gzip',
                        'ETag' => '<string>',
                        'S3DataType' => 'S3Object|S3Prefix', // REQUIRED
                        'S3Uri' => '<string>', // REQUIRED
                    ],
                    'ContainerHostname' => '<string>',
                    'Environment' => ['<string>', ...],
                    'Framework' => '<string>',
                    'FrameworkVersion' => '<string>',
                    'Image' => '<string>', // REQUIRED
                    'ImageDigest' => '<string>',
                    'ModelDataETag' => '<string>',
                    'ModelDataSource' => [
                        'S3DataSource' => [
                            'CompressionType' => 'None|Gzip', // REQUIRED
                            'ETag' => '<string>',
                            'HubAccessConfig' => [
                                'HubContentArn' => '<string>', // REQUIRED
                            ],
                            'ManifestEtag' => '<string>',
                            'ManifestS3Uri' => '<string>',
                            'ModelAccessConfig' => [
                                'AcceptEula' => true || false, // REQUIRED
                            ],
                            'S3DataType' => 'S3Prefix|S3Object', // REQUIRED
                            'S3Uri' => '<string>', // REQUIRED
                        ],
                    ],
                    'ModelDataUrl' => '<string>',
                    'ModelInput' => [
                        'DataInputConfig' => '<string>', // REQUIRED
                    ],
                    'NearestModelName' => '<string>',
                    'ProductId' => '<string>',
                ],
                // ...
            ],
            'Description' => '<string>',
            'Name' => '<string>', // REQUIRED
            'SupportedContentTypes' => ['<string>', ...],
            'SupportedRealtimeInferenceInstanceTypes' => ['<string>', ...],
            'SupportedResponseMIMETypes' => ['<string>', ...],
            'SupportedTransformInstanceTypes' => ['<string>', ...],
        ],
        // ...
    ],
    'ApprovalDescription' => '<string>',
    'ClientToken' => '<string>',
    'CustomerMetadataProperties' => ['<string>', ...],
    'CustomerMetadataPropertiesToRemove' => ['<string>', ...],
    'InferenceSpecification' => [
        'Containers' => [ // REQUIRED
            [
                'AdditionalS3DataSource' => [
                    'CompressionType' => 'None|Gzip',
                    'ETag' => '<string>',
                    'S3DataType' => 'S3Object|S3Prefix', // REQUIRED
                    'S3Uri' => '<string>', // REQUIRED
                ],
                'ContainerHostname' => '<string>',
                'Environment' => ['<string>', ...],
                'Framework' => '<string>',
                'FrameworkVersion' => '<string>',
                'Image' => '<string>', // REQUIRED
                'ImageDigest' => '<string>',
                'ModelDataETag' => '<string>',
                'ModelDataSource' => [
                    'S3DataSource' => [
                        'CompressionType' => 'None|Gzip', // REQUIRED
                        'ETag' => '<string>',
                        'HubAccessConfig' => [
                            'HubContentArn' => '<string>', // REQUIRED
                        ],
                        'ManifestEtag' => '<string>',
                        'ManifestS3Uri' => '<string>',
                        'ModelAccessConfig' => [
                            'AcceptEula' => true || false, // REQUIRED
                        ],
                        'S3DataType' => 'S3Prefix|S3Object', // REQUIRED
                        'S3Uri' => '<string>', // REQUIRED
                    ],
                ],
                'ModelDataUrl' => '<string>',
                'ModelInput' => [
                    'DataInputConfig' => '<string>', // REQUIRED
                ],
                'NearestModelName' => '<string>',
                'ProductId' => '<string>',
            ],
            // ...
        ],
        'SupportedContentTypes' => ['<string>', ...],
        'SupportedRealtimeInferenceInstanceTypes' => ['<string>', ...],
        'SupportedResponseMIMETypes' => ['<string>', ...],
        'SupportedTransformInstanceTypes' => ['<string>', ...],
    ],
    'ModelApprovalStatus' => 'Approved|Rejected|PendingManualApproval',
    'ModelCard' => [
        'ModelCardContent' => '<string>',
        'ModelCardStatus' => 'Draft|PendingReview|Approved|Archived',
    ],
    'ModelLifeCycle' => [
        'Stage' => '<string>', // REQUIRED
        'StageDescription' => '<string>',
        'StageStatus' => '<string>', // REQUIRED
    ],
    'ModelPackageArn' => '<string>', // REQUIRED
    'SourceUri' => '<string>',
]);

Parameter Details

Members
AdditionalInferenceSpecificationsToAdd
Type: Array of AdditionalInferenceSpecificationDefinition structures

An array of additional Inference Specification objects to be added to the existing array additional Inference Specification. Total number of additional Inference Specifications can not exceed 15. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.

ApprovalDescription
Type: string

A description for the approval status of the model.

ClientToken
Type: string

A unique token that guarantees that the call to this API is idempotent.

CustomerMetadataProperties
Type: Associative array of custom strings keys (CustomerMetadataKey) to strings

The metadata properties associated with the model package versions.

CustomerMetadataPropertiesToRemove
Type: Array of strings

The metadata properties associated with the model package versions to remove.

InferenceSpecification
Type: InferenceSpecification structure

Specifies details about inference jobs that you can run with models based on this model package, including the following information:

  • The Amazon ECR paths of containers that contain the inference code and model artifacts.

  • The instance types that the model package supports for transform jobs and real-time endpoints used for inference.

  • The input and output content formats that the model package supports for inference.

ModelApprovalStatus
Type: string

The approval status of the model.

ModelCard
Type: ModelPackageModelCard structure

The model card associated with the model package. Since ModelPackageModelCard is tied to a model package, it is a specific usage of a model card and its schema is simplified compared to the schema of ModelCard. The ModelPackageModelCard schema does not include model_package_details, and model_overview is composed of the model_creator and model_artifact properties. For more information about the model package model card schema, see Model package model card schema. For more information about the model card associated with the model package, see View the Details of a Model Version.

ModelLifeCycle
Type: ModelLifeCycle structure

A structure describing the current state of the model in its life cycle.

ModelPackageArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model package.

SourceUri
Type: string

The URI of the source for the model package.

Result Syntax

[
    'ModelPackageArn' => '<string>',
]

Result Details

Members
ModelPackageArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

UpdateMonitoringAlert

$result = $client->updateMonitoringAlert([/* ... */]);
$promise = $client->updateMonitoringAlertAsync([/* ... */]);

Update the parameters of a model monitor alert.

Parameter Syntax

$result = $client->updateMonitoringAlert([
    'DatapointsToAlert' => <integer>, // REQUIRED
    'EvaluationPeriod' => <integer>, // REQUIRED
    'MonitoringAlertName' => '<string>', // REQUIRED
    'MonitoringScheduleName' => '<string>', // REQUIRED
]);

Parameter Details

Members
DatapointsToAlert
Required: Yes
Type: int

Within EvaluationPeriod, how many execution failures will raise an alert.

EvaluationPeriod
Required: Yes
Type: int

The number of most recent monitoring executions to consider when evaluating alert status.

MonitoringAlertName
Required: Yes
Type: string

The name of a monitoring alert.

MonitoringScheduleName
Required: Yes
Type: string

The name of a monitoring schedule.

Result Syntax

[
    'MonitoringAlertName' => '<string>',
    'MonitoringScheduleArn' => '<string>',
]

Result Details

Members
MonitoringAlertName
Type: string

The name of a monitoring alert.

MonitoringScheduleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the monitoring schedule.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceNotFound:

Resource being access is not found.

UpdateMonitoringSchedule

$result = $client->updateMonitoringSchedule([/* ... */]);
$promise = $client->updateMonitoringScheduleAsync([/* ... */]);

Updates a previously created schedule.

Parameter Syntax

$result = $client->updateMonitoringSchedule([
    'MonitoringScheduleConfig' => [ // REQUIRED
        'MonitoringJobDefinition' => [
            'BaselineConfig' => [
                'BaseliningJobName' => '<string>',
                'ConstraintsResource' => [
                    'S3Uri' => '<string>',
                ],
                'StatisticsResource' => [
                    'S3Uri' => '<string>',
                ],
            ],
            'Environment' => ['<string>', ...],
            'MonitoringAppSpecification' => [ // REQUIRED
                'ContainerArguments' => ['<string>', ...],
                'ContainerEntrypoint' => ['<string>', ...],
                'ImageUri' => '<string>', // REQUIRED
                'PostAnalyticsProcessorSourceUri' => '<string>',
                'RecordPreprocessorSourceUri' => '<string>',
            ],
            'MonitoringInputs' => [ // REQUIRED
                [
                    'BatchTransformInput' => [
                        'DataCapturedDestinationS3Uri' => '<string>', // REQUIRED
                        'DatasetFormat' => [ // REQUIRED
                            'Csv' => [
                                'Header' => true || false,
                            ],
                            'Json' => [
                                'Line' => true || false,
                            ],
                            'Parquet' => [
                            ],
                        ],
                        'EndTimeOffset' => '<string>',
                        'ExcludeFeaturesAttribute' => '<string>',
                        'FeaturesAttribute' => '<string>',
                        'InferenceAttribute' => '<string>',
                        'LocalPath' => '<string>', // REQUIRED
                        'ProbabilityAttribute' => '<string>',
                        'ProbabilityThresholdAttribute' => <float>,
                        'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                        'S3InputMode' => 'Pipe|File',
                        'StartTimeOffset' => '<string>',
                    ],
                    'EndpointInput' => [
                        'EndTimeOffset' => '<string>',
                        'EndpointName' => '<string>', // REQUIRED
                        'ExcludeFeaturesAttribute' => '<string>',
                        'FeaturesAttribute' => '<string>',
                        'InferenceAttribute' => '<string>',
                        'LocalPath' => '<string>', // REQUIRED
                        'ProbabilityAttribute' => '<string>',
                        'ProbabilityThresholdAttribute' => <float>,
                        'S3DataDistributionType' => 'FullyReplicated|ShardedByS3Key',
                        'S3InputMode' => 'Pipe|File',
                        'StartTimeOffset' => '<string>',
                    ],
                ],
                // ...
            ],
            'MonitoringOutputConfig' => [ // REQUIRED
                'KmsKeyId' => '<string>',
                'MonitoringOutputs' => [ // REQUIRED
                    [
                        'S3Output' => [ // REQUIRED
                            'LocalPath' => '<string>', // REQUIRED
                            'S3UploadMode' => 'Continuous|EndOfJob',
                            'S3Uri' => '<string>', // REQUIRED
                        ],
                    ],
                    // ...
                ],
            ],
            'MonitoringResources' => [ // REQUIRED
                'ClusterConfig' => [ // REQUIRED
                    'InstanceCount' => <integer>, // REQUIRED
                    'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge', // REQUIRED
                    'VolumeKmsKeyId' => '<string>',
                    'VolumeSizeInGB' => <integer>, // REQUIRED
                ],
            ],
            'NetworkConfig' => [
                'EnableInterContainerTrafficEncryption' => true || false,
                'EnableNetworkIsolation' => true || false,
                'VpcConfig' => [
                    'SecurityGroupIds' => ['<string>', ...], // REQUIRED
                    'Subnets' => ['<string>', ...], // REQUIRED
                ],
            ],
            'RoleArn' => '<string>', // REQUIRED
            'StoppingCondition' => [
                'MaxRuntimeInSeconds' => <integer>, // REQUIRED
            ],
        ],
        'MonitoringJobDefinitionName' => '<string>',
        'MonitoringType' => 'DataQuality|ModelQuality|ModelBias|ModelExplainability',
        'ScheduleConfig' => [
            'DataAnalysisEndTime' => '<string>',
            'DataAnalysisStartTime' => '<string>',
            'ScheduleExpression' => '<string>', // REQUIRED
        ],
    ],
    'MonitoringScheduleName' => '<string>', // REQUIRED
]);

Parameter Details

Members
MonitoringScheduleConfig
Required: Yes
Type: MonitoringScheduleConfig structure

The configuration object that specifies the monitoring schedule and defines the monitoring job.

MonitoringScheduleName
Required: Yes
Type: string

The name of the monitoring schedule. The name must be unique within an Amazon Web Services Region within an Amazon Web Services account.

Result Syntax

[
    'MonitoringScheduleArn' => '<string>',
]

Result Details

Members
MonitoringScheduleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the monitoring schedule.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceNotFound:

Resource being access is not found.

UpdateNotebookInstance

$result = $client->updateNotebookInstance([/* ... */]);
$promise = $client->updateNotebookInstanceAsync([/* ... */]);

Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.

Parameter Syntax

$result = $client->updateNotebookInstance([
    'AcceleratorTypes' => ['<string>', ...],
    'AdditionalCodeRepositories' => ['<string>', ...],
    'DefaultCodeRepository' => '<string>',
    'DisassociateAcceleratorTypes' => true || false,
    'DisassociateAdditionalCodeRepositories' => true || false,
    'DisassociateDefaultCodeRepository' => true || false,
    'DisassociateLifecycleConfig' => true || false,
    'InstanceMetadataServiceConfiguration' => [
        'MinimumInstanceMetadataServiceVersion' => '<string>', // REQUIRED
    ],
    'InstanceType' => 'ml.t2.medium|ml.t2.large|ml.t2.xlarge|ml.t2.2xlarge|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.c5d.xlarge|ml.c5d.2xlarge|ml.c5d.4xlarge|ml.c5d.9xlarge|ml.c5d.18xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.inf1.xlarge|ml.inf1.2xlarge|ml.inf1.6xlarge|ml.inf1.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.inf2.xlarge|ml.inf2.8xlarge|ml.inf2.24xlarge|ml.inf2.48xlarge|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge',
    'LifecycleConfigName' => '<string>',
    'NotebookInstanceName' => '<string>', // REQUIRED
    'RoleArn' => '<string>',
    'RootAccess' => 'Enabled|Disabled',
    'VolumeSizeInGB' => <integer>,
]);

Parameter Details

Members
AcceleratorTypes
Type: Array of strings

This parameter is no longer supported. Elastic Inference (EI) is no longer available.

This parameter was used to specify a list of the EI instance types to associate with this notebook instance.

AdditionalCodeRepositories
Type: Array of strings

An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.

DefaultCodeRepository
Type: string

The Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.

DisassociateAcceleratorTypes
Type: boolean

This parameter is no longer supported. Elastic Inference (EI) is no longer available.

This parameter was used to specify a list of the EI instance types to remove from this notebook instance.

DisassociateAdditionalCodeRepositories
Type: boolean

A list of names or URLs of the default Git repositories to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.

DisassociateDefaultCodeRepository
Type: boolean

The name or URL of the default Git repository to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.

DisassociateLifecycleConfig
Type: boolean

Set to true to remove the notebook instance lifecycle configuration currently associated with the notebook instance. This operation is idempotent. If you specify a lifecycle configuration that is not associated with the notebook instance when you call this method, it does not throw an error.

InstanceMetadataServiceConfiguration

Information on the IMDS configuration of the notebook instance

InstanceType
Type: string

The Amazon ML compute instance type.

LifecycleConfigName
Type: string

The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

NotebookInstanceName
Required: Yes
Type: string

The name of the notebook instance to update.

RoleArn
Type: string

The Amazon Resource Name (ARN) of the IAM role that SageMaker AI can assume to access the notebook instance. For more information, see SageMaker AI Roles.

To be able to pass this role to SageMaker AI, the caller of this API must have the iam:PassRole permission.

RootAccess
Type: string

Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled.

If you set this to Disabled, users don't have root access on the notebook instance, but lifecycle configuration scripts still run with root permissions.

VolumeSizeInGB
Type: int

The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB. ML storage volumes are encrypted, so SageMaker AI can't determine the amount of available free space on the volume. Because of this, you can increase the volume size when you update a notebook instance, but you can't decrease the volume size. If you want to decrease the size of the ML storage volume in use, create a new notebook instance with the desired size.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

UpdateNotebookInstanceLifecycleConfig

$result = $client->updateNotebookInstanceLifecycleConfig([/* ... */]);
$promise = $client->updateNotebookInstanceLifecycleConfigAsync([/* ... */]);

Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig API.

Parameter Syntax

$result = $client->updateNotebookInstanceLifecycleConfig([
    'NotebookInstanceLifecycleConfigName' => '<string>', // REQUIRED
    'OnCreate' => [
        [
            'Content' => '<string>',
        ],
        // ...
    ],
    'OnStart' => [
        [
            'Content' => '<string>',
        ],
        // ...
    ],
]);

Parameter Details

Members
NotebookInstanceLifecycleConfigName
Required: Yes
Type: string

The name of the lifecycle configuration.

OnCreate
Type: Array of NotebookInstanceLifecycleHook structures

The shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.

OnStart
Type: Array of NotebookInstanceLifecycleHook structures

The shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.

Result Syntax

[]

Result Details

The results for this operation are always empty.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

UpdatePartnerApp

$result = $client->updatePartnerApp([/* ... */]);
$promise = $client->updatePartnerAppAsync([/* ... */]);

Updates all of the SageMaker Partner AI Apps in an account.

Parameter Syntax

$result = $client->updatePartnerApp([
    'ApplicationConfig' => [
        'AdminUsers' => ['<string>', ...],
        'Arguments' => ['<string>', ...],
    ],
    'Arn' => '<string>', // REQUIRED
    'ClientToken' => '<string>',
    'EnableIamSessionBasedIdentity' => true || false,
    'MaintenanceConfig' => [
        'MaintenanceWindowStart' => '<string>',
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'Tier' => '<string>',
]);

Parameter Details

Members
ApplicationConfig
Type: PartnerAppConfig structure

Configuration settings for the SageMaker Partner AI App.

Arn
Required: Yes
Type: string

The ARN of the SageMaker Partner AI App to update.

ClientToken
Type: string

A unique token that guarantees that the call to this API is idempotent.

EnableIamSessionBasedIdentity
Type: boolean

When set to TRUE, the SageMaker Partner AI App sets the Amazon Web Services IAM session name or the authenticated IAM user as the identity of the SageMaker Partner AI App user.

MaintenanceConfig
Type: PartnerAppMaintenanceConfig structure

Maintenance configuration settings for the SageMaker Partner AI App.

Tags
Type: Array of Tag structures

Each tag consists of a key and an optional value. Tag keys must be unique per resource.

Tier
Type: string

Indicates the instance type and size of the cluster attached to the SageMaker Partner AI App.

Result Syntax

[
    'Arn' => '<string>',
]

Result Details

Members
Arn
Type: string

The ARN of the SageMaker Partner AI App that was updated.

Errors

ResourceNotFound:

Resource being access is not found.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

UpdatePipeline

$result = $client->updatePipeline([/* ... */]);
$promise = $client->updatePipelineAsync([/* ... */]);

Updates a pipeline.

Parameter Syntax

$result = $client->updatePipeline([
    'ParallelismConfiguration' => [
        'MaxParallelExecutionSteps' => <integer>, // REQUIRED
    ],
    'PipelineDefinition' => '<string>',
    'PipelineDefinitionS3Location' => [
        'Bucket' => '<string>', // REQUIRED
        'ObjectKey' => '<string>', // REQUIRED
        'VersionId' => '<string>',
    ],
    'PipelineDescription' => '<string>',
    'PipelineDisplayName' => '<string>',
    'PipelineName' => '<string>', // REQUIRED
    'RoleArn' => '<string>',
]);

Parameter Details

Members
ParallelismConfiguration
Type: ParallelismConfiguration structure

If specified, it applies to all executions of this pipeline by default.

PipelineDefinition
Type: string

The JSON pipeline definition.

PipelineDefinitionS3Location

The location of the pipeline definition stored in Amazon S3. If specified, SageMaker will retrieve the pipeline definition from this location.

PipelineDescription
Type: string

The description of the pipeline.

PipelineDisplayName
Type: string

The display name of the pipeline.

PipelineName
Required: Yes
Type: string

The name of the pipeline to update.

RoleArn
Type: string

The Amazon Resource Name (ARN) that the pipeline uses to execute.

Result Syntax

[
    'PipelineArn' => '<string>',
]

Result Details

Members
PipelineArn
Type: string

The Amazon Resource Name (ARN) of the updated pipeline.

Errors

ResourceNotFound:

Resource being access is not found.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

UpdatePipelineExecution

$result = $client->updatePipelineExecution([/* ... */]);
$promise = $client->updatePipelineExecutionAsync([/* ... */]);

Updates a pipeline execution.

Parameter Syntax

$result = $client->updatePipelineExecution([
    'ParallelismConfiguration' => [
        'MaxParallelExecutionSteps' => <integer>, // REQUIRED
    ],
    'PipelineExecutionArn' => '<string>', // REQUIRED
    'PipelineExecutionDescription' => '<string>',
    'PipelineExecutionDisplayName' => '<string>',
]);

Parameter Details

Members
ParallelismConfiguration
Type: ParallelismConfiguration structure

This configuration, if specified, overrides the parallelism configuration of the parent pipeline for this specific run.

PipelineExecutionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the pipeline execution.

PipelineExecutionDescription
Type: string

The description of the pipeline execution.

PipelineExecutionDisplayName
Type: string

The display name of the pipeline execution.

Result Syntax

[
    'PipelineExecutionArn' => '<string>',
]

Result Details

Members
PipelineExecutionArn
Type: string

The Amazon Resource Name (ARN) of the updated pipeline execution.

Errors

ResourceNotFound:

Resource being access is not found.

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

UpdateProject

$result = $client->updateProject([/* ... */]);
$promise = $client->updateProjectAsync([/* ... */]);

Updates a machine learning (ML) project that is created from a template that sets up an ML pipeline from training to deploying an approved model.

You must not update a project that is in use. If you update the ServiceCatalogProvisioningUpdateDetails of a project that is active or being created, or updated, you may lose resources already created by the project.

Parameter Syntax

$result = $client->updateProject([
    'ProjectDescription' => '<string>',
    'ProjectName' => '<string>', // REQUIRED
    'ServiceCatalogProvisioningUpdateDetails' => [
        'ProvisioningArtifactId' => '<string>',
        'ProvisioningParameters' => [
            [
                'Key' => '<string>',
                'Value' => '<string>',
            ],
            // ...
        ],
    ],
    'Tags' => [
        [
            'Key' => '<string>', // REQUIRED
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
]);

Parameter Details

Members
ProjectDescription
Type: string

The description for the project.

ProjectName
Required: Yes
Type: string

The name of the project.

ServiceCatalogProvisioningUpdateDetails

The product ID and provisioning artifact ID to provision a service catalog. The provisioning artifact ID will default to the latest provisioning artifact ID of the product, if you don't provide the provisioning artifact ID. For more information, see What is Amazon Web Services Service Catalog.

Tags
Type: Array of Tag structures

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources. In addition, the project must have tag update constraints set in order to include this parameter in the request. For more information, see Amazon Web Services Service Catalog Tag Update Constraints.

Result Syntax

[
    'ProjectArn' => '<string>',
]

Result Details

Members
ProjectArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the project.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

UpdateSpace

$result = $client->updateSpace([/* ... */]);
$promise = $client->updateSpaceAsync([/* ... */]);

Updates the settings of a space.

You can't edit the app type of a space in the SpaceSettings.

Parameter Syntax

$result = $client->updateSpace([
    'DomainId' => '<string>', // REQUIRED
    'SpaceDisplayName' => '<string>',
    'SpaceName' => '<string>', // REQUIRED
    'SpaceSettings' => [
        'AppType' => 'JupyterServer|KernelGateway|DetailedProfiler|TensorBoard|CodeEditor|JupyterLab|RStudioServerPro|RSessionGateway|Canvas',
        'CodeEditorAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
        'CustomFileSystems' => [
            [
                'EFSFileSystem' => [
                    'FileSystemId' => '<string>', // REQUIRED
                ],
                'FSxLustreFileSystem' => [
                    'FileSystemId' => '<string>', // REQUIRED
                ],
            ],
            // ...
        ],
        'JupyterLabAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
        'JupyterServerAppSettings' => [
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'KernelGatewayAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'SpaceStorageSettings' => [
            'EbsStorageSettings' => [
                'EbsVolumeSizeInGb' => <integer>, // REQUIRED
            ],
        ],
    ],
]);

Parameter Details

Members
DomainId
Required: Yes
Type: string

The ID of the associated domain.

SpaceDisplayName
Type: string

The name of the space that appears in the Amazon SageMaker Studio UI.

SpaceName
Required: Yes
Type: string

The name of the space.

SpaceSettings
Type: SpaceSettings structure

A collection of space settings.

Result Syntax

[
    'SpaceArn' => '<string>',
]

Result Details

Members
SpaceArn
Type: string

The space's Amazon Resource Name (ARN).

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceInUse:

Resource being accessed is in use.

ResourceNotFound:

Resource being access is not found.

UpdateTrainingJob

$result = $client->updateTrainingJob([/* ... */]);
$promise = $client->updateTrainingJobAsync([/* ... */]);

Update a model training job to request a new Debugger profiling configuration or to change warm pool retention length.

Parameter Syntax

$result = $client->updateTrainingJob([
    'ProfilerConfig' => [
        'DisableProfiler' => true || false,
        'ProfilingIntervalInMilliseconds' => <integer>,
        'ProfilingParameters' => ['<string>', ...],
        'S3OutputPath' => '<string>',
    ],
    'ProfilerRuleConfigurations' => [
        [
            'InstanceType' => 'ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m4.xlarge|ml.m4.2xlarge|ml.m4.4xlarge|ml.m4.10xlarge|ml.m4.16xlarge|ml.c4.xlarge|ml.c4.2xlarge|ml.c4.4xlarge|ml.c4.8xlarge|ml.p2.xlarge|ml.p2.8xlarge|ml.p2.16xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.18xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.12xlarge|ml.m5.24xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.r5d.large|ml.r5d.xlarge|ml.r5d.2xlarge|ml.r5d.4xlarge|ml.r5d.8xlarge|ml.r5d.12xlarge|ml.r5d.16xlarge|ml.r5d.24xlarge',
            'LocalPath' => '<string>',
            'RuleConfigurationName' => '<string>', // REQUIRED
            'RuleEvaluatorImage' => '<string>', // REQUIRED
            'RuleParameters' => ['<string>', ...],
            'S3OutputPath' => '<string>',
            'VolumeSizeInGB' => <integer>,
        ],
        // ...
    ],
    'RemoteDebugConfig' => [
        'EnableRemoteDebug' => true || false,
    ],
    'ResourceConfig' => [
        'KeepAlivePeriodInSeconds' => <integer>, // REQUIRED
    ],
    'TrainingJobName' => '<string>', // REQUIRED
]);

Parameter Details

Members
ProfilerConfig
Type: ProfilerConfigForUpdate structure

Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.

ProfilerRuleConfigurations
Type: Array of ProfilerRuleConfiguration structures

Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.

RemoteDebugConfig
Type: RemoteDebugConfigForUpdate structure

Configuration for remote debugging while the training job is running. You can update the remote debugging configuration when the SecondaryStatus of the job is Downloading or Training.To learn more about the remote debugging functionality of SageMaker, see Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging.

ResourceConfig
Type: ResourceConfigForUpdate structure

The training job ResourceConfig to update warm pool retention length.

TrainingJobName
Required: Yes
Type: string

The name of a training job to update the Debugger profiling configuration.

Result Syntax

[
    'TrainingJobArn' => '<string>',
]

Result Details

Members
TrainingJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the training job.

Errors

ResourceNotFound:

Resource being access is not found.

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

UpdateTrial

$result = $client->updateTrial([/* ... */]);
$promise = $client->updateTrialAsync([/* ... */]);

Updates the display name of a trial.

Parameter Syntax

$result = $client->updateTrial([
    'DisplayName' => '<string>',
    'TrialName' => '<string>', // REQUIRED
]);

Parameter Details

Members
DisplayName
Type: string

The name of the trial as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialName is displayed.

TrialName
Required: Yes
Type: string

The name of the trial to update.

Result Syntax

[
    'TrialArn' => '<string>',
]

Result Details

Members
TrialArn
Type: string

The Amazon Resource Name (ARN) of the trial.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

ResourceNotFound:

Resource being access is not found.

UpdateTrialComponent

$result = $client->updateTrialComponent([/* ... */]);
$promise = $client->updateTrialComponentAsync([/* ... */]);

Updates one or more properties of a trial component.

Parameter Syntax

$result = $client->updateTrialComponent([
    'DisplayName' => '<string>',
    'EndTime' => <integer || string || DateTime>,
    'InputArtifacts' => [
        '<TrialComponentKey128>' => [
            'MediaType' => '<string>',
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'InputArtifactsToRemove' => ['<string>', ...],
    'OutputArtifacts' => [
        '<TrialComponentKey128>' => [
            'MediaType' => '<string>',
            'Value' => '<string>', // REQUIRED
        ],
        // ...
    ],
    'OutputArtifactsToRemove' => ['<string>', ...],
    'Parameters' => [
        '<TrialComponentKey320>' => [
            'NumberValue' => <float>,
            'StringValue' => '<string>',
        ],
        // ...
    ],
    'ParametersToRemove' => ['<string>', ...],
    'StartTime' => <integer || string || DateTime>,
    'Status' => [
        'Message' => '<string>',
        'PrimaryStatus' => 'InProgress|Completed|Failed|Stopping|Stopped',
    ],
    'TrialComponentName' => '<string>', // REQUIRED
]);

Parameter Details

Members
DisplayName
Type: string

The name of the component as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialComponentName is displayed.

EndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component ended.

InputArtifacts
Type: Associative array of custom strings keys (TrialComponentKey128) to TrialComponentArtifact structures

Replaces all of the component's input artifacts with the specified artifacts or adds new input artifacts. Existing input artifacts are replaced if the trial component is updated with an identical input artifact key.

InputArtifactsToRemove
Type: Array of strings

The input artifacts to remove from the component.

OutputArtifacts
Type: Associative array of custom strings keys (TrialComponentKey128) to TrialComponentArtifact structures

Replaces all of the component's output artifacts with the specified artifacts or adds new output artifacts. Existing output artifacts are replaced if the trial component is updated with an identical output artifact key.

OutputArtifactsToRemove
Type: Array of strings

The output artifacts to remove from the component.

Parameters
Type: Associative array of custom strings keys (TrialComponentKey320) to TrialComponentParameterValue structures

Replaces all of the component's hyperparameters with the specified hyperparameters or add new hyperparameters. Existing hyperparameters are replaced if the trial component is updated with an identical hyperparameter key.

ParametersToRemove
Type: Array of strings

The hyperparameters to remove from the component.

StartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component started.

Status
Type: TrialComponentStatus structure

The new status of the component.

TrialComponentName
Required: Yes
Type: string

The name of the component to update.

Result Syntax

[
    'TrialComponentArn' => '<string>',
]

Result Details

Members
TrialComponentArn
Type: string

The Amazon Resource Name (ARN) of the trial component.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

ResourceNotFound:

Resource being access is not found.

UpdateUserProfile

$result = $client->updateUserProfile([/* ... */]);
$promise = $client->updateUserProfileAsync([/* ... */]);

Updates a user profile.

Parameter Syntax

$result = $client->updateUserProfile([
    'DomainId' => '<string>', // REQUIRED
    'UserProfileName' => '<string>', // REQUIRED
    'UserSettings' => [
        'AutoMountHomeEFS' => 'Enabled|Disabled|DefaultAsDomain',
        'CanvasAppSettings' => [
            'DirectDeploySettings' => [
                'Status' => 'ENABLED|DISABLED',
            ],
            'EmrServerlessSettings' => [
                'ExecutionRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'GenerativeAiSettings' => [
                'AmazonBedrockRoleArn' => '<string>',
            ],
            'IdentityProviderOAuthSettings' => [
                [
                    'DataSourceName' => 'SalesforceGenie|Snowflake',
                    'SecretArn' => '<string>',
                    'Status' => 'ENABLED|DISABLED',
                ],
                // ...
            ],
            'KendraSettings' => [
                'Status' => 'ENABLED|DISABLED',
            ],
            'ModelRegisterSettings' => [
                'CrossAccountModelRegisterRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'TimeSeriesForecastingSettings' => [
                'AmazonForecastRoleArn' => '<string>',
                'Status' => 'ENABLED|DISABLED',
            ],
            'WorkspaceSettings' => [
                'S3ArtifactPath' => '<string>',
                'S3KmsKeyId' => '<string>',
            ],
        ],
        'CodeEditorAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                    'LifecycleManagement' => 'ENABLED|DISABLED',
                    'MaxIdleTimeoutInMinutes' => <integer>,
                    'MinIdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'BuiltInLifecycleConfigArn' => '<string>',
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'CustomFileSystemConfigs' => [
            [
                'EFSFileSystemConfig' => [
                    'FileSystemId' => '<string>', // REQUIRED
                    'FileSystemPath' => '<string>',
                ],
                'FSxLustreFileSystemConfig' => [
                    'FileSystemId' => '<string>', // REQUIRED
                    'FileSystemPath' => '<string>',
                ],
            ],
            // ...
        ],
        'CustomPosixUserConfig' => [
            'Gid' => <integer>, // REQUIRED
            'Uid' => <integer>, // REQUIRED
        ],
        'DefaultLandingUri' => '<string>',
        'ExecutionRole' => '<string>',
        'JupyterLabAppSettings' => [
            'AppLifecycleManagement' => [
                'IdleSettings' => [
                    'IdleTimeoutInMinutes' => <integer>,
                    'LifecycleManagement' => 'ENABLED|DISABLED',
                    'MaxIdleTimeoutInMinutes' => <integer>,
                    'MinIdleTimeoutInMinutes' => <integer>,
                ],
            ],
            'BuiltInLifecycleConfigArn' => '<string>',
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'EmrSettings' => [
                'AssumableRoleArns' => ['<string>', ...],
                'ExecutionRoleArns' => ['<string>', ...],
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'JupyterServerAppSettings' => [
            'CodeRepositories' => [
                [
                    'RepositoryUrl' => '<string>', // REQUIRED
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'KernelGatewayAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
            'LifecycleConfigArns' => ['<string>', ...],
        ],
        'RSessionAppSettings' => [
            'CustomImages' => [
                [
                    'AppImageConfigName' => '<string>', // REQUIRED
                    'ImageName' => '<string>', // REQUIRED
                    'ImageVersionNumber' => <integer>,
                ],
                // ...
            ],
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
        'RStudioServerProAppSettings' => [
            'AccessStatus' => 'ENABLED|DISABLED',
            'UserGroup' => 'R_STUDIO_ADMIN|R_STUDIO_USER',
        ],
        'SecurityGroups' => ['<string>', ...],
        'SharingSettings' => [
            'NotebookOutputOption' => 'Allowed|Disabled',
            'S3KmsKeyId' => '<string>',
            'S3OutputPath' => '<string>',
        ],
        'SpaceStorageSettings' => [
            'DefaultEbsStorageSettings' => [
                'DefaultEbsVolumeSizeInGb' => <integer>, // REQUIRED
                'MaximumEbsVolumeSizeInGb' => <integer>, // REQUIRED
            ],
        ],
        'StudioWebPortal' => 'ENABLED|DISABLED',
        'StudioWebPortalSettings' => [
            'HiddenAppTypes' => ['<string>', ...],
            'HiddenInstanceTypes' => ['<string>', ...],
            'HiddenMlTools' => ['<string>', ...],
            'HiddenSageMakerImageVersionAliases' => [
                [
                    'SageMakerImageName' => 'sagemaker_distribution',
                    'VersionAliases' => ['<string>', ...],
                ],
                // ...
            ],
        ],
        'TensorBoardAppSettings' => [
            'DefaultResourceSpec' => [
                'InstanceType' => 'system|ml.t3.micro|ml.t3.small|ml.t3.medium|ml.t3.large|ml.t3.xlarge|ml.t3.2xlarge|ml.m5.large|ml.m5.xlarge|ml.m5.2xlarge|ml.m5.4xlarge|ml.m5.8xlarge|ml.m5.12xlarge|ml.m5.16xlarge|ml.m5.24xlarge|ml.m5d.large|ml.m5d.xlarge|ml.m5d.2xlarge|ml.m5d.4xlarge|ml.m5d.8xlarge|ml.m5d.12xlarge|ml.m5d.16xlarge|ml.m5d.24xlarge|ml.c5.large|ml.c5.xlarge|ml.c5.2xlarge|ml.c5.4xlarge|ml.c5.9xlarge|ml.c5.12xlarge|ml.c5.18xlarge|ml.c5.24xlarge|ml.p3.2xlarge|ml.p3.8xlarge|ml.p3.16xlarge|ml.p3dn.24xlarge|ml.g4dn.xlarge|ml.g4dn.2xlarge|ml.g4dn.4xlarge|ml.g4dn.8xlarge|ml.g4dn.12xlarge|ml.g4dn.16xlarge|ml.r5.large|ml.r5.xlarge|ml.r5.2xlarge|ml.r5.4xlarge|ml.r5.8xlarge|ml.r5.12xlarge|ml.r5.16xlarge|ml.r5.24xlarge|ml.g5.xlarge|ml.g5.2xlarge|ml.g5.4xlarge|ml.g5.8xlarge|ml.g5.16xlarge|ml.g5.12xlarge|ml.g5.24xlarge|ml.g5.48xlarge|ml.g6.xlarge|ml.g6.2xlarge|ml.g6.4xlarge|ml.g6.8xlarge|ml.g6.12xlarge|ml.g6.16xlarge|ml.g6.24xlarge|ml.g6.48xlarge|ml.g6e.xlarge|ml.g6e.2xlarge|ml.g6e.4xlarge|ml.g6e.8xlarge|ml.g6e.12xlarge|ml.g6e.16xlarge|ml.g6e.24xlarge|ml.g6e.48xlarge|ml.geospatial.interactive|ml.p4d.24xlarge|ml.p4de.24xlarge|ml.trn1.2xlarge|ml.trn1.32xlarge|ml.trn1n.32xlarge|ml.p5.48xlarge|ml.m6i.large|ml.m6i.xlarge|ml.m6i.2xlarge|ml.m6i.4xlarge|ml.m6i.8xlarge|ml.m6i.12xlarge|ml.m6i.16xlarge|ml.m6i.24xlarge|ml.m6i.32xlarge|ml.m7i.large|ml.m7i.xlarge|ml.m7i.2xlarge|ml.m7i.4xlarge|ml.m7i.8xlarge|ml.m7i.12xlarge|ml.m7i.16xlarge|ml.m7i.24xlarge|ml.m7i.48xlarge|ml.c6i.large|ml.c6i.xlarge|ml.c6i.2xlarge|ml.c6i.4xlarge|ml.c6i.8xlarge|ml.c6i.12xlarge|ml.c6i.16xlarge|ml.c6i.24xlarge|ml.c6i.32xlarge|ml.c7i.large|ml.c7i.xlarge|ml.c7i.2xlarge|ml.c7i.4xlarge|ml.c7i.8xlarge|ml.c7i.12xlarge|ml.c7i.16xlarge|ml.c7i.24xlarge|ml.c7i.48xlarge|ml.r6i.large|ml.r6i.xlarge|ml.r6i.2xlarge|ml.r6i.4xlarge|ml.r6i.8xlarge|ml.r6i.12xlarge|ml.r6i.16xlarge|ml.r6i.24xlarge|ml.r6i.32xlarge|ml.r7i.large|ml.r7i.xlarge|ml.r7i.2xlarge|ml.r7i.4xlarge|ml.r7i.8xlarge|ml.r7i.12xlarge|ml.r7i.16xlarge|ml.r7i.24xlarge|ml.r7i.48xlarge|ml.m6id.large|ml.m6id.xlarge|ml.m6id.2xlarge|ml.m6id.4xlarge|ml.m6id.8xlarge|ml.m6id.12xlarge|ml.m6id.16xlarge|ml.m6id.24xlarge|ml.m6id.32xlarge|ml.c6id.large|ml.c6id.xlarge|ml.c6id.2xlarge|ml.c6id.4xlarge|ml.c6id.8xlarge|ml.c6id.12xlarge|ml.c6id.16xlarge|ml.c6id.24xlarge|ml.c6id.32xlarge|ml.r6id.large|ml.r6id.xlarge|ml.r6id.2xlarge|ml.r6id.4xlarge|ml.r6id.8xlarge|ml.r6id.12xlarge|ml.r6id.16xlarge|ml.r6id.24xlarge|ml.r6id.32xlarge',
                'LifecycleConfigArn' => '<string>',
                'SageMakerImageArn' => '<string>',
                'SageMakerImageVersionAlias' => '<string>',
                'SageMakerImageVersionArn' => '<string>',
            ],
        ],
    ],
]);

Parameter Details

Members
DomainId
Required: Yes
Type: string

The domain ID.

UserProfileName
Required: Yes
Type: string

The user profile name.

UserSettings
Type: UserSettings structure

A collection of settings.

Result Syntax

[
    'UserProfileArn' => '<string>',
]

Result Details

Members
UserProfileArn
Type: string

The user profile Amazon Resource Name (ARN).

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

ResourceInUse:

Resource being accessed is in use.

ResourceNotFound:

Resource being access is not found.

UpdateWorkforce

$result = $client->updateWorkforce([/* ... */]);
$promise = $client->updateWorkforceAsync([/* ... */]);

Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration.

The worker portal is now supported in VPC and public internet.

Use SourceIpConfig to restrict worker access to tasks to a specific range of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs. By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied and get a Not Found error message on the worker portal.

To restrict access to all the workers in public internet, add the SourceIpConfig CIDR value as "10.0.0.0/16".

Amazon SageMaker does not support Source Ip restriction for worker portals in VPC.

Use OidcConfig to update the configuration of a workforce created using your own OIDC IdP.

You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the DeleteWorkteam operation.

After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the DescribeWorkforce operation.

This operation only applies to private workforces.

Parameter Syntax

$result = $client->updateWorkforce([
    'OidcConfig' => [
        'AuthenticationRequestExtraParams' => ['<string>', ...],
        'AuthorizationEndpoint' => '<string>', // REQUIRED
        'ClientId' => '<string>', // REQUIRED
        'ClientSecret' => '<string>', // REQUIRED
        'Issuer' => '<string>', // REQUIRED
        'JwksUri' => '<string>', // REQUIRED
        'LogoutEndpoint' => '<string>', // REQUIRED
        'Scope' => '<string>',
        'TokenEndpoint' => '<string>', // REQUIRED
        'UserInfoEndpoint' => '<string>', // REQUIRED
    ],
    'SourceIpConfig' => [
        'Cidrs' => ['<string>', ...], // REQUIRED
    ],
    'WorkforceName' => '<string>', // REQUIRED
    'WorkforceVpcConfig' => [
        'SecurityGroupIds' => ['<string>', ...],
        'Subnets' => ['<string>', ...],
        'VpcId' => '<string>',
    ],
]);

Parameter Details

Members
OidcConfig
Type: OidcConfig structure

Use this parameter to update your OIDC Identity Provider (IdP) configuration for a workforce made using your own IdP.

SourceIpConfig
Type: SourceIpConfig structure

A list of one to ten worker IP address ranges (CIDRs) that can be used to access tasks assigned to this workforce.

Maximum: Ten CIDR values

WorkforceName
Required: Yes
Type: string

The name of the private workforce that you want to update. You can find your workforce name by using the ListWorkforces operation.

WorkforceVpcConfig
Type: WorkforceVpcConfigRequest structure

Use this parameter to update your VPC configuration for a workforce.

Result Syntax

[
    'Workforce' => [
        'CognitoConfig' => [
            'ClientId' => '<string>',
            'UserPool' => '<string>',
        ],
        'CreateDate' => <DateTime>,
        'FailureReason' => '<string>',
        'LastUpdatedDate' => <DateTime>,
        'OidcConfig' => [
            'AuthenticationRequestExtraParams' => ['<string>', ...],
            'AuthorizationEndpoint' => '<string>',
            'ClientId' => '<string>',
            'Issuer' => '<string>',
            'JwksUri' => '<string>',
            'LogoutEndpoint' => '<string>',
            'Scope' => '<string>',
            'TokenEndpoint' => '<string>',
            'UserInfoEndpoint' => '<string>',
        ],
        'SourceIpConfig' => [
            'Cidrs' => ['<string>', ...],
        ],
        'Status' => 'Initializing|Updating|Deleting|Failed|Active',
        'SubDomain' => '<string>',
        'WorkforceArn' => '<string>',
        'WorkforceName' => '<string>',
        'WorkforceVpcConfig' => [
            'SecurityGroupIds' => ['<string>', ...],
            'Subnets' => ['<string>', ...],
            'VpcEndpointId' => '<string>',
            'VpcId' => '<string>',
        ],
    ],
]

Result Details

Members
Workforce
Required: Yes
Type: Workforce structure

A single private workforce. You can create one private work force in each Amazon Web Services Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce.

Errors

ConflictException:

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

UpdateWorkteam

$result = $client->updateWorkteam([/* ... */]);
$promise = $client->updateWorkteamAsync([/* ... */]);

Updates an existing work team with new member definitions or description.

Parameter Syntax

$result = $client->updateWorkteam([
    'Description' => '<string>',
    'MemberDefinitions' => [
        [
            'CognitoMemberDefinition' => [
                'ClientId' => '<string>', // REQUIRED
                'UserGroup' => '<string>', // REQUIRED
                'UserPool' => '<string>', // REQUIRED
            ],
            'OidcMemberDefinition' => [
                'Groups' => ['<string>', ...],
            ],
        ],
        // ...
    ],
    'NotificationConfiguration' => [
        'NotificationTopicArn' => '<string>',
    ],
    'WorkerAccessConfiguration' => [
        'S3Presign' => [
            'IamPolicyConstraints' => [
                'SourceIp' => 'Enabled|Disabled',
                'VpcSourceIp' => 'Enabled|Disabled',
            ],
        ],
    ],
    'WorkteamName' => '<string>', // REQUIRED
]);

Parameter Details

Members
Description
Type: string

An updated description for the work team.

MemberDefinitions
Type: Array of MemberDefinition structures

A list of MemberDefinition objects that contains objects that identify the workers that make up the work team.

Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use CognitoMemberDefinition. For workforces created using your own OIDC identity provider (IdP) use OidcMemberDefinition. You should not provide input for both of these parameters in a single request.

For workforces created using Amazon Cognito, private work teams correspond to Amazon Cognito user groups within the user pool used to create a workforce. All of the CognitoMemberDefinition objects that make up the member definition must have the same ClientId and UserPool values. To add a Amazon Cognito user group to an existing worker pool, see Adding groups to a User Pool. For more information about user pools, see Amazon Cognito User Pools.

For workforces created using your own OIDC IdP, specify the user groups that you want to include in your private work team in OidcMemberDefinition by listing those groups in Groups. Be aware that user groups that are already in the work team must also be listed in Groups when you make this request to remain on the work team. If you do not include these user groups, they will no longer be associated with the work team you update.

NotificationConfiguration
Type: NotificationConfiguration structure

Configures SNS topic notifications for available or expiring work items

WorkerAccessConfiguration
Type: WorkerAccessConfiguration structure

Use this optional parameter to constrain access to an Amazon S3 resource based on the IP address using supported IAM global condition keys. The Amazon S3 resource is accessed in the worker portal using a Amazon S3 presigned URL.

WorkteamName
Required: Yes
Type: string

The name of the work team to update.

Result Syntax

[
    'Workteam' => [
        'CreateDate' => <DateTime>,
        'Description' => '<string>',
        'LastUpdatedDate' => <DateTime>,
        'MemberDefinitions' => [
            [
                'CognitoMemberDefinition' => [
                    'ClientId' => '<string>',
                    'UserGroup' => '<string>',
                    'UserPool' => '<string>',
                ],
                'OidcMemberDefinition' => [
                    'Groups' => ['<string>', ...],
                ],
            ],
            // ...
        ],
        'NotificationConfiguration' => [
            'NotificationTopicArn' => '<string>',
        ],
        'ProductListingIds' => ['<string>', ...],
        'SubDomain' => '<string>',
        'WorkerAccessConfiguration' => [
            'S3Presign' => [
                'IamPolicyConstraints' => [
                    'SourceIp' => 'Enabled|Disabled',
                    'VpcSourceIp' => 'Enabled|Disabled',
                ],
            ],
        ],
        'WorkforceArn' => '<string>',
        'WorkteamArn' => '<string>',
        'WorkteamName' => '<string>',
    ],
]

Result Details

Members
Workteam
Required: Yes
Type: Workteam structure

A Workteam object that describes the updated work team.

Errors

ResourceLimitExceeded:

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

Shapes

ActionSource

Description

A structure describing the source of an action.

Members
SourceId
Type: string

The ID of the source.

SourceType
Type: string

The type of the source.

SourceUri
Required: Yes
Type: string

The URI of the source.

ActionSummary

Description

Lists the properties of an action. An action represents an action or activity. Some examples are a workflow step and a model deployment. Generally, an action involves at least one input artifact or output artifact.

Members
ActionArn
Type: string

The Amazon Resource Name (ARN) of the action.

ActionName
Type: string

The name of the action.

ActionType
Type: string

The type of the action.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the action was created.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the action was last modified.

Source
Type: ActionSource structure

The source of the action.

Status
Type: string

The status of the action.

AdditionalInferenceSpecificationDefinition

Description

A structure of additional Inference Specification. Additional Inference Specification specifies details about inference jobs that can be run with models based on this model package

Members
Containers
Required: Yes
Type: Array of ModelPackageContainerDefinition structures

The Amazon ECR registry path of the Docker image that contains the inference code.

Description
Type: string

A description of the additional Inference specification

Name
Required: Yes
Type: string

A unique name to identify the additional inference specification. The name must be unique within the list of your additional inference specifications for a particular model package.

SupportedContentTypes
Type: Array of strings

The supported MIME types for the input data.

SupportedRealtimeInferenceInstanceTypes
Type: Array of strings

A list of the instance types that are used to generate inferences in real-time.

SupportedResponseMIMETypes
Type: Array of strings

The supported MIME types for the output data.

SupportedTransformInstanceTypes
Type: Array of strings

A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

AdditionalModelDataSource

Description

Data sources that are available to your model in addition to the one that you specify for ModelDataSource when you use the CreateModel action.

Members
ChannelName
Required: Yes
Type: string

A custom name for this AdditionalModelDataSource object.

S3DataSource
Required: Yes
Type: S3ModelDataSource structure

Specifies the S3 location of ML model data to deploy.

AdditionalS3DataSource

Description

A data source used for training or inference that is in addition to the input dataset or model data.

Members
CompressionType
Type: string

The type of compression used for an additional data source used in inference or training. Specify None if your additional data source is not compressed.

ETag
Type: string

The ETag associated with S3 URI.

S3DataType
Required: Yes
Type: string

The data type of the additional data source that you specify for use in inference or training.

S3Uri
Required: Yes
Type: string

The uniform resource identifier (URI) used to identify an additional data source used in inference or training.

AgentVersion

Description

Edge Manager agent version.

Members
AgentCount
Required: Yes
Type: long (int|float)

The number of Edge Manager agents.

Version
Required: Yes
Type: string

Version of the agent.

Alarm

Description

An Amazon CloudWatch alarm configured to monitor metrics on an endpoint.

Members
AlarmName
Type: string

The name of a CloudWatch alarm in your account.

AlgorithmSpecification

Description

Specifies the training algorithm to use in a CreateTrainingJob request.

SageMaker uses its own SageMaker account credentials to pull and access built-in algorithms so built-in algorithms are universally accessible across all Amazon Web Services accounts. As a result, built-in algorithms have standard, unrestricted access. You cannot restrict built-in algorithms using IAM roles. Use custom algorithms if you require specific access controls.

For more information about algorithms provided by SageMaker, see Algorithms. For information about using your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.

Members
AlgorithmName
Type: string

The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on Amazon Web Services Marketplace.

You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the algorithm container to the TrainingImage parameter.

Note that the AlgorithmName parameter is mutually exclusive with the TrainingImage parameter. If you specify a value for the AlgorithmName parameter, you can't specify a value for TrainingImage, and vice versa.

If you specify values for both parameters, the training job might break; if you don't specify any value for both parameters, the training job might raise a null error.

ContainerArguments
Type: Array of strings

The arguments for a container used to run a training job. See How Amazon SageMaker Runs Your Training Image for additional information.

ContainerEntrypoint
Type: Array of strings

The entrypoint script for a Docker container used to run a training job. This script takes precedence over the default train processing instructions. See How Amazon SageMaker Runs Your Training Image for more information.

EnableSageMakerMetricsTimeSeries
Type: boolean

To generate and save time-series metrics during training, set to true. The default is false and time-series metrics aren't generated except in the following cases:

MetricDefinitions
Type: Array of MetricDefinition structures

A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. SageMaker publishes each metric to Amazon CloudWatch.

TrainingImage
Type: string

The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for SageMaker built-in algorithms, see Docker Registry Paths and Example Code in the Amazon SageMaker developer guide. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information about using your custom training container, see Using Your Own Algorithms with Amazon SageMaker.

You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the algorithm container to the TrainingImage parameter.

For more information, see the note in the AlgorithmName parameter description.

TrainingImageConfig
Type: TrainingImageConfig structure

The configuration to use an image from a private Docker registry for a training job.

TrainingInputMode
Required: Yes
Type: string

The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

Pipe mode

If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

File mode

If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

FastFile mode

If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.

AlgorithmStatusDetails

Description

Specifies the validation and image scan statuses of the algorithm.

Members
ImageScanStatuses
Type: Array of AlgorithmStatusItem structures

The status of the scan of the algorithm's Docker image container.

ValidationStatuses
Type: Array of AlgorithmStatusItem structures

The status of algorithm validation.

AlgorithmStatusItem

Description

Represents the overall status of an algorithm.

Members
FailureReason
Type: string

if the overall status is Failed, the reason for the failure.

Name
Required: Yes
Type: string

The name of the algorithm for which the overall status is being reported.

Status
Required: Yes
Type: string

The current status.

AlgorithmSummary

Description

Provides summary information about an algorithm.

Members
AlgorithmArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the algorithm.

AlgorithmDescription
Type: string

A brief description of the algorithm.

AlgorithmName
Required: Yes
Type: string

The name of the algorithm that is described by the summary.

AlgorithmStatus
Required: Yes
Type: string

The overall status of the algorithm.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the algorithm was created.

AlgorithmValidationProfile

Description

Defines a training job and a batch transform job that SageMaker runs to validate your algorithm.

The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.

Members
ProfileName
Required: Yes
Type: string

The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

TrainingJobDefinition
Required: Yes
Type: TrainingJobDefinition structure

The TrainingJobDefinition object that describes the training job that SageMaker runs to validate your algorithm.

TransformJobDefinition
Type: TransformJobDefinition structure

The TransformJobDefinition object that describes the transform job that SageMaker runs to validate your algorithm.

AlgorithmValidationSpecification

Description

Specifies configurations for one or more training jobs that SageMaker runs to test the algorithm.

Members
ValidationProfiles
Required: Yes
Type: Array of AlgorithmValidationProfile structures

An array of AlgorithmValidationProfile objects, each of which specifies a training job and batch transform job that SageMaker runs to validate your algorithm.

ValidationRole
Required: Yes
Type: string

The IAM roles that SageMaker uses to run the training jobs.

AmazonQSettings

Description

A collection of settings that configure the Amazon Q experience within the domain.

Members
QProfileArn
Type: string

The ARN of the Amazon Q profile used within the domain.

Status
Type: string

Whether Amazon Q has been enabled within the domain.

AnnotationConsolidationConfig

Description

Configures how labels are consolidated across human workers and processes output data.

Members
AnnotationConsolidationLambdaArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation and to process output data.

For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for AnnotationConsolidationLambdaArn. For custom labeling workflows, see Post-annotation Lambda.

Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox

Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass

Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel

Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation

Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass

Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel

Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition

Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass

Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection

Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking

3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection

3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking

3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation

Use the following ARNs for Label Verification and Adjustment Jobs

Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels .

Semantic Segmentation Adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation

Semantic Segmentation Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation

Bounding Box Adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox

Bounding Box Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox

Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection

Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking

3D Point Cloud Object Detection Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects in a 3D point cloud.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection

3D Point Cloud Object Tracking Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects that appear in a sequence of 3D point cloud frames.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking

3D Point Cloud Semantic Segmentation Adjustment - Use this task type when you want workers to adjust a point-level semantic segmentation masks using a paint tool.

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation

AppDetails

Description

Details about an Amazon SageMaker AI app.

Members
AppName
Type: string

The name of the app.

AppType
Type: string

The type of app.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time.

DomainId
Type: string

The domain ID.

ResourceSpec
Type: ResourceSpec structure

Specifies the ARN's of a SageMaker AI image and SageMaker AI image version, and the instance type that the version runs on.

SpaceName
Type: string

The name of the space.

Status
Type: string

The status.

UserProfileName
Type: string

The user profile name.

AppImageConfigDetails

Description

The configuration for running a SageMaker AI image as a KernelGateway app.

Members
AppImageConfigArn
Type: string

The ARN of the AppImageConfig.

AppImageConfigName
Type: string

The name of the AppImageConfig. Must be unique to your account.

CodeEditorAppImageConfig
Type: CodeEditorAppImageConfig structure

The configuration for the file system and the runtime, such as the environment variables and entry point.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the AppImageConfig was created.

JupyterLabAppImageConfig
Type: JupyterLabAppImageConfig structure

The configuration for the file system and the runtime, such as the environment variables and entry point.

KernelGatewayImageConfig
Type: KernelGatewayImageConfig structure

The configuration for the file system and kernels in the SageMaker AI image.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the AppImageConfig was last modified.

AppLifecycleManagement

Description

Settings that are used to configure and manage the lifecycle of Amazon SageMaker Studio applications.

Members
IdleSettings
Type: IdleSettings structure

Settings related to idle shutdown of Studio applications.

AppSpecification

Description

Configuration to run a processing job in a specified container image.

Members
ContainerArguments
Type: Array of strings

The arguments for a container used to run a processing job.

ContainerEntrypoint
Type: Array of strings

The entrypoint for a container used to run a processing job.

ImageUri
Required: Yes
Type: string

The container image to be run by the processing job.

ArtifactSource

Description

A structure describing the source of an artifact.

Members
SourceTypes
Type: Array of ArtifactSourceType structures

A list of source types.

SourceUri
Required: Yes
Type: string

The URI of the source.

ArtifactSourceType

Description

The ID and ID type of an artifact source.

Members
SourceIdType
Required: Yes
Type: string

The type of ID.

Value
Required: Yes
Type: string

The ID.

ArtifactSummary

Description

Lists a summary of the properties of an artifact. An artifact represents a URI addressable object or data. Some examples are a dataset and a model.

Members
ArtifactArn
Type: string

The Amazon Resource Name (ARN) of the artifact.

ArtifactName
Type: string

The name of the artifact.

ArtifactType
Type: string

The type of the artifact.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the artifact was created.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the artifact was last modified.

Source
Type: ArtifactSource structure

The source of the artifact.

AssociationSummary

Description

Lists a summary of the properties of an association. An association is an entity that links other lineage or experiment entities. An example would be an association between a training job and a model.

Members
AssociationType
Type: string

The type of the association.

CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the association was created.

DestinationArn
Type: string

The Amazon Resource Name (ARN) of the destination.

DestinationName
Type: string

The name of the destination.

DestinationType
Type: string

The destination type.

SourceArn
Type: string

The ARN of the source.

SourceName
Type: string

The name of the source.

SourceType
Type: string

The source type.

AsyncInferenceClientConfig

Description

Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.

Members
MaxConcurrentInvocationsPerInstance
Type: int

The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, SageMaker chooses an optimal value.

AsyncInferenceConfig

Description

Specifies configuration for how an endpoint performs asynchronous inference.

Members
ClientConfig
Type: AsyncInferenceClientConfig structure

Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.

OutputConfig
Required: Yes
Type: AsyncInferenceOutputConfig structure

Specifies the configuration for asynchronous inference invocation outputs.

AsyncInferenceNotificationConfig

Description

Specifies the configuration for notifications of inference results for asynchronous inference.

Members
ErrorTopic
Type: string

Amazon SNS topic to post a notification to when inference fails. If no topic is provided, no notification is sent on failure.

IncludeInferenceResponseIn
Type: Array of strings

The Amazon SNS topics where you want the inference response to be included.

The inference response is included only if the response size is less than or equal to 128 KB.

SuccessTopic
Type: string

Amazon SNS topic to post a notification to when inference completes successfully. If no topic is provided, no notification is sent on success.

AsyncInferenceOutputConfig

Description

Specifies the configuration for asynchronous inference invocation outputs.

Members
KmsKeyId
Type: string

The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the asynchronous inference output in Amazon S3.

NotificationConfig

Specifies the configuration for notifications of inference results for asynchronous inference.

S3FailurePath
Type: string

The Amazon S3 location to upload failure inference responses to.

S3OutputPath
Type: string

The Amazon S3 location to upload inference responses to.

AthenaDatasetDefinition

Description

Configuration for Athena Dataset Definition input.

Members
Catalog
Required: Yes
Type: string

The name of the data catalog used in Athena query execution.

Database
Required: Yes
Type: string

The name of the database used in the Athena query execution.

KmsKeyId
Type: string

The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data generated from an Athena query execution.

OutputCompression
Type: string

The compression used for Athena query results.

OutputFormat
Required: Yes
Type: string

The data storage format for Athena query results.

OutputS3Uri
Required: Yes
Type: string

The location in Amazon S3 where Athena query results are stored.

QueryString
Required: Yes
Type: string

The SQL query statements, to be executed.

WorkGroup
Type: string

The name of the workgroup in which the Athena query is being started.

AutoMLAlgorithmConfig

Description

The selection of algorithms trained on your dataset to generate the model candidates for an Autopilot job.

Members
AutoMLAlgorithms
Required: Yes
Type: Array of strings

The selection of algorithms trained on your dataset to generate the model candidates for an Autopilot job.

  • For the tabular problem type TabularJobConfig:

    Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING or HYPERPARAMETER_TUNING). Choose a minimum of 1 algorithm.

    • In ENSEMBLING mode:

      • "catboost"

      • "extra-trees"

      • "fastai"

      • "lightgbm"

      • "linear-learner"

      • "nn-torch"

      • "randomforest"

      • "xgboost"

    • In HYPERPARAMETER_TUNING mode:

      • "linear-learner"

      • "mlp"

      • "xgboost"

  • For the time-series forecasting problem type TimeSeriesForecastingJobConfig:

    • Choose your algorithms from this list.

      • "cnn-qr"

      • "deepar"

      • "prophet"

      • "arima"

      • "npts"

      • "ets"

AutoMLCandidate

Description

Information about a candidate produced by an AutoML training job, including its status, steps, and other properties.

Members
CandidateName
Required: Yes
Type: string

The name of the candidate.

CandidateProperties
Type: CandidateProperties structure

The properties of an AutoML candidate job.

CandidateStatus
Required: Yes
Type: string

The candidate's status.

CandidateSteps
Required: Yes
Type: Array of AutoMLCandidateStep structures

Information about the candidate's steps.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time.

EndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The end time.

FailureReason
Type: string

The failure reason.

FinalAutoMLJobObjectiveMetric

The best candidate result from an AutoML training job.

InferenceContainerDefinitions
Type: Associative array of custom strings keys (AutoMLProcessingUnit) to AutoMLContainerDefinition structuress

The mapping of all supported processing unit (CPU, GPU, etc...) to inference container definitions for the candidate. This field is populated for the AutoML jobs V2 (for example, for jobs created by calling CreateAutoMLJobV2) related to image or text classification problem types only.

InferenceContainers
Type: Array of AutoMLContainerDefinition structures

Information about the recommended inference container definitions.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last modified time.

ObjectiveStatus
Required: Yes
Type: string

The objective's status.

AutoMLCandidateGenerationConfig

Description

Stores the configuration information for how a candidate is generated (optional).

Members
AlgorithmsConfig
Type: Array of AutoMLAlgorithmConfig structures

Stores the configuration information for the selection of algorithms trained on tabular data.

The list of available algorithms to choose from depends on the training mode set in TabularJobConfig.Mode .

  • AlgorithmsConfig should not be set if the training mode is set on AUTO.

  • When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be set and one only.

    If the list of algorithms provided as values for AutoMLAlgorithms is empty, CandidateGenerationConfig uses the full set of algorithms for the given training mode.

  • When AlgorithmsConfig is not provided, CandidateGenerationConfig uses the full set of algorithms for the given training mode.

For the list of all algorithms per problem type and training mode, see AutoMLAlgorithmConfig.

For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.

FeatureSpecificationS3Uri
Type: string

A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job. You can input FeatureAttributeNames (optional) in JSON format as shown below:

{ "FeatureAttributeNames":["col1", "col2", ...] }.

You can also specify the data type of the feature (optional) in the format shown below:

{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }

These column keys may not include the target column.

In ensembling mode, Autopilot only supports the following data types: numeric, categorical, text, and datetime. In HPO mode, Autopilot can support numeric, categorical, text, datetime, and sequence.

If only FeatureDataTypes is provided, the column keys (col1, col2,..) should be a subset of the column names in the input data.

If both FeatureDataTypes and FeatureAttributeNames are provided, then the column keys should be a subset of the column names provided in FeatureAttributeNames.

The key name FeatureAttributeNames is fixed. The values listed in ["col1", "col2", ...] are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column.

AutoMLCandidateStep

Description

Information about the steps for a candidate and what step it is working on.

Members
CandidateStepArn
Required: Yes
Type: string

The ARN for the candidate's step.

CandidateStepName
Required: Yes
Type: string

The name for the candidate's step.

CandidateStepType
Required: Yes
Type: string

Whether the candidate is at the transform, training, or processing step.

AutoMLChannel

Description

A channel is a named input source that training algorithms can consume. The validation dataset size is limited to less than 2 GB. The training dataset size must be less than 100 GB. For more information, see Channel.

A validation dataset must contain the same headers as the training dataset.

Members
ChannelType
Type: string

The channel type (optional) is an enum string. The default value is training. Channels for training and validation must share the same ContentType and TargetAttributeName. For information on specifying training and validation channel types, see How to specify training and validation datasets.

CompressionType
Type: string

You can use Gzip or None. The default value is None.

ContentType
Type: string

The content type of the data from the input source. You can use text/csv;header=present or x-application/vnd.amazon+parquet. The default value is text/csv;header=present.

DataSource
Type: AutoMLDataSource structure

The data source for an AutoML channel.

SampleWeightAttributeName
Type: string

If specified, this column name indicates which column of the dataset should be treated as sample weights for use by the objective metric during the training, evaluation, and the selection of the best model. This column is not considered as a predictive feature. For more information on Autopilot metrics, see Metrics and validation.

Sample weights should be numeric, non-negative, with larger values indicating which rows are more important than others. Data points that have invalid or no weight value are excluded.

Support for sample weights is available in Ensembling mode only.

TargetAttributeName
Required: Yes
Type: string

The name of the target variable in supervised learning, usually represented by 'y'.

AutoMLComputeConfig

Description

This data type is intended for use exclusively by SageMaker Canvas and cannot be used in other contexts at the moment.

Specifies the compute configuration for an AutoML job V2.

Members
EmrServerlessComputeConfig
Type: EmrServerlessComputeConfig structure

The configuration for using EMR Serverless to run the AutoML job V2.

To allow your AutoML job V2 to automatically initiate a remote job on EMR Serverless when additional compute resources are needed to process large datasets, you need to provide an EmrServerlessComputeConfig object, which includes an ExecutionRoleARN attribute, to the AutoMLComputeConfig of the AutoML job V2 input request.

By seamlessly transitioning to EMR Serverless when required, the AutoML job can handle datasets that would otherwise exceed the initially provisioned resources, without any manual intervention from you.

EMR Serverless is available for the tabular and time series problem types. We recommend setting up this option for tabular datasets larger than 5 GB and time series datasets larger than 30 GB.

AutoMLContainerDefinition

Description

A list of container definitions that describe the different containers that make up an AutoML candidate. For more information, see ContainerDefinition.

Members
Environment
Type: Associative array of custom strings keys (EnvironmentKey) to strings

The environment variables to set in the container. For more information, see ContainerDefinition.

Image
Required: Yes
Type: string

The Amazon Elastic Container Registry (Amazon ECR) path of the container. For more information, see ContainerDefinition.

ModelDataUrl
Required: Yes
Type: string

The location of the model artifacts. For more information, see ContainerDefinition.

AutoMLDataSource

Description

The data source for the Autopilot job.

Members
S3DataSource
Required: Yes
Type: AutoMLS3DataSource structure

The Amazon S3 location of the input data.

AutoMLDataSplitConfig

Description

This structure specifies how to split the data into train and validation datasets.

The validation and training datasets must contain the same headers. For jobs created by calling CreateAutoMLJob, the validation dataset must be less than 2 GB in size.

Members
ValidationFraction
Type: float

The validation fraction (optional) is a float that specifies the portion of the training dataset to be used for validation. The default value is 0.2, and values must be greater than 0 and less than 1. We recommend setting this value to be less than 0.5.

AutoMLJobArtifacts

Description

The artifacts that are generated during an AutoML job.

Members
CandidateDefinitionNotebookLocation
Type: string

The URL of the notebook location.

DataExplorationNotebookLocation
Type: string

The URL of the notebook location.

AutoMLJobChannel

Description

A channel is a named input source that training algorithms can consume. This channel is used for AutoML jobs V2 (jobs created by calling CreateAutoMLJobV2).

Members
ChannelType
Type: string

The type of channel. Defines whether the data are used for training or validation. The default value is training. Channels for training and validation must share the same ContentType

The type of channel defaults to training for the time-series forecasting problem type.

CompressionType
Type: string

The allowed compression types depend on the input format and problem type. We allow the compression type Gzip for S3Prefix inputs on tabular data only. For all other inputs, the compression type should be None. If no compression type is provided, we default to None.

ContentType
Type: string

The content type of the data from the input source. The following are the allowed content types for different problems:

  • For tabular problem types: text/csv;header=present or x-application/vnd.amazon+parquet. The default value is text/csv;header=present.

  • For image classification: image/png, image/jpeg, or image/*. The default value is image/*.

  • For text classification: text/csv;header=present or x-application/vnd.amazon+parquet. The default value is text/csv;header=present.

  • For time-series forecasting: text/csv;header=present or x-application/vnd.amazon+parquet. The default value is text/csv;header=present.

  • For text generation (LLMs fine-tuning): text/csv;header=present or x-application/vnd.amazon+parquet. The default value is text/csv;header=present.

DataSource
Type: AutoMLDataSource structure

The data source for an AutoML channel (Required).

AutoMLJobCompletionCriteria

Description

How long a job is allowed to run, or how many candidates a job is allowed to generate.

Members
MaxAutoMLJobRuntimeInSeconds
Type: int

The maximum runtime, in seconds, an AutoML job has to complete.

If an AutoML job exceeds the maximum runtime, the job is stopped automatically and its processing is ended gracefully. The AutoML job identifies the best model whose training was completed and marks it as the best-performing model. Any unfinished steps of the job, such as automatic one-click Autopilot model deployment, are not completed.

MaxCandidates
Type: int

The maximum number of times a training job is allowed to run.

For text and image classification, time-series forecasting, as well as text generation (LLMs fine-tuning) problem types, the supported value is 1. For tabular problem types, the maximum value is 750.

MaxRuntimePerTrainingJobInSeconds
Type: int

The maximum time, in seconds, that each training job executed inside hyperparameter tuning is allowed to run as part of a hyperparameter tuning job. For more information, see the StoppingCondition used by the CreateHyperParameterTuningJob action.

For job V2s (jobs created by calling CreateAutoMLJobV2), this field controls the runtime of the job candidate.

For TextGenerationJobConfig problem types, the maximum time defaults to 72 hours (259200 seconds).

AutoMLJobConfig

Description

A collection of settings used for an AutoML job.

Members
CandidateGenerationConfig

The configuration for generating a candidate for an AutoML job (optional).

CompletionCriteria
Type: AutoMLJobCompletionCriteria structure

How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate.

DataSplitConfig
Type: AutoMLDataSplitConfig structure

The configuration for splitting the input training dataset.

Type: AutoMLDataSplitConfig

Mode
Type: string

The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting AUTO. In AUTO mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for larger ones.

The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode.

The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING mode.

SecurityConfig
Type: AutoMLSecurityConfig structure

The security configuration for traffic encryption or Amazon VPC settings.

AutoMLJobObjective

Description

Specifies a metric to minimize or maximize as the objective of an AutoML job.

Members
MetricName
Required: Yes
Type: string

The name of the objective metric used to measure the predictive quality of a machine learning system. During training, the model's parameters are updated iteratively to optimize its performance based on the feedback provided by the objective metric when evaluating the model on the validation dataset.

The list of available metrics supported by Autopilot and the default metric applied when you do not specify a metric name explicitly depend on the problem type.

  • For tabular problem types:

    • List of available metrics:

      • Regression: MAE, MSE, R2, RMSE

      • Binary classification: Accuracy, AUC, BalancedAccuracy, F1, Precision, Recall

      • Multiclass classification: Accuracy, BalancedAccuracy, F1macro, PrecisionMacro, RecallMacro

      For a description of each metric, see Autopilot metrics for classification and regression.

    • Default objective metrics:

      • Regression: MSE.

      • Binary classification: F1.

      • Multiclass classification: Accuracy.

  • For image or text classification problem types:

  • For time-series forecasting problem types:

  • For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the AutoMLJobObjective field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.

AutoMLJobStepMetadata

Description

Metadata for an AutoML job step.

Members
Arn
Type: string

The Amazon Resource Name (ARN) of the AutoML job.

AutoMLJobSummary

Description

Provides a summary about an AutoML job.

Members
AutoMLJobArn
Required: Yes
Type: string

The ARN of the AutoML job.

AutoMLJobName
Required: Yes
Type: string

The name of the AutoML job you are requesting.

AutoMLJobSecondaryStatus
Required: Yes
Type: string

The secondary status of the AutoML job.

AutoMLJobStatus
Required: Yes
Type: string

The status of the AutoML job.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the AutoML job was created.

EndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The end time of an AutoML job.

FailureReason
Type: string

The failure reason of an AutoML job.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the AutoML job was last modified.

PartialFailureReasons
Type: Array of AutoMLPartialFailureReason structures

The list of reasons for partial failures within an AutoML job.

AutoMLOutputDataConfig

Description

The output data configuration.

Members
KmsKeyId
Type: string

The Key Management Service encryption key ID.

S3OutputPath
Required: Yes
Type: string

The Amazon S3 output path. Must be 512 characters or less.

AutoMLPartialFailureReason

Description

The reason for a partial failure of an AutoML job.

Members
PartialFailureMessage
Type: string

The message containing the reason for a partial failure of an AutoML job.

AutoMLProblemTypeConfig

Description

A collection of settings specific to the problem type used to configure an AutoML job V2. There must be one and only one config of the following type.

Members
ImageClassificationJobConfig

Settings used to configure an AutoML job V2 for the image classification problem type.

TabularJobConfig
Type: TabularJobConfig structure

Settings used to configure an AutoML job V2 for the tabular problem type (regression, classification).

TextClassificationJobConfig
Type: TextClassificationJobConfig structure

Settings used to configure an AutoML job V2 for the text classification problem type.

TextGenerationJobConfig
Type: TextGenerationJobConfig structure

Settings used to configure an AutoML job V2 for the text generation (LLMs fine-tuning) problem type.

The text generation models that support fine-tuning in Autopilot are currently accessible exclusively in regions supported by Canvas. Refer to the documentation of Canvas for the full list of its supported Regions.

TimeSeriesForecastingJobConfig

Settings used to configure an AutoML job V2 for the time-series forecasting problem type.

AutoMLProblemTypeResolvedAttributes

Description

Stores resolved attributes specific to the problem type of an AutoML job V2.

Members
TabularResolvedAttributes
Type: TabularResolvedAttributes structure

The resolved attributes for the tabular problem type.

TextGenerationResolvedAttributes

The resolved attributes for the text generation problem type.

AutoMLResolvedAttributes

Description

The resolved attributes used to configure an AutoML job V2.

Members
AutoMLJobObjective
Type: AutoMLJobObjective structure

Specifies a metric to minimize or maximize as the objective of an AutoML job.

AutoMLProblemTypeResolvedAttributes

Defines the resolved attributes specific to a problem type.

CompletionCriteria
Type: AutoMLJobCompletionCriteria structure

How long a job is allowed to run, or how many candidates a job is allowed to generate.

AutoMLS3DataSource

Description

Describes the Amazon S3 data source.

Members
S3DataType
Required: Yes
Type: string

The data type.

  • If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker AI uses all objects that match the specified key name prefix for model training.

    The S3Prefix should have the following format:

    s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE

  • If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker AI to use for model training.

    A ManifestFile should have the format shown below:

    [ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"},

    "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",

    "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",

    ... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]

  • If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile is available for V2 API jobs only (for example, for jobs created by calling CreateAutoMLJobV2).

    Here is a minimal, single-record example of an AugmentedManifestFile:

    {"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",

    "label-metadata": {"class-name": "cat" }

    For more information on AugmentedManifestFile, see Provide Dataset Metadata to Training Jobs with an Augmented Manifest File.

S3Uri
Required: Yes
Type: string

The URL to the Amazon S3 data source. The Uri refers to the Amazon S3 prefix or ManifestFile depending on the data type.

AutoMLSecurityConfig

Description

Security options.

Members
EnableInterContainerTrafficEncryption
Type: boolean

Whether to use traffic encryption between the container layers.

VolumeKmsKeyId
Type: string

The key used to encrypt stored data.

VpcConfig
Type: VpcConfig structure

The VPC configuration.

AutoParameter

Description

The name and an example value of the hyperparameter that you want to use in Autotune. If Automatic model tuning (AMT) determines that your hyperparameter is eligible for Autotune, an optimal hyperparameter range is selected for you.

Members
Name
Required: Yes
Type: string

The name of the hyperparameter to optimize using Autotune.

ValueHint
Required: Yes
Type: string

An example value of the hyperparameter to optimize using Autotune.

AutoRollbackConfig

Description

Automatic rollback configuration for handling endpoint deployment failures and recovery.

Members
Alarms
Type: Array of Alarm structures

List of CloudWatch alarms in your account that are configured to monitor metrics on an endpoint. If any alarms are tripped during a deployment, SageMaker rolls back the deployment.

Autotune

Description

A flag to indicate if you want to use Autotune to automatically find optimal values for the following fields:

  • ParameterRanges: The names and ranges of parameters that a hyperparameter tuning job can optimize.

  • ResourceLimits: The maximum resources that can be used for a training job. These resources include the maximum number of training jobs, the maximum runtime of a tuning job, and the maximum number of training jobs to run at the same time.

  • TrainingJobEarlyStoppingType: A flag that specifies whether or not to use early stopping for training jobs launched by a hyperparameter tuning job.

  • RetryStrategy: The number of times to retry a training job.

  • Strategy: Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training jobs that it launches.

  • ConvergenceDetected: A flag to indicate that Automatic model tuning (AMT) has detected model convergence.

Members
Mode
Required: Yes
Type: string

Set Mode to Enabled if you want to use Autotune.

BatchDataCaptureConfig

Description

Configuration to control how SageMaker captures inference data for batch transform jobs.

Members
DestinationS3Uri
Required: Yes
Type: string

The Amazon S3 location being used to capture the data.

GenerateInferenceId
Type: boolean

Flag that indicates whether to append inference id to the output.

KmsKeyId
Type: string

The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the batch transform job.

The KmsKeyId can be any of the following formats:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

  • Alias name: alias/ExampleAlias

  • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

BatchDeleteClusterNodesError

Description

Represents an error encountered when deleting a node from a SageMaker HyperPod cluster.

Members
Code
Required: Yes
Type: string

The error code associated with the error encountered when deleting a node.

The code provides information about the specific issue encountered, such as the node not being found, the node's status being invalid for deletion, or the node ID being in use by another process.

Message
Required: Yes
Type: string

A message describing the error encountered when deleting a node.

NodeId
Required: Yes
Type: string

The ID of the node that encountered an error during the deletion process.

BatchDescribeModelPackageError

Description

The error code and error description associated with the resource.

Members
ErrorCode
Required: Yes
Type: string

ErrorResponse
Required: Yes
Type: string

BatchDescribeModelPackageSummary

Description

Provides summary information about the model package.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time of the mortgage package summary.

InferenceSpecification
Required: Yes
Type: InferenceSpecification structure

Defines how to perform inference generation after a training job is run.

ModelApprovalStatus
Type: string

The approval status of the model.

ModelPackageArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model package.

ModelPackageDescription
Type: string

The description of the model package.

ModelPackageGroupName
Required: Yes
Type: string

The group name for the model package

ModelPackageStatus
Required: Yes
Type: string

The status of the mortgage package.

ModelPackageVersion
Type: int

The version number of a versioned model.

BatchTransformInput

Description

Input object for the batch transform job.

Members
DataCapturedDestinationS3Uri
Required: Yes
Type: string

The Amazon S3 location being used to capture the data.

DatasetFormat
Required: Yes
Type: MonitoringDatasetFormat structure

The dataset format for your batch transform job.

EndTimeOffset
Type: string

If specified, monitoring jobs subtract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

ExcludeFeaturesAttribute
Type: string

The attributes of the input data to exclude from the analysis.

FeaturesAttribute
Type: string

The attributes of the input data that are the input features.

InferenceAttribute
Type: string

The attribute of the input data that represents the ground truth label.

LocalPath
Required: Yes
Type: string

Path to the filesystem where the batch transform data is available to the container.

ProbabilityAttribute
Type: string

In a classification problem, the attribute that represents the class probability.

ProbabilityThresholdAttribute
Type: double

The threshold for the class probability to be evaluated as a positive result.

S3DataDistributionType
Type: string

Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to FullyReplicated

S3InputMode
Type: string

Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File.

StartTimeOffset
Type: string

If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

BestObjectiveNotImproving

Description

A structure that keeps track of which training jobs launched by your hyperparameter tuning job are not improving model performance as evaluated against an objective function.

Members
MaxNumberOfTrainingJobsNotImproving
Type: int

The number of training jobs that have failed to improve model performance by 1% or greater over prior training jobs as evaluated against an objective function.

Bias

Description

Contains bias metrics for a model.

Members
PostTrainingReport
Type: MetricsSource structure

The post-training bias report for a model.

PreTrainingReport
Type: MetricsSource structure

The pre-training bias report for a model.

Report
Type: MetricsSource structure

The bias report for a model

BlueGreenUpdatePolicy

Description

Update policy for a blue/green deployment. If this update policy is specified, SageMaker creates a new fleet during the deployment while maintaining the old fleet. SageMaker flips traffic to the new fleet according to the specified traffic routing configuration. Only one update policy should be used in the deployment configuration. If no update policy is specified, SageMaker uses a blue/green deployment strategy with all at once traffic shifting by default.

Members
MaximumExecutionTimeoutInSeconds
Type: int

Maximum execution timeout for the deployment. Note that the timeout value should be larger than the total waiting time specified in TerminationWaitInSeconds and WaitIntervalInSeconds.

TerminationWaitInSeconds
Type: int

Additional waiting time in seconds after the completion of an endpoint deployment before terminating the old endpoint fleet. Default is 0.

TrafficRoutingConfiguration
Required: Yes
Type: TrafficRoutingConfig structure

Defines the traffic routing strategy to shift traffic from the old fleet to the new fleet during an endpoint deployment.

CacheHitResult

Description

Details on the cache hit of a pipeline execution step.

Members
SourcePipelineExecutionArn
Type: string

The Amazon Resource Name (ARN) of the pipeline execution.

CallbackStepMetadata

Description

Metadata about a callback step.

Members
CallbackToken
Type: string

The pipeline generated token from the Amazon SQS queue.

OutputParameters
Type: Array of OutputParameter structures

A list of the output parameters of the callback step.

SqsQueueUrl
Type: string

The URL of the Amazon Simple Queue Service (Amazon SQS) queue used by the callback step.

CandidateArtifactLocations

Description

The location of artifacts for an AutoML candidate job.

Members
BacktestResults
Type: string

The Amazon S3 prefix to the accuracy metrics and the inference results observed over the testing window. Available only for the time-series forecasting problem type.

Explainability
Required: Yes
Type: string

The Amazon S3 prefix to the explainability artifacts generated for the AutoML candidate.

ModelInsights
Type: string

The Amazon S3 prefix to the model insight artifacts generated for the AutoML candidate.

CandidateGenerationConfig

Description

Stores the configuration information for how model candidates are generated using an AutoML job V2.

Members
AlgorithmsConfig
Type: Array of AutoMLAlgorithmConfig structures

Your Autopilot job trains a default set of algorithms on your dataset. For tabular and time-series data, you can customize the algorithm list by selecting a subset of algorithms for your problem type.

AlgorithmsConfig stores the customized selection of algorithms to train on your data.

  • For the tabular problem type TabularJobConfig, the list of available algorithms to choose from depends on the training mode set in AutoMLJobConfig.Mode .

    • AlgorithmsConfig should not be set when the training mode AutoMLJobConfig.Mode is set to AUTO.

    • When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be set and one only.

      If the list of algorithms provided as values for AutoMLAlgorithms is empty, CandidateGenerationConfig uses the full set of algorithms for the given training mode.

    • When AlgorithmsConfig is not provided, CandidateGenerationConfig uses the full set of algorithms for the given training mode.

    For the list of all algorithms per training mode, see AlgorithmConfig.

    For more information on each algorithm, see the Algorithm support section in the Autopilot developer guide.

  • For the time-series forecasting problem type TimeSeriesForecastingJobConfig, choose your algorithms from the list provided in AlgorithmConfig.

    For more information on each algorithm, see the Algorithms support for time-series forecasting section in the Autopilot developer guide.

    • When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be set and one only.

      If the list of algorithms provided as values for AutoMLAlgorithms is empty, CandidateGenerationConfig uses the full set of algorithms for time-series forecasting.

    • When AlgorithmsConfig is not provided, CandidateGenerationConfig uses the full set of algorithms for time-series forecasting.

CandidateProperties

Description

The properties of an AutoML candidate job.

Members
CandidateArtifactLocations
Type: CandidateArtifactLocations structure

The Amazon S3 prefix to the artifacts generated for an AutoML candidate.

CandidateMetrics
Type: Array of MetricDatum structures

Information about the candidate metrics for an AutoML job.

CanvasAppSettings

Description

The SageMaker Canvas application settings.

Members
DirectDeploySettings
Type: DirectDeploySettings structure

The model deployment settings for the SageMaker Canvas application.

EmrServerlessSettings
Type: EmrServerlessSettings structure

The settings for running Amazon EMR Serverless data processing jobs in SageMaker Canvas.

GenerativeAiSettings
Type: GenerativeAiSettings structure

The generative AI settings for the SageMaker Canvas application.

IdentityProviderOAuthSettings
Type: Array of IdentityProviderOAuthSetting structures

The settings for connecting to an external data source with OAuth.

KendraSettings
Type: KendraSettings structure

The settings for document querying.

ModelRegisterSettings
Type: ModelRegisterSettings structure

The model registry settings for the SageMaker Canvas application.

TimeSeriesForecastingSettings

Time series forecast settings for the SageMaker Canvas application.

WorkspaceSettings
Type: WorkspaceSettings structure

The workspace settings for the SageMaker Canvas application.

CapacitySize

Description

Specifies the type and size of the endpoint capacity to activate for a blue/green deployment, a rolling deployment, or a rollback strategy. You can specify your batches as either instance count or the overall percentage or your fleet.

For a rollback strategy, if you don't specify the fields in this object, or if you set the Value to 100%, then SageMaker uses a blue/green rollback strategy and rolls all traffic back to the blue fleet.

Members
Type
Required: Yes
Type: string

Specifies the endpoint capacity type.

  • INSTANCE_COUNT: The endpoint activates based on the number of instances.

  • CAPACITY_PERCENT: The endpoint activates based on the specified percentage of capacity.

Value
Required: Yes
Type: int

Defines the capacity size, either as a number of instances or a capacity percentage.

CaptureContentTypeHeader

Description

Configuration specifying how to treat different headers. If no headers are specified Amazon SageMaker AI will by default base64 encode when capturing the data.

Members
CsvContentTypes
Type: Array of strings

The list of all content type headers that Amazon SageMaker AI will treat as CSV and capture accordingly.

JsonContentTypes
Type: Array of strings

The list of all content type headers that SageMaker AI will treat as JSON and capture accordingly.

CaptureOption

Description

Specifies data Model Monitor will capture.

Members
CaptureMode
Required: Yes
Type: string

Specify the boundary of data to capture.

CategoricalParameter

Description

Environment parameters you want to benchmark your load test against.

Members
Name
Required: Yes
Type: string

The Name of the environment variable.

Value
Required: Yes
Type: Array of strings

The list of values you can pass.

CategoricalParameterRange

Description

A list of categorical hyperparameters to tune.

Members
Name
Required: Yes
Type: string

The name of the categorical hyperparameter to tune.

Values
Required: Yes
Type: Array of strings

A list of the categories for the hyperparameter.

CategoricalParameterRangeSpecification

Description

Defines the possible values for a categorical hyperparameter.

Members
Values
Required: Yes
Type: Array of strings

The allowed categories for the hyperparameter.

Channel

Description

A channel is a named input source that training algorithms can consume.

Members
ChannelName
Required: Yes
Type: string

The name of the channel.

CompressionType
Type: string

If training data is compressed, the compression type. The default value is None. CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

ContentType
Type: string

The MIME type of the data.

DataSource
Required: Yes
Type: DataSource structure

The location of the channel data.

InputMode
Type: string

(Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode, SageMaker uses the value set for TrainingInputMode. Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

To use a model for incremental training, choose File input model.

RecordWrapperType
Type: string

Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

In File mode, leave this field unset or set it to None.

ShuffleConfig
Type: ShuffleConfig structure

A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType, this shuffles the results of the S3 key prefix matches. If you use ManifestFile, the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile, the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

ChannelSpecification

Description

Defines a named input source, called a channel, to be used by an algorithm.

Members
Description
Type: string

A brief description of the channel.

IsRequired
Type: boolean

Indicates whether the channel is required by the algorithm.

Name
Required: Yes
Type: string

The name of the channel.

SupportedCompressionTypes
Type: Array of strings

The allowed compression types, if data compression is used.

SupportedContentTypes
Required: Yes
Type: Array of strings

The supported MIME types for the data.

SupportedInputModes
Required: Yes
Type: Array of strings

The allowed input mode, either FILE or PIPE.

In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode.

In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.

CheckpointConfig

Description

Contains information about the output location for managed spot training checkpoint data.

Members
LocalPath
Type: string

(Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/.

S3Uri
Required: Yes
Type: string

Identifies the S3 path where you want SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix.

ClarifyCheckStepMetadata

Description

The container for the metadata for the ClarifyCheck step. For more information, see the topic on ClarifyCheck step in the Amazon SageMaker Developer Guide.

Members
BaselineUsedForDriftCheckConstraints
Type: string

The Amazon S3 URI of baseline constraints file to be used for the drift check.

CalculatedBaselineConstraints
Type: string

The Amazon S3 URI of the newly calculated baseline constraints file.

CheckJobArn
Type: string

The Amazon Resource Name (ARN) of the check processing job that was run by this step's execution.

CheckType
Type: string

The type of the Clarify Check step

ModelPackageGroupName
Type: string

The model package group name.

RegisterNewBaseline
Type: boolean

This flag indicates if a newly calculated baseline can be accessed through step properties BaselineUsedForDriftCheckConstraints and BaselineUsedForDriftCheckStatistics. If it is set to False, the previous baseline of the configured check type must also be available. These can be accessed through the BaselineUsedForDriftCheckConstraints property.

SkipCheck
Type: boolean

This flag indicates if the drift check against the previous baseline will be skipped or not. If it is set to False, the previous baseline of the configured check type must be available.

ViolationReport
Type: string

The Amazon S3 URI of the violation report if violations are detected.

ClarifyExplainerConfig

Description

The configuration parameters for the SageMaker Clarify explainer.

Members
EnableExplanations
Type: string

A JMESPath boolean expression used to filter which records to explain. Explanations are activated by default. See EnableExplanations for additional information.

InferenceConfig
Type: ClarifyInferenceConfig structure

The inference configuration parameter for the model container.

ShapConfig
Required: Yes
Type: ClarifyShapConfig structure

The configuration for SHAP analysis.

ClarifyInferenceConfig

Description

The inference configuration parameter for the model container.

Members
ContentTemplate
Type: string

A template string used to format a JSON record into an acceptable model container input. For example, a ContentTemplate string '{"myfeatures":$features}' will format a list of features [1,2,3] into the record string '{"myfeatures":[1,2,3]}'. Required only when the model container input is in JSON Lines format.

FeatureHeaders
Type: Array of strings

The names of the features. If provided, these are included in the endpoint response payload to help readability of the InvokeEndpoint output. See the Response section under Invoke the endpoint in the Developer Guide for more information.

FeatureTypes
Type: Array of strings

A list of data types of the features (optional). Applicable only to NLP explainability. If provided, FeatureTypes must have at least one 'text' string (for example, ['text']). If FeatureTypes is not provided, the explainer infers the feature types based on the baseline data. The feature types are included in the endpoint response payload. For additional information see the response section under Invoke the endpoint in the Developer Guide for more information.

FeaturesAttribute
Type: string

Provides the JMESPath expression to extract the features from a model container input in JSON Lines format. For example, if FeaturesAttribute is the JMESPath expression 'myfeatures', it extracts a list of features [1,2,3] from request data '{"myfeatures":[1,2,3]}'.

LabelAttribute
Type: string

A JMESPath expression used to locate the list of label headers in the model container output.

Example: If the model container output of a batch request is '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}', then set LabelAttribute to 'labels' to extract the list of label headers ["cat","dog","fish"]

LabelHeaders
Type: Array of strings

For multiclass classification problems, the label headers are the names of the classes. Otherwise, the label header is the name of the predicted label. These are used to help readability for the output of the InvokeEndpoint API. See the response section under Invoke the endpoint in the Developer Guide for more information. If there are no label headers in the model container output, provide them manually using this parameter.

LabelIndex
Type: int

A zero-based index used to extract a label header or list of label headers from model container output in CSV format.

Example for a multiclass model: If the model container output consists of label headers followed by probabilities: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"', set LabelIndex to 0 to select the label headers ['cat','dog','fish'].

MaxPayloadInMB
Type: int

The maximum payload size (MB) allowed of a request from the explainer to the model container. Defaults to 6 MB.

MaxRecordCount
Type: int

The maximum number of records in a request that the model container can process when querying the model container for the predictions of a synthetic dataset. A record is a unit of input data that inference can be made on, for example, a single line in CSV data. If MaxRecordCount is 1, the model container expects one record per request. A value of 2 or greater means that the model expects batch requests, which can reduce overhead and speed up the inferencing process. If this parameter is not provided, the explainer will tune the record count per request according to the model container's capacity at runtime.

ProbabilityAttribute
Type: string

A JMESPath expression used to extract the probability (or score) from the model container output if the model container is in JSON Lines format.

Example: If the model container output of a single request is '{"predicted_label":1,"probability":0.6}', then set ProbabilityAttribute to 'probability'.

ProbabilityIndex
Type: int

A zero-based index used to extract a probability value (score) or list from model container output in CSV format. If this value is not provided, the entire model container output will be treated as a probability value (score) or list.

Example for a single class model: If the model container output consists of a string-formatted prediction label followed by its probability: '1,0.6', set ProbabilityIndex to 1 to select the probability value 0.6.

Example for a multiclass model: If the model container output consists of a string-formatted prediction label followed by its probability: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"', set ProbabilityIndex to 1 to select the probability values [0.1,0.6,0.3].

ClarifyShapBaselineConfig

Description

The configuration for the SHAP baseline (also called the background or reference dataset) of the Kernal SHAP algorithm.

  • The number of records in the baseline data determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.

  • ShapBaseline and ShapBaselineUri are mutually exclusive parameters. One or the either is required to configure a SHAP baseline.

Members
MimeType
Type: string

The MIME type of the baseline data. Choose from 'text/csv' or 'application/jsonlines'. Defaults to 'text/csv'.

ShapBaseline
Type: string

The inline SHAP baseline data in string format. ShapBaseline can have one or multiple records to be used as the baseline dataset. The format of the SHAP baseline file should be the same format as the training dataset. For example, if the training dataset is in CSV format and each record contains four features, and all features are numerical, then the format of the baseline data should also share these characteristics. For natural language processing (NLP) of text columns, the baseline value should be the value used to replace the unit of text specified by the Granularity of the TextConfig parameter. The size limit for ShapBasline is 4 KB. Use the ShapBaselineUri parameter if you want to provide more than 4 KB of baseline data.

ShapBaselineUri
Type: string

The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline file is stored. The format of the SHAP baseline file should be the same format as the format of the training dataset. For example, if the training dataset is in CSV format, and each record in the training dataset has four features, and all features are numerical, then the baseline file should also have this same format. Each record should contain only the features. If you are using a virtual private cloud (VPC), the ShapBaselineUri should be accessible to the VPC. For more information about setting up endpoints with Amazon Virtual Private Cloud, see Give SageMaker access to Resources in your Amazon Virtual Private Cloud.

ClarifyShapConfig

Description

The configuration for SHAP analysis using SageMaker Clarify Explainer.

Members
NumberOfSamples
Type: int

The number of samples to be used for analysis by the Kernal SHAP algorithm.

The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.

Seed
Type: int

The starting value used to initialize the random number generator in the explainer. Provide a value for this parameter to obtain a deterministic SHAP result.

ShapBaselineConfig
Required: Yes
Type: ClarifyShapBaselineConfig structure

The configuration for the SHAP baseline of the Kernal SHAP algorithm.

TextConfig
Type: ClarifyTextConfig structure

A parameter that indicates if text features are treated as text and explanations are provided for individual units of text. Required for natural language processing (NLP) explainability only.

UseLogit
Type: boolean

A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.

ClarifyTextConfig

Description

A parameter used to configure the SageMaker Clarify explainer to treat text features as text so that explanations are provided for individual units of text. Required only for natural language processing (NLP) explainability.

Members
Granularity
Required: Yes
Type: string

The unit of granularity for the analysis of text features. For example, if the unit is 'token', then each token (like a word in English) of the text is treated as a feature. SHAP values are computed for each unit/feature.

Language
Required: Yes
Type: string

Specifies the language of the text features in ISO 639-1 or ISO 639-3 code of a supported language.

For a mix of multiple languages, use code 'xx'.

ClusterEbsVolumeConfig

Description

Defines the configuration for attaching an additional Amazon Elastic Block Store (EBS) volume to each instance of the SageMaker HyperPod cluster instance group. To learn more, see SageMaker HyperPod release notes: June 20, 2024.

Members
VolumeSizeInGB
Required: Yes
Type: int

The size in gigabytes (GB) of the additional EBS volume to be attached to the instances in the SageMaker HyperPod cluster instance group. The additional EBS volume is attached to each instance within the SageMaker HyperPod cluster instance group and mounted to /opt/sagemaker.

ClusterInstanceGroupDetails

Description

Details of an instance group in a SageMaker HyperPod cluster.

Members
CurrentCount
Type: int

The number of instances that are currently in the instance group of a SageMaker HyperPod cluster.

ExecutionRole
Type: string

The execution role for the instance group to assume.

InstanceGroupName
Type: string

The name of the instance group of a SageMaker HyperPod cluster.

InstanceStorageConfigs
Type: Array of ClusterInstanceStorageConfig structures

The additional storage configurations for the instances in the SageMaker HyperPod cluster instance group.

InstanceType
Type: string

The instance type of the instance group of a SageMaker HyperPod cluster.

LifeCycleConfig
Type: ClusterLifeCycleConfig structure

Details of LifeCycle configuration for the instance group.

OnStartDeepHealthChecks
Type: Array of strings

A flag indicating whether deep health checks should be performed when the cluster instance group is created or updated.

OverrideVpcConfig
Type: VpcConfig structure

Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC.

Status
Type: string

The current status of the cluster instance group.

  • InService: The instance group is active and healthy.

  • Creating: The instance group is being provisioned.

  • Updating: The instance group is being updated.

  • Failed: The instance group has failed to provision or is no longer healthy.

  • Degraded: The instance group is degraded, meaning that some instances have failed to provision or are no longer healthy.

  • Deleting: The instance group is being deleted.

TargetCount
Type: int

The number of instances you specified to add to the instance group of a SageMaker HyperPod cluster.

ThreadsPerCore
Type: int

The number you specified to TreadsPerCore in CreateCluster for enabling or disabling multithreading. For instance types that support multithreading, you can specify 1 for disabling multithreading and 2 for enabling multithreading. For more information, see the reference table of CPU cores and threads per CPU core per instance type in the Amazon Elastic Compute Cloud User Guide.

TrainingPlanArn
Type: string

The Amazon Resource Name (ARN); of the training plan associated with this cluster instance group.

For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .

TrainingPlanStatus
Type: string

The current status of the training plan associated with this cluster instance group.

ClusterInstanceGroupSpecification

Description

The specifications of an instance group that you need to define.

Members
ExecutionRole
Required: Yes
Type: string

Specifies an IAM execution role to be assumed by the instance group.

InstanceCount
Required: Yes
Type: int

Specifies the number of instances to add to the instance group of a SageMaker HyperPod cluster.

InstanceGroupName
Required: Yes
Type: string

Specifies the name of the instance group.

InstanceStorageConfigs
Type: Array of ClusterInstanceStorageConfig structures

Specifies the additional storage configurations for the instances in the SageMaker HyperPod cluster instance group.

InstanceType
Required: Yes
Type: string

Specifies the instance type of the instance group.

LifeCycleConfig
Required: Yes
Type: ClusterLifeCycleConfig structure

Specifies the LifeCycle configuration for the instance group.

OnStartDeepHealthChecks
Type: Array of strings

A flag indicating whether deep health checks should be performed when the cluster instance group is created or updated.

OverrideVpcConfig
Type: VpcConfig structure

Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC.

ThreadsPerCore
Type: int

Specifies the value for Threads per core. For instance types that support multithreading, you can specify 1 for disabling multithreading and 2 for enabling multithreading. For instance types that doesn't support multithreading, specify 1. For more information, see the reference table of CPU cores and threads per CPU core per instance type in the Amazon Elastic Compute Cloud User Guide.

TrainingPlanArn
Type: string

The Amazon Resource Name (ARN); of the training plan to use for this cluster instance group.

For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .

ClusterInstancePlacement

Description

Specifies the placement details for the node in the SageMaker HyperPod cluster, including the Availability Zone and the unique identifier (ID) of the Availability Zone.

Members
AvailabilityZone
Type: string

The Availability Zone where the node in the SageMaker HyperPod cluster is launched.

AvailabilityZoneId
Type: string

The unique identifier (ID) of the Availability Zone where the node in the SageMaker HyperPod cluster is launched.

ClusterInstanceStatusDetails

Description

Details of an instance in a SageMaker HyperPod cluster.

Members
Message
Type: string

The message from an instance in a SageMaker HyperPod cluster.

Status
Required: Yes
Type: string

The status of an instance in a SageMaker HyperPod cluster.

ClusterInstanceStorageConfig

Description

Defines the configuration for attaching additional storage to the instances in the SageMaker HyperPod cluster instance group. To learn more, see SageMaker HyperPod release notes: June 20, 2024.

Members
EbsVolumeConfig
Type: ClusterEbsVolumeConfig structure

Defines the configuration for attaching additional Amazon Elastic Block Store (EBS) volumes to the instances in the SageMaker HyperPod cluster instance group. The additional EBS volume is attached to each instance within the SageMaker HyperPod cluster instance group and mounted to /opt/sagemaker.

ClusterLifeCycleConfig

Description

The lifecycle configuration for a SageMaker HyperPod cluster.

Members
OnCreate
Required: Yes
Type: string

The file name of the entrypoint script of lifecycle scripts under SourceS3Uri. This entrypoint script runs during cluster creation.

SourceS3Uri
Required: Yes
Type: string

An Amazon S3 bucket path where your lifecycle scripts are stored.

Make sure that the S3 bucket path starts with s3://sagemaker-. The IAM role for SageMaker HyperPod has the managed AmazonSageMakerClusterInstanceRolePolicy attached, which allows access to S3 buckets with the specific prefix sagemaker-.

ClusterNodeDetails

Description

Details of an instance (also called a node interchangeably) in a SageMaker HyperPod cluster.

Members
InstanceGroupName
Type: string

The instance group name in which the instance is.

InstanceId
Type: string

The ID of the instance.

InstanceStatus

The status of the instance.

InstanceStorageConfigs
Type: Array of ClusterInstanceStorageConfig structures

The configurations of additional storage specified to the instance group where the instance (node) is launched.

InstanceType
Type: string

The type of the instance.

LaunchTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the instance is launched.

LifeCycleConfig
Type: ClusterLifeCycleConfig structure

The LifeCycle configuration applied to the instance.

OverrideVpcConfig
Type: VpcConfig structure

Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC.

Placement
Type: ClusterInstancePlacement structure

The placement details of the SageMaker HyperPod cluster node.

PrivateDnsHostname
Type: string

The private DNS hostname of the SageMaker HyperPod cluster node.

PrivatePrimaryIp
Type: string

The private primary IP address of the SageMaker HyperPod cluster node.

PrivatePrimaryIpv6
Type: string

The private primary IPv6 address of the SageMaker HyperPod cluster node.

ThreadsPerCore
Type: int

The number of threads per CPU core you specified under CreateCluster.

ClusterNodeSummary

Description

Lists a summary of the properties of an instance (also called a node interchangeably) of a SageMaker HyperPod cluster.

Members
InstanceGroupName
Required: Yes
Type: string

The name of the instance group in which the instance is.

InstanceId
Required: Yes
Type: string

The ID of the instance.

InstanceStatus
Required: Yes
Type: ClusterInstanceStatusDetails structure

The status of the instance.

InstanceType
Required: Yes
Type: string

The type of the instance.

LaunchTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the instance is launched.

ClusterOrchestrator

Description

The type of orchestrator used for the SageMaker HyperPod cluster.

Members
Eks
Required: Yes
Type: ClusterOrchestratorEksConfig structure

The Amazon EKS cluster used as the orchestrator for the SageMaker HyperPod cluster.

ClusterOrchestratorEksConfig

Description

The configuration settings for the Amazon EKS cluster used as the orchestrator for the SageMaker HyperPod cluster.

Members
ClusterArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the Amazon EKS cluster associated with the SageMaker HyperPod cluster.

ClusterSchedulerConfigSummary

Description

Summary of the cluster policy.

Members
ClusterArn
Type: string

ARN of the cluster.

ClusterSchedulerConfigArn
Required: Yes
Type: string

ARN of the cluster policy.

ClusterSchedulerConfigId
Required: Yes
Type: string

ID of the cluster policy.

ClusterSchedulerConfigVersion
Type: int

Version of the cluster policy.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

Creation time of the cluster policy.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Last modified time of the cluster policy.

Name
Required: Yes
Type: string

Name of the cluster policy.

Status
Required: Yes
Type: string

Status of the cluster policy.

ClusterSummary

Description

Lists a summary of the properties of a SageMaker HyperPod cluster.

Members
ClusterArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the SageMaker HyperPod cluster.

ClusterName
Required: Yes
Type: string

The name of the SageMaker HyperPod cluster.

ClusterStatus
Required: Yes
Type: string

The status of the SageMaker HyperPod cluster.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the SageMaker HyperPod cluster is created.

TrainingPlanArns
Type: Array of strings

A list of Amazon Resource Names (ARNs) of the training plans associated with this cluster.

For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .

CodeEditorAppImageConfig

Description

The configuration for the file system and kernels in a SageMaker image running as a Code Editor app. The FileSystemConfig object is not supported.

Members
ContainerConfig
Type: ContainerConfig structure

The configuration used to run the application image container.

FileSystemConfig
Type: FileSystemConfig structure

The Amazon Elastic File System storage configuration for a SageMaker AI image.

CodeEditorAppSettings

Description

The Code Editor application settings.

For more information about Code Editor, see Get started with Code Editor in Amazon SageMaker.

Members
AppLifecycleManagement
Type: AppLifecycleManagement structure

Settings that are used to configure and manage the lifecycle of CodeEditor applications.

BuiltInLifecycleConfigArn
Type: string

The lifecycle configuration that runs before the default lifecycle configuration. It can override changes made in the default lifecycle configuration.

CustomImages
Type: Array of CustomImage structures

A list of custom SageMaker images that are configured to run as a Code Editor app.

DefaultResourceSpec
Type: ResourceSpec structure

Specifies the ARN's of a SageMaker AI image and SageMaker AI image version, and the instance type that the version runs on.

LifecycleConfigArns
Type: Array of strings

The Amazon Resource Name (ARN) of the Code Editor application lifecycle configuration.

CodeRepository

Description

A Git repository that SageMaker AI automatically displays to users for cloning in the JupyterServer application.

Members
RepositoryUrl
Required: Yes
Type: string

The URL of the Git repository.

CodeRepositorySummary

Description

Specifies summary information about a Git repository.

Members
CodeRepositoryArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the Git repository.

CodeRepositoryName
Required: Yes
Type: string

The name of the Git repository.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the Git repository was created.

GitConfig
Type: GitConfig structure

Configuration details for the Git repository, including the URL where it is located and the ARN of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the repository.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the Git repository was last modified.

CognitoConfig

Description

Use this parameter to configure your Amazon Cognito workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool.

Members
ClientId
Required: Yes
Type: string

The client ID for your Amazon Cognito user pool.

UserPool
Required: Yes
Type: string

A user pool is a user directory in Amazon Cognito. With a user pool, your users can sign in to your web or mobile app through Amazon Cognito. Your users can also sign in through social identity providers like Google, Facebook, Amazon, or Apple, and through SAML identity providers.

CognitoMemberDefinition

Description

Identifies a Amazon Cognito user group. A user group can be used in on or more work teams.

Members
ClientId
Required: Yes
Type: string

An identifier for an application client. You must create the app client ID using Amazon Cognito.

UserGroup
Required: Yes
Type: string

An identifier for a user group.

UserPool
Required: Yes
Type: string

An identifier for a user pool. The user pool must be in the same region as the service that you are calling.

CollectionConfig

Description

Configuration for your collection.

Members
VectorConfig
Type: VectorConfig structure

Configuration for your vector collection type.

  • Dimension: The number of elements in your vector.

CollectionConfiguration

Description

Configuration information for the Amazon SageMaker Debugger output tensor collections.

Members
CollectionName
Type: string

The name of the tensor collection. The name must be unique relative to other rule configuration names.

CollectionParameters
Type: Associative array of custom strings keys (ConfigKey) to strings

Parameter values for the tensor collection. The allowed parameters are "name", "include_regex", "reduction_config", "save_config", "tensor_names", and "save_histogram".

CompilationJobSummary

Description

A summary of a model compilation job.

Members
CompilationEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the model compilation job completed.

CompilationJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model compilation job.

CompilationJobName
Required: Yes
Type: string

The name of the model compilation job that you want a summary for.

CompilationJobStatus
Required: Yes
Type: string

The status of the model compilation job.

CompilationStartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the model compilation job started.

CompilationTargetDevice
Type: string

The type of device that the model will run on after the compilation job has completed.

CompilationTargetPlatformAccelerator
Type: string

The type of accelerator that the model will run on after the compilation job has completed.

CompilationTargetPlatformArch
Type: string

The type of architecture that the model will run on after the compilation job has completed.

CompilationTargetPlatformOs
Type: string

The type of OS that the model will run on after the compilation job has completed.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the model compilation job was created.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the model compilation job was last modified.

ComputeQuotaConfig

Description

Configuration of the compute allocation definition for an entity. This includes the resource sharing option and the setting to preempt low priority tasks.

Members
ComputeQuotaResources
Type: Array of ComputeQuotaResourceConfig structures

Allocate compute resources by instance types.

PreemptTeamTasks
Type: string

Allows workloads from within an entity to preempt same-team workloads. When set to LowerPriority, the entity's lower priority tasks are preempted by their own higher priority tasks.

Default is LowerPriority.

ResourceSharingConfig
Type: ResourceSharingConfig structure

Resource sharing configuration. This defines how an entity can lend and borrow idle compute with other entities within the cluster.

ComputeQuotaResourceConfig

Description

Configuration of the resources used for the compute allocation definition.

Members
Count
Required: Yes
Type: int

The number of instances to add to the instance group of a SageMaker HyperPod cluster.

InstanceType
Required: Yes
Type: string

The instance type of the instance group for the cluster.

ComputeQuotaSummary

Description

Summary of the compute allocation definition.

Members
ActivationState
Type: string

The state of the compute allocation being described. Use to enable or disable compute allocation.

Default is Enabled.

ClusterArn
Type: string

ARN of the cluster.

ComputeQuotaArn
Required: Yes
Type: string

ARN of the compute allocation definition.

ComputeQuotaConfig
Type: ComputeQuotaConfig structure

Configuration of the compute allocation definition. This includes the resource sharing option, and the setting to preempt low priority tasks.

ComputeQuotaId
Required: Yes
Type: string

ID of the compute allocation definition.

ComputeQuotaTarget
Required: Yes
Type: ComputeQuotaTarget structure

The target entity to allocate compute resources to.

ComputeQuotaVersion
Type: int

Version of the compute allocation definition.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

Creation time of the compute allocation definition.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Last modified time of the compute allocation definition.

Name
Required: Yes
Type: string

Name of the compute allocation definition.

Status
Required: Yes
Type: string

Status of the compute allocation definition.

ComputeQuotaTarget

Description

The target entity to allocate compute resources to.

Members
FairShareWeight
Type: int

Assigned entity fair-share weight. Idle compute will be shared across entities based on these assigned weights. This weight is only used when FairShare is enabled.

A weight of 0 is the lowest priority and 100 is the highest. Weight 0 is the default.

TeamName
Required: Yes
Type: string

Name of the team to allocate compute resources to.

ConditionStepMetadata

Description

Metadata for a Condition step.

Members
Outcome
Type: string

The outcome of the Condition step evaluation.

ConflictException

Description

There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.

Members
Message
Type: string

ContainerConfig

Description

The configuration used to run the application image container.

Members
ContainerArguments
Type: Array of strings

The arguments for the container when you're running the application.

ContainerEntrypoint
Type: Array of strings

The entrypoint used to run the application in the container.

ContainerEnvironmentVariables
Type: Associative array of custom strings keys (NonEmptyString256) to strings

The environment variables to set in the container

ContainerDefinition

Description

Describes the container, as part of model definition.

Members
AdditionalModelDataSources
Type: Array of AdditionalModelDataSource structures

Data sources that are available to your model in addition to the one that you specify for ModelDataSource when you use the CreateModel action.

ContainerHostname
Type: string

This parameter is ignored for models that contain only a PrimaryContainer.

When a ContainerDefinition is part of an inference pipeline, the value of the parameter uniquely identifies the container for the purposes of logging and metrics. For information, see Use Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a value for this parameter for a ContainerDefinition that is part of an inference pipeline, a unique name is automatically assigned based on the position of the ContainerDefinition in the pipeline. If you specify a value for the ContainerHostName for any ContainerDefinition that is part of an inference pipeline, you must specify a value for the ContainerHostName parameter of every ContainerDefinition in that pipeline.

Environment
Type: Associative array of custom strings keys (EnvironmentKey) to strings

The environment variables to set in the Docker container. Don't include any sensitive data in your environment variables.

The maximum length of each key and value in the Environment map is 1024 bytes. The maximum length of all keys and values in the map, combined, is 32 KB. If you pass multiple containers to a CreateModel request, then the maximum length of all of their maps, combined, is also 32 KB.

Image
Type: string

The path where inference code is stored. This can be either in Amazon EC2 Container Registry or in a Docker registry that is accessible from the same VPC that you configure for your endpoint. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

The model artifacts in an Amazon S3 bucket and the Docker image for inference container in Amazon EC2 Container Registry must be in the same region as the model or endpoint you are creating.

ImageConfig
Type: ImageConfig structure

Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC). For information about storing containers in a private Docker registry, see Use a Private Docker Registry for Real-Time Inference Containers.

The model artifacts in an Amazon S3 bucket and the Docker image for inference container in Amazon EC2 Container Registry must be in the same region as the model or endpoint you are creating.

InferenceSpecificationName
Type: string

The inference specification name in the model package version.

Mode
Type: string

Whether the container hosts a single model or multiple models.

ModelDataSource
Type: ModelDataSource structure

Specifies the location of ML model data to deploy.

Currently you cannot use ModelDataSource in conjunction with SageMaker batch transform, SageMaker serverless endpoints, SageMaker multi-model endpoints, and SageMaker Marketplace.

ModelDataUrl
Type: string

The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see Common Parameters.

The model artifacts must be in an S3 bucket that is in the same region as the model or endpoint you are creating.

If you provide a value for this parameter, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provide. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region in the Amazon Web Services Identity and Access Management User Guide.

If you use a built-in algorithm to create a model, SageMaker requires that you provide a S3 path to the model artifacts in ModelDataUrl.

ModelPackageName
Type: string

The name or Amazon Resource Name (ARN) of the model package to use to create the model.

MultiModelConfig
Type: MultiModelConfig structure

Specifies additional configuration for multi-model endpoints.

ContextSource

Description

A structure describing the source of a context.

Members
SourceId
Type: string

The ID of the source.

SourceType
Type: string

The type of the source.

SourceUri
Required: Yes
Type: string

The URI of the source.

ContextSummary

Description

Lists a summary of the properties of a context. A context provides a logical grouping of other entities.

Members
ContextArn
Type: string

The Amazon Resource Name (ARN) of the context.

ContextName
Type: string

The name of the context.

ContextType
Type: string

The type of the context.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the context was created.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the context was last modified.

Source
Type: ContextSource structure

The source of the context.

ContinuousParameterRange

Description

A list of continuous hyperparameters to tune.

Members
MaxValue
Required: Yes
Type: string

The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.

MinValue
Required: Yes
Type: string

The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValuefor tuning.

Name
Required: Yes
Type: string

The name of the continuous hyperparameter to tune.

ScalingType
Type: string

The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

Auto

SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

Linear

Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

Logarithmic

Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

Logarithmic scaling works only for ranges that have only values greater than 0.

ReverseLogarithmic

Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.

ContinuousParameterRangeSpecification

Description

Defines the possible values for a continuous hyperparameter.

Members
MaxValue
Required: Yes
Type: string

The maximum floating-point value allowed.

MinValue
Required: Yes
Type: string

The minimum floating-point value allowed.

ConvergenceDetected

Description

A flag to indicating that automatic model tuning (AMT) has detected model convergence, defined as a lack of significant improvement (1% or less) against an objective metric.

Members
CompleteOnConvergence
Type: string

A flag to stop a tuning job once AMT has detected that the job has converged.

CustomFileSystem

Description

A file system, created by you, that you assign to a user profile or space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.

Members
EFSFileSystem
Type: EFSFileSystem structure

A custom file system in Amazon EFS.

FSxLustreFileSystem
Type: FSxLustreFileSystem structure

A custom file system in Amazon FSx for Lustre.

CustomFileSystemConfig

Description

The settings for assigning a custom file system to a user profile or space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.

Members
EFSFileSystemConfig
Type: EFSFileSystemConfig structure

The settings for a custom Amazon EFS file system.

FSxLustreFileSystemConfig
Type: FSxLustreFileSystemConfig structure

The settings for a custom Amazon FSx for Lustre file system.

CustomImage

Description

A custom SageMaker AI image. For more information, see Bring your own SageMaker AI image.

Members
AppImageConfigName
Required: Yes
Type: string

The name of the AppImageConfig.

ImageName
Required: Yes
Type: string

The name of the CustomImage. Must be unique to your account.

ImageVersionNumber
Type: int

The version number of the CustomImage.

CustomPosixUserConfig

Description

Details about the POSIX identity that is used for file system operations.

Members
Gid
Required: Yes
Type: long (int|float)

The POSIX group ID.

Uid
Required: Yes
Type: long (int|float)

The POSIX user ID.

CustomizedMetricSpecification

Description

A customized metric.

Members
MetricName
Type: string

The name of the customized metric.

Namespace
Type: string

The namespace of the customized metric.

Statistic
Type: string

The statistic of the customized metric.

DataCaptureConfig

Description

Configuration to control how SageMaker AI captures inference data.

Members
CaptureContentTypeHeader
Type: CaptureContentTypeHeader structure

Configuration specifying how to treat different headers. If no headers are specified SageMaker AI will by default base64 encode when capturing the data.

CaptureOptions
Required: Yes
Type: Array of CaptureOption structures

Specifies data Model Monitor will capture. You can configure whether to collect only input, only output, or both

DestinationS3Uri
Required: Yes
Type: string

The Amazon S3 location used to capture the data.

EnableCapture
Type: boolean

Whether data capture should be enabled or disabled (defaults to enabled).

InitialSamplingPercentage
Required: Yes
Type: int

The percentage of requests SageMaker AI will capture. A lower value is recommended for Endpoints with high traffic.

KmsKeyId
Type: string

The Amazon Resource Name (ARN) of an Key Management Service key that SageMaker AI uses to encrypt the captured data at rest using Amazon S3 server-side encryption.

The KmsKeyId can be any of the following formats:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

  • Alias name: alias/ExampleAlias

  • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

DataCaptureConfigSummary

Description

The currently active data capture configuration used by your Endpoint.

Members
CaptureStatus
Required: Yes
Type: string

Whether data capture is currently functional.

CurrentSamplingPercentage
Required: Yes
Type: int

The percentage of requests being captured by your Endpoint.

DestinationS3Uri
Required: Yes
Type: string

The Amazon S3 location being used to capture the data.

EnableCapture
Required: Yes
Type: boolean

Whether data capture is enabled or disabled.

KmsKeyId
Required: Yes
Type: string

The KMS key being used to encrypt the data in Amazon S3.

DataCatalogConfig

Description

The meta data of the Glue table which serves as data catalog for the OfflineStore.

Members
Catalog
Required: Yes
Type: string

The name of the Glue table catalog.

Database
Required: Yes
Type: string

The name of the Glue table database.

TableName
Required: Yes
Type: string

The name of the Glue table.

DataProcessing

Description

The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.

Members
InputFilter
Type: string

A JSONPath expression used to select a portion of the input data to pass to the algorithm. Use the InputFilter parameter to exclude fields, such as an ID column, from the input. If you want SageMaker to pass the entire input dataset to the algorithm, accept the default value $.

Examples: "$", "$[1:]", "$.features"

JoinSource
Type: string

Specifies the source of the data to join with the transformed data. The valid values are None and Input. The default value is None, which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, set JoinSource to Input. You can specify OutputFilter as an additional filter to select a portion of the joined dataset and store it in the output file.

For JSON or JSONLines objects, such as a JSON array, SageMaker adds the transformed data to the input JSON object in an attribute called SageMakerOutput. The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under the SageMakerInput key and the results are stored in SageMakerOutput.

For CSV data, SageMaker takes each row as a JSON array and joins the transformed data with the input by appending each transformed row to the end of the input. The joined data has the original input data followed by the transformed data and the output is a CSV file.

For information on how joining in applied, see Workflow for Associating Inferences with Input Records.

OutputFilter
Type: string

A JSONPath expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want SageMaker to store the entire input dataset in the output file, leave the default value, $. If you specify indexes that aren't within the dimension size of the joined dataset, you get an error.

Examples: "$", "$[0,5:]", "$['id','SageMakerOutput']"

DataQualityAppSpecification

Description

Information about the container that a data quality monitoring job runs.

Members
ContainerArguments
Type: Array of strings

The arguments to send to the container that the monitoring job runs.

ContainerEntrypoint
Type: Array of strings

The entrypoint for a container used to run a monitoring job.

Environment
Type: Associative array of custom strings keys (ProcessingEnvironmentKey) to strings

Sets the environment variables in the container that the monitoring job runs.

ImageUri
Required: Yes
Type: string

The container image that the data quality monitoring job runs.

PostAnalyticsProcessorSourceUri
Type: string

An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.

RecordPreprocessorSourceUri
Type: string

An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flattened JSON so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.

DataQualityBaselineConfig

Description

Configuration for monitoring constraints and monitoring statistics. These baseline resources are compared against the results of the current job from the series of jobs scheduled to collect data periodically.

Members
BaseliningJobName
Type: string

The name of the job that performs baselining for the data quality monitoring job.

ConstraintsResource

The constraints resource for a monitoring job.

StatisticsResource

The statistics resource for a monitoring job.

DataQualityJobInput

Description

The input for the data quality monitoring job. Currently endpoints are supported for input.

Members
BatchTransformInput
Type: BatchTransformInput structure

Input object for the batch transform job.

EndpointInput
Type: EndpointInput structure

Input object for the endpoint

DataSource

Description

Describes the location of the channel data.

Members
FileSystemDataSource
Type: FileSystemDataSource structure

The file system that is associated with a channel.

S3DataSource
Type: S3DataSource structure

The S3 location of the data source that is associated with a channel.

DatasetDefinition

Description

Configuration for Dataset Definition inputs. The Dataset Definition input must specify exactly one of either AthenaDatasetDefinition or RedshiftDatasetDefinition types.

Members
AthenaDatasetDefinition
Type: AthenaDatasetDefinition structure

Configuration for Athena Dataset Definition input.

DataDistributionType
Type: string

Whether the generated dataset is FullyReplicated or ShardedByS3Key (default).

InputMode
Type: string

Whether to use File or Pipe input mode. In File (default) mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.

LocalPath
Type: string

The local path where you want Amazon SageMaker to download the Dataset Definition inputs to run a processing job. LocalPath is an absolute path to the input data. This is a required parameter when AppManaged is False (default).

RedshiftDatasetDefinition
Type: RedshiftDatasetDefinition structure

Configuration for Redshift Dataset Definition input.

DebugHookConfig

Description

Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the DebugHookConfig parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

Members
CollectionConfigurations
Type: Array of CollectionConfiguration structures

Configuration information for Amazon SageMaker Debugger tensor collections. To learn more about how to configure the CollectionConfiguration parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

HookParameters
Type: Associative array of custom strings keys (ConfigKey) to strings

Configuration information for the Amazon SageMaker Debugger hook parameters.

LocalPath
Type: string

Path to local storage location for metrics and tensors. Defaults to /opt/ml/output/tensors/.

S3OutputPath
Required: Yes
Type: string

Path to Amazon S3 storage location for metrics and tensors.

DebugRuleConfiguration

Description

Configuration information for SageMaker Debugger rules for debugging. To learn more about how to configure the DebugRuleConfiguration parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

Members
InstanceType
Type: string

The instance type to deploy a custom rule for debugging a training job.

LocalPath
Type: string

Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/.

RuleConfigurationName
Required: Yes
Type: string

The name of the rule configuration. It must be unique relative to other rule configuration names.

RuleEvaluatorImage
Required: Yes
Type: string

The Amazon Elastic Container (ECR) Image for the managed rule evaluation.

RuleParameters
Type: Associative array of custom strings keys (ConfigKey) to strings

Runtime configuration for rule container.

S3OutputPath
Type: string

Path to Amazon S3 storage location for rules.

VolumeSizeInGB
Type: int

The size, in GB, of the ML storage volume attached to the processing instance.

DebugRuleEvaluationStatus

Description

Information about the status of the rule evaluation.

Members
LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Timestamp when the rule evaluation status was last modified.

RuleConfigurationName
Type: string

The name of the rule configuration.

RuleEvaluationJobArn
Type: string

The Amazon Resource Name (ARN) of the rule evaluation job.

RuleEvaluationStatus
Type: string

Status of the rule evaluation.

StatusDetails
Type: string

Details from the rule evaluation.

DefaultEbsStorageSettings

Description

A collection of default EBS storage settings that apply to spaces created within a domain or user profile.

Members
DefaultEbsVolumeSizeInGb
Required: Yes
Type: int

The default size of the EBS storage volume for a space.

MaximumEbsVolumeSizeInGb
Required: Yes
Type: int

The maximum size of the EBS storage volume for a space.

DefaultSpaceSettings

Description

The default settings for shared spaces that users create in the domain.

SageMaker applies these settings only to shared spaces. It doesn't apply them to private spaces.

Members
CustomFileSystemConfigs
Type: Array of CustomFileSystemConfig structures

The settings for assigning a custom file system to a domain. Permitted users can access this file system in Amazon SageMaker AI Studio.

CustomPosixUserConfig
Type: CustomPosixUserConfig structure

Details about the POSIX identity that is used for file system operations.

ExecutionRole
Type: string

The ARN of the execution role for the space.

JupyterLabAppSettings
Type: JupyterLabAppSettings structure

The settings for the JupyterLab application.

JupyterServerAppSettings
Type: JupyterServerAppSettings structure

The JupyterServer app settings.

KernelGatewayAppSettings
Type: KernelGatewayAppSettings structure

The KernelGateway app settings.

SecurityGroups
Type: Array of strings

The security group IDs for the Amazon VPC that the space uses for communication.

SpaceStorageSettings
Type: DefaultSpaceStorageSettings structure

The default storage settings for a space.

DefaultSpaceStorageSettings

Description

The default storage settings for a space.

Members
DefaultEbsStorageSettings
Type: DefaultEbsStorageSettings structure

The default EBS storage settings for a space.

DeployedImage

Description

Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant.

If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant, the path resolves to a path of the form registry/repository[@digest]. A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide.

Members
ResolutionTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time when the image path for the model resolved to the ResolvedImage

ResolvedImage
Type: string

The specific digest path of the image hosted in this ProductionVariant.

SpecifiedImage
Type: string

The image path you specified when you created the model.

DeploymentConfig

Description

The deployment configuration for an endpoint, which contains the desired deployment strategy and rollback configurations.

Members
AutoRollbackConfiguration
Type: AutoRollbackConfig structure

Automatic rollback configuration for handling endpoint deployment failures and recovery.

BlueGreenUpdatePolicy
Type: BlueGreenUpdatePolicy structure

Update policy for a blue/green deployment. If this update policy is specified, SageMaker creates a new fleet during the deployment while maintaining the old fleet. SageMaker flips traffic to the new fleet according to the specified traffic routing configuration. Only one update policy should be used in the deployment configuration. If no update policy is specified, SageMaker uses a blue/green deployment strategy with all at once traffic shifting by default.

RollingUpdatePolicy
Type: RollingUpdatePolicy structure

Specifies a rolling deployment strategy for updating a SageMaker endpoint.

DeploymentRecommendation

Description

A set of recommended deployment configurations for the model. To get more advanced recommendations, see CreateInferenceRecommendationsJob to create an inference recommendation job.

Members
RealTimeInferenceRecommendations
Type: Array of RealTimeInferenceRecommendation structures
RecommendationStatus
Required: Yes
Type: string

Status of the deployment recommendation. The status NOT_APPLICABLE means that SageMaker is unable to provide a default recommendation for the model using the information provided. If the deployment status is IN_PROGRESS, retry your API call after a few seconds to get a COMPLETED deployment recommendation.

DeploymentStage

Description

Contains information about a stage in an edge deployment plan.

Members
DeploymentConfig
Type: EdgeDeploymentConfig structure

Configuration of the deployment details.

DeviceSelectionConfig
Required: Yes
Type: DeviceSelectionConfig structure

Configuration of the devices in the stage.

StageName
Required: Yes
Type: string

The name of the stage.

DeploymentStageStatusSummary

Description

Contains information summarizing the deployment stage results.

Members
DeploymentConfig
Required: Yes
Type: EdgeDeploymentConfig structure

Configuration of the deployment details.

DeploymentStatus
Required: Yes
Type: EdgeDeploymentStatus structure

General status of the current state.

DeviceSelectionConfig
Required: Yes
Type: DeviceSelectionConfig structure

Configuration of the devices in the stage.

StageName
Required: Yes
Type: string

The name of the stage.

DerivedInformation

Description

Information that SageMaker Neo automatically derived about the model.

Members
DerivedDataInputConfig
Type: string

The data input configuration that SageMaker Neo automatically derived for the model. When SageMaker Neo derives this information, you don't need to specify the data input configuration when you create a compilation job.

DesiredWeightAndCapacity

Description

Specifies weight and capacity values for a production variant.

Members
DesiredInstanceCount
Type: int

The variant's capacity.

DesiredWeight
Type: float

The variant's weight.

ServerlessUpdateConfig

Specifies the serverless update concurrency configuration for an endpoint variant.

VariantName
Required: Yes
Type: string

The name of the variant to update.

Device

Description

Information of a particular device.

Members
Description
Type: string

Description of the device.

DeviceName
Required: Yes
Type: string

The name of the device.

IotThingName
Type: string

Amazon Web Services Internet of Things (IoT) object name.

DeviceDeploymentSummary

Description

Contains information summarizing device details and deployment status.

Members
DeployedStageName
Type: string

The name of the deployed stage.

DeploymentStartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the deployment on the device started.

Description
Type: string

The description of the device.

DeviceArn
Required: Yes
Type: string

The ARN of the device.

DeviceDeploymentStatus
Type: string

The deployment status of the device.

DeviceDeploymentStatusMessage
Type: string

The detailed error message for the deployoment status result.

DeviceFleetName
Type: string

The name of the fleet to which the device belongs to.

DeviceName
Required: Yes
Type: string

The name of the device.

EdgeDeploymentPlanArn
Required: Yes
Type: string

The ARN of the edge deployment plan.

EdgeDeploymentPlanName
Required: Yes
Type: string

The name of the edge deployment plan.

StageName
Required: Yes
Type: string

The name of the stage in the edge deployment plan.

DeviceFleetSummary

Description

Summary of the device fleet.

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Timestamp of when the device fleet was created.

DeviceFleetArn
Required: Yes
Type: string

Amazon Resource Name (ARN) of the device fleet.

DeviceFleetName
Required: Yes
Type: string

Name of the device fleet.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Timestamp of when the device fleet was last updated.

DeviceSelectionConfig

Description

Contains information about the configurations of selected devices.

Members
DeviceNameContains
Type: string

A filter to select devices with names containing this name.

DeviceNames
Type: Array of strings

List of devices chosen to deploy.

DeviceSubsetType
Required: Yes
Type: string

Type of device subsets to deploy to the current stage.

Percentage
Type: int

Percentage of devices in the fleet to deploy to the current stage.

DeviceStats

Description

Status of devices.

Members
ConnectedDeviceCount
Required: Yes
Type: long (int|float)

The number of devices connected with a heartbeat.

RegisteredDeviceCount
Required: Yes
Type: long (int|float)

The number of registered devices.

DeviceSummary

Description

Summary of the device.

Members
AgentVersion
Type: string

Edge Manager agent version.

Description
Type: string

A description of the device.

DeviceArn
Required: Yes
Type: string

Amazon Resource Name (ARN) of the device.

DeviceFleetName
Type: string

The name of the fleet the device belongs to.

DeviceName
Required: Yes
Type: string

The unique identifier of the device.

IotThingName
Type: string

The Amazon Web Services Internet of Things (IoT) object thing name associated with the device..

LatestHeartbeat
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last heartbeat received from the device.

Models
Type: Array of EdgeModelSummary structures

Models on the device.

RegistrationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp of the last registration or de-reregistration.

DirectDeploySettings

Description

The model deployment settings for the SageMaker Canvas application.

In order to enable model deployment for Canvas, the SageMaker Domain's or user profile's Amazon Web Services IAM execution role must have the AmazonSageMakerCanvasDirectDeployAccess policy attached. You can also turn on model deployment permissions through the SageMaker Domain's or user profile's settings in the SageMaker console.

Members
Status
Type: string

Describes whether model deployment permissions are enabled or disabled in the Canvas application.

DockerSettings

Description

A collection of settings that configure the domain's Docker interaction.

Members
EnableDockerAccess
Type: string

Indicates whether the domain can access Docker.

VpcOnlyTrustedAccounts
Type: Array of strings

The list of Amazon Web Services accounts that are trusted when the domain is created in VPC-only mode.

DomainDetails

Description

The domain's details.

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time.

DomainArn
Type: string

The domain's Amazon Resource Name (ARN).

DomainId
Type: string

The domain ID.

DomainName
Type: string

The domain name.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last modified time.

Status
Type: string

The status.

Url
Type: string

The domain's URL.

DomainSettings

Description

A collection of settings that apply to the SageMaker Domain. These settings are specified through the CreateDomain API call.

Members
AmazonQSettings
Type: AmazonQSettings structure

A collection of settings that configure the Amazon Q experience within the domain. The AuthMode that you use to create the domain must be SSO.

DockerSettings
Type: DockerSettings structure

A collection of settings that configure the domain's Docker interaction.

ExecutionRoleIdentityConfig
Type: string

The configuration for attaching a SageMaker AI user profile name to the execution role as a sts:SourceIdentity key.

RStudioServerProDomainSettings

A collection of settings that configure the RStudioServerPro Domain-level app.

SecurityGroupIds
Type: Array of strings

The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.

DomainSettingsForUpdate

Description

A collection of Domain configuration settings to update.

Members
AmazonQSettings
Type: AmazonQSettings structure

A collection of settings that configure the Amazon Q experience within the domain.

DockerSettings
Type: DockerSettings structure

A collection of settings that configure the domain's Docker interaction.

ExecutionRoleIdentityConfig
Type: string

The configuration for attaching a SageMaker AI user profile name to the execution role as a sts:SourceIdentity key. This configuration can only be modified if there are no apps in the InService or Pending state.

RStudioServerProDomainSettingsForUpdate

A collection of RStudioServerPro Domain-level app settings to update. A single RStudioServerPro application is created for a domain.

SecurityGroupIds
Type: Array of strings

The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.

DriftCheckBaselines

Description

Represents the drift check baselines that can be used when the model monitor is set using the model package.

Members
Bias
Type: DriftCheckBias structure

Represents the drift check bias baselines that can be used when the model monitor is set using the model package.

Explainability
Type: DriftCheckExplainability structure

Represents the drift check explainability baselines that can be used when the model monitor is set using the model package.

ModelDataQuality
Type: DriftCheckModelDataQuality structure

Represents the drift check model data quality baselines that can be used when the model monitor is set using the model package.

ModelQuality
Type: DriftCheckModelQuality structure

Represents the drift check model quality baselines that can be used when the model monitor is set using the model package.

DriftCheckBias

Description

Represents the drift check bias baselines that can be used when the model monitor is set using the model package.

Members
ConfigFile
Type: FileSource structure

The bias config file for a model.

PostTrainingConstraints
Type: MetricsSource structure

The post-training constraints.

PreTrainingConstraints
Type: MetricsSource structure

The pre-training constraints.

DriftCheckExplainability

Description

Represents the drift check explainability baselines that can be used when the model monitor is set using the model package.

Members
ConfigFile
Type: FileSource structure

The explainability config file for the model.

Constraints
Type: MetricsSource structure

The drift check explainability constraints.

DriftCheckModelDataQuality

Description

Represents the drift check data quality baselines that can be used when the model monitor is set using the model package.

Members
Constraints
Type: MetricsSource structure

The drift check model data quality constraints.

Statistics
Type: MetricsSource structure

The drift check model data quality statistics.

DriftCheckModelQuality

Description

Represents the drift check model quality baselines that can be used when the model monitor is set using the model package.

Members
Constraints
Type: MetricsSource structure

The drift check model quality constraints.

Statistics
Type: MetricsSource structure

The drift check model quality statistics.

DynamicScalingConfiguration

Description

An object with the recommended values for you to specify when creating an autoscaling policy.

Members
MaxCapacity
Type: int

The recommended maximum capacity to specify for your autoscaling policy.

MinCapacity
Type: int

The recommended minimum capacity to specify for your autoscaling policy.

ScaleInCooldown
Type: int

The recommended scale in cooldown time for your autoscaling policy.

ScaleOutCooldown
Type: int

The recommended scale out cooldown time for your autoscaling policy.

ScalingPolicies
Type: Array of ScalingPolicy structures

An object of the scaling policies for each metric.

EFSFileSystem

Description

A file system, created by you in Amazon EFS, that you assign to a user profile or space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.

Members
FileSystemId
Required: Yes
Type: string

The ID of your Amazon EFS file system.

EFSFileSystemConfig

Description

The settings for assigning a custom Amazon EFS file system to a user profile or space for an Amazon SageMaker AI Domain.

Members
FileSystemId
Required: Yes
Type: string

The ID of your Amazon EFS file system.

FileSystemPath
Type: string

The path to the file system directory that is accessible in Amazon SageMaker AI Studio. Permitted users can access only this directory and below.

EMRStepMetadata

Description

The configurations and outcomes of an Amazon EMR step execution.

Members
ClusterId
Type: string

The identifier of the EMR cluster.

LogFilePath
Type: string

The path to the log file where the cluster step's failure root cause is recorded.

StepId
Type: string

The identifier of the EMR cluster step.

StepName
Type: string

The name of the EMR cluster step.

EbsStorageSettings

Description

A collection of EBS storage settings that apply to both private and shared spaces.

Members
EbsVolumeSizeInGb
Required: Yes
Type: int

The size of an EBS storage volume for a space.

Edge

Description

A directed edge connecting two lineage entities.

Members
AssociationType
Type: string

The type of the Association(Edge) between the source and destination. For example ContributedTo, Produced, or DerivedFrom.

DestinationArn
Type: string

The Amazon Resource Name (ARN) of the destination lineage entity of the directed edge.

SourceArn
Type: string

The Amazon Resource Name (ARN) of the source lineage entity of the directed edge.

EdgeDeploymentConfig

Description

Contains information about the configuration of a deployment.

Members
FailureHandlingPolicy
Required: Yes
Type: string

Toggle that determines whether to rollback to previous configuration if the current deployment fails. By default this is turned on. You may turn this off if you want to investigate the errors yourself.

EdgeDeploymentModelConfig

Description

Contains information about the configuration of a model in a deployment.

Members
EdgePackagingJobName
Required: Yes
Type: string

The edge packaging job associated with this deployment.

ModelHandle
Required: Yes
Type: string

The name the device application uses to reference this model.

EdgeDeploymentPlanSummary

Description

Contains information summarizing an edge deployment plan.

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the edge deployment plan was created.

DeviceFleetName
Required: Yes
Type: string

The name of the device fleet used for the deployment.

EdgeDeploymentFailed
Required: Yes
Type: int

The number of edge devices that failed the deployment.

EdgeDeploymentPending
Required: Yes
Type: int

The number of edge devices yet to pick up the deployment, or in progress.

EdgeDeploymentPlanArn
Required: Yes
Type: string

The ARN of the edge deployment plan.

EdgeDeploymentPlanName
Required: Yes
Type: string

The name of the edge deployment plan.

EdgeDeploymentSuccess
Required: Yes
Type: int

The number of edge devices with the successful deployment.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the edge deployment plan was last updated.

EdgeDeploymentStatus

Description

Contains information summarizing the deployment stage results.

Members
EdgeDeploymentFailedInStage
Required: Yes
Type: int

The number of edge devices that failed the deployment in current stage.

EdgeDeploymentPendingInStage
Required: Yes
Type: int

The number of edge devices yet to pick up the deployment in current stage, or in progress.

EdgeDeploymentStageStartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the deployment API started.

EdgeDeploymentStatusMessage
Type: string

A detailed message about deployment status in current stage.

EdgeDeploymentSuccessInStage
Required: Yes
Type: int

The number of edge devices with the successful deployment in the current stage.

StageStatus
Required: Yes
Type: string

The general status of the current stage.

EdgeModel

Description

The model on the edge device.

Members
LatestInference
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp of the last inference that was made.

LatestSampleTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp of the last data sample taken.

ModelName
Required: Yes
Type: string

The name of the model.

ModelVersion
Required: Yes
Type: string

The model version.

EdgeModelStat

Description

Status of edge devices with this model.

Members
ActiveDeviceCount
Required: Yes
Type: long (int|float)

The number of devices that have this model version, a heart beat, and are currently running.

ConnectedDeviceCount
Required: Yes
Type: long (int|float)

The number of devices that have this model version and have a heart beat.

ModelName
Required: Yes
Type: string

The name of the model.

ModelVersion
Required: Yes
Type: string

The model version.

OfflineDeviceCount
Required: Yes
Type: long (int|float)

The number of devices that have this model version and do not have a heart beat.

SamplingDeviceCount
Required: Yes
Type: long (int|float)

The number of devices with this model version and are producing sample data.

EdgeModelSummary

Description

Summary of model on edge device.

Members
ModelName
Required: Yes
Type: string

The name of the model.

ModelVersion
Required: Yes
Type: string

The version model.

EdgeOutputConfig

Description

The output configuration.

Members
KmsKeyId
Type: string

The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account.

PresetDeploymentConfig
Type: string

The configuration used to create deployment artifacts. Specify configuration options with a JSON string. The available configuration options for each type are:

  • ComponentName (optional) - Name of the GreenGrass V2 component. If not specified, the default name generated consists of "SagemakerEdgeManager" and the name of your SageMaker Edge Manager packaging job.

  • ComponentDescription (optional) - Description of the component.

  • ComponentVersion (optional) - The version of the component.

    Amazon Web Services IoT Greengrass uses semantic versions for components. Semantic versions follow a major.minor.patch number system. For example, version 1.0.0 represents the first major release for a component. For more information, see the semantic version specification.

  • PlatformOS (optional) - The name of the operating system for the platform. Supported platforms include Windows and Linux.

  • PlatformArchitecture (optional) - The processor architecture for the platform.

    Supported architectures Windows include: Windows32_x86, Windows64_x64.

    Supported architectures for Linux include: Linux x86_64, Linux ARMV8.

PresetDeploymentType
Type: string

The deployment type SageMaker Edge Manager will create. Currently only supports Amazon Web Services IoT Greengrass Version 2 components.

S3OutputLocation
Required: Yes
Type: string

The Amazon Simple Storage (S3) bucker URI.

EdgePackagingJobSummary

Description

Summary of edge packaging job.

Members
CompilationJobName
Type: string

The name of the SageMaker Neo compilation job.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp of when the job was created.

EdgePackagingJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the edge packaging job.

EdgePackagingJobName
Required: Yes
Type: string

The name of the edge packaging job.

EdgePackagingJobStatus
Required: Yes
Type: string

The status of the edge packaging job.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp of when the edge packaging job was last updated.

ModelName
Type: string

The name of the model.

ModelVersion
Type: string

The version of the model.

EdgePresetDeploymentOutput

Description

The output of a SageMaker Edge Manager deployable resource.

Members
Artifact
Type: string

The Amazon Resource Name (ARN) of the generated deployable resource.

Status
Type: string

The status of the deployable resource.

StatusMessage
Type: string

Returns a message describing the status of the deployed resource.

Type
Required: Yes
Type: string

The deployment type created by SageMaker Edge Manager. Currently only supports Amazon Web Services IoT Greengrass Version 2 components.

EmrServerlessComputeConfig

Description

This data type is intended for use exclusively by SageMaker Canvas and cannot be used in other contexts at the moment.

Specifies the compute configuration for the EMR Serverless job.

Members
ExecutionRoleARN
Required: Yes
Type: string

The ARN of the IAM role granting the AutoML job V2 the necessary permissions access policies to list, connect to, or manage EMR Serverless jobs. For detailed information about the required permissions of this role, see "How to configure AutoML to initiate a remote job on EMR Serverless for large datasets" in Create a regression or classification job for tabular data using the AutoML API or Create an AutoML job for time-series forecasting using the API.

EmrServerlessSettings

Description

The settings for running Amazon EMR Serverless jobs in SageMaker Canvas.

Members
ExecutionRoleArn
Type: string

The Amazon Resource Name (ARN) of the Amazon Web Services IAM role that is assumed for running Amazon EMR Serverless jobs in SageMaker Canvas. This role should have the necessary permissions to read and write data attached and a trust relationship with EMR Serverless.

Status
Type: string

Describes whether Amazon EMR Serverless job capabilities are enabled or disabled in the SageMaker Canvas application.

EmrSettings

Description

The configuration parameters that specify the IAM roles assumed by the execution role of SageMaker (assumable roles) and the cluster instances or job execution environments (execution roles or runtime roles) to manage and access resources required for running Amazon EMR clusters or Amazon EMR Serverless applications.

Members
AssumableRoleArns
Type: Array of strings

An array of Amazon Resource Names (ARNs) of the IAM roles that the execution role of SageMaker can assume for performing operations or tasks related to Amazon EMR clusters or Amazon EMR Serverless applications. These roles define the permissions and access policies required when performing Amazon EMR-related operations, such as listing, connecting to, or terminating Amazon EMR clusters or Amazon EMR Serverless applications. They are typically used in cross-account access scenarios, where the Amazon EMR resources (clusters or serverless applications) are located in a different Amazon Web Services account than the SageMaker domain.

ExecutionRoleArns
Type: Array of strings

An array of Amazon Resource Names (ARNs) of the IAM roles used by the Amazon EMR cluster instances or job execution environments to access other Amazon Web Services services and resources needed during the runtime of your Amazon EMR or Amazon EMR Serverless workloads, such as Amazon S3 for data access, Amazon CloudWatch for logging, or other Amazon Web Services services based on the particular workload requirements.

Endpoint

Description

A hosted endpoint for real-time inference.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the endpoint was created.

DataCaptureConfig
Type: DataCaptureConfigSummary structure

The currently active data capture configuration used by your Endpoint.

EndpointArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the endpoint.

EndpointConfigName
Required: Yes
Type: string

The endpoint configuration associated with the endpoint.

EndpointName
Required: Yes
Type: string

The name of the endpoint.

EndpointStatus
Required: Yes
Type: string

The status of the endpoint.

FailureReason
Type: string

If the endpoint failed, the reason it failed.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last time the endpoint was modified.

MonitoringSchedules
Type: Array of MonitoringSchedule structures

A list of monitoring schedules for the endpoint. For information about model monitoring, see Amazon SageMaker Model Monitor.

ProductionVariants
Type: Array of ProductionVariantSummary structures

A list of the production variants hosted on the endpoint. Each production variant is a model.

ShadowProductionVariants
Type: Array of ProductionVariantSummary structures

A list of the shadow variants hosted on the endpoint. Each shadow variant is a model in shadow mode with production traffic replicated from the production variant.

Tags
Type: Array of Tag structures

A list of the tags associated with the endpoint. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.

EndpointConfigStepMetadata

Description

Metadata for an endpoint configuration step.

Members
Arn
Type: string

The Amazon Resource Name (ARN) of the endpoint configuration used in the step.

EndpointConfigSummary

Description

Provides summary information for an endpoint configuration.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the endpoint configuration was created.

EndpointConfigArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the endpoint configuration.

EndpointConfigName
Required: Yes
Type: string

The name of the endpoint configuration.

EndpointInfo

Description

Details about a customer endpoint that was compared in an Inference Recommender job.

Members
EndpointName
Type: string

The name of a customer's endpoint.

EndpointInput

Description

Input object for the endpoint

Members
EndTimeOffset
Type: string

If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

EndpointName
Required: Yes
Type: string

An endpoint in customer's account which has enabled DataCaptureConfig enabled.

ExcludeFeaturesAttribute
Type: string

The attributes of the input data to exclude from the analysis.

FeaturesAttribute
Type: string

The attributes of the input data that are the input features.

InferenceAttribute
Type: string

The attribute of the input data that represents the ground truth label.

LocalPath
Required: Yes
Type: string

Path to the filesystem where the endpoint data is available to the container.

ProbabilityAttribute
Type: string

In a classification problem, the attribute that represents the class probability.

ProbabilityThresholdAttribute
Type: double

The threshold for the class probability to be evaluated as a positive result.

S3DataDistributionType
Type: string

Whether input data distributed in Amazon S3 is fully replicated or sharded by an Amazon S3 key. Defaults to FullyReplicated

S3InputMode
Type: string

Whether the Pipe or File is used as the input mode for transferring data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File.

StartTimeOffset
Type: string

If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.

EndpointInputConfiguration

Description

The endpoint configuration for the load test.

Members
EnvironmentParameterRanges
Type: EnvironmentParameterRanges structure

The parameter you want to benchmark against.

InferenceSpecificationName
Type: string

The inference specification name in the model package version.

InstanceType
Type: string

The instance types to use for the load test.

ServerlessConfig

Specifies the serverless configuration for an endpoint variant.

EndpointMetadata

Description

The metadata of the endpoint.

Members
EndpointConfigName
Type: string

The name of the endpoint configuration.

EndpointName
Required: Yes
Type: string

The name of the endpoint.

EndpointStatus
Type: string

The status of the endpoint. For possible values of the status of an endpoint, see EndpointSummary.

FailureReason
Type: string

If the status of the endpoint is Failed, or the status is InService but update operation fails, this provides the reason why it failed.

EndpointOutputConfiguration

Description

The endpoint configuration made by Inference Recommender during a recommendation job.

Members
EndpointName
Required: Yes
Type: string

The name of the endpoint made during a recommendation job.

InitialInstanceCount
Type: int

The number of instances recommended to launch initially.

InstanceType
Type: string

The instance type recommended by Amazon SageMaker Inference Recommender.

ServerlessConfig

Specifies the serverless configuration for an endpoint variant.

VariantName
Required: Yes
Type: string

The name of the production variant (deployed model) made during a recommendation job.

EndpointPerformance

Description

The performance results from running an Inference Recommender job on an existing endpoint.

Members
EndpointInfo
Required: Yes
Type: EndpointInfo structure

Details about a customer endpoint that was compared in an Inference Recommender job.

Metrics
Required: Yes
Type: InferenceMetrics structure

The metrics for an existing endpoint.

EndpointStepMetadata

Description

Metadata for an endpoint step.

Members
Arn
Type: string

The Amazon Resource Name (ARN) of the endpoint in the step.

EndpointSummary

Description

Provides summary information for an endpoint.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the endpoint was created.

EndpointArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the endpoint.

EndpointName
Required: Yes
Type: string

The name of the endpoint.

EndpointStatus
Required: Yes
Type: string

The status of the endpoint.

  • OutOfService: Endpoint is not available to take incoming requests.

  • Creating: CreateEndpoint is executing.

  • Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing.

  • SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.

  • RollingBack: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly.

  • InService: Endpoint is available to process incoming requests.

  • Deleting: DeleteEndpoint is executing.

  • Failed: Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.

To get a list of endpoints with a specified status, use the StatusEquals filter with a call to ListEndpoints.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the endpoint was last modified.

EnvironmentParameter

Description

A list of environment parameters suggested by the Amazon SageMaker Inference Recommender.

Members
Key
Required: Yes
Type: string

The environment key suggested by the Amazon SageMaker Inference Recommender.

Value
Required: Yes
Type: string

The value suggested by the Amazon SageMaker Inference Recommender.

ValueType
Required: Yes
Type: string

The value type suggested by the Amazon SageMaker Inference Recommender.

EnvironmentParameterRanges

Description

Specifies the range of environment parameters

Members
CategoricalParameterRanges
Type: Array of CategoricalParameter structures

Specified a list of parameters for each category.

ErrorInfo

Description

This is an error field object that contains the error code and the reason for an operation failure.

Members
Code
Type: string

The error code for an invalid or failed operation.

Reason
Type: string

The failure reason for the operation.

Experiment

Description

The properties of an experiment as returned by the Search API.

Members
CreatedBy
Type: UserContext structure

Who created the experiment.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the experiment was created.

Description
Type: string

The description of the experiment.

DisplayName
Type: string

The name of the experiment as displayed. If DisplayName isn't specified, ExperimentName is displayed.

ExperimentArn
Type: string

The Amazon Resource Name (ARN) of the experiment.

ExperimentName
Type: string

The name of the experiment.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the experiment was last modified.

Source
Type: ExperimentSource structure

The source of the experiment.

Tags
Type: Array of Tag structures

The list of tags that are associated with the experiment. You can use Search API to search on the tags.

ExperimentConfig

Description

Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

Members
ExperimentName
Type: string

The name of an existing experiment to associate with the trial component.

RunName
Type: string

The name of the experiment run to associate with the trial component.

TrialComponentDisplayName
Type: string

The display name for the trial component. If this key isn't specified, the display name is the trial component name.

TrialName
Type: string

The name of an existing trial to associate the trial component with. If not specified, a new trial is created.

ExperimentSource

Description

The source of the experiment.

Members
SourceArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the source.

SourceType
Type: string

The source type.

ExperimentSummary

Description

A summary of the properties of an experiment. To get the complete set of properties, call the DescribeExperiment API and provide the ExperimentName.

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the experiment was created.

DisplayName
Type: string

The name of the experiment as displayed. If DisplayName isn't specified, ExperimentName is displayed.

ExperimentArn
Type: string

The Amazon Resource Name (ARN) of the experiment.

ExperimentName
Type: string

The name of the experiment.

ExperimentSource
Type: ExperimentSource structure

The source of the experiment.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the experiment was last modified.

Explainability

Description

Contains explainability metrics for a model.

Members
Report
Type: MetricsSource structure

The explainability report for a model.

ExplainerConfig

Description

A parameter to activate explainers.

Members
ClarifyExplainerConfig
Type: ClarifyExplainerConfig structure

A member of ExplainerConfig that contains configuration parameters for the SageMaker Clarify explainer.

FSxLustreFileSystem

Description

A custom file system in Amazon FSx for Lustre.

Members
FileSystemId
Required: Yes
Type: string

Amazon FSx for Lustre file system ID.

FSxLustreFileSystemConfig

Description

The settings for assigning a custom Amazon FSx for Lustre file system to a user profile or space for an Amazon SageMaker Domain.

Members
FileSystemId
Required: Yes
Type: string

The globally unique, 17-digit, ID of the file system, assigned by Amazon FSx for Lustre.

FileSystemPath
Type: string

The path to the file system directory that is accessible in Amazon SageMaker Studio. Permitted users can access only this directory and below.

FailStepMetadata

Description

The container for the metadata for Fail step.

Members
ErrorMessage
Type: string

A message that you define and then is processed and rendered by the Fail step when the error occurs.

FeatureDefinition

Description

A list of features. You must include FeatureName and FeatureType. Valid feature FeatureTypes are Integral, Fractional and String.

Members
CollectionConfig
Type: CollectionConfig structure

Configuration for your collection.

CollectionType
Type: string

A grouping of elements where each element within the collection must have the same feature type (String, Integral, or Fractional).

  • List: An ordered collection of elements.

  • Set: An unordered collection of unique elements.

  • Vector: A specialized list that represents a fixed-size array of elements. The vector dimension is determined by you. Must have elements with fractional feature types.

FeatureName
Required: Yes
Type: string

The name of a feature. The type must be a string. FeatureName cannot be any of the following: is_deleted, write_time, api_invocation_time.

The name:

  • Must start with an alphanumeric character.

  • Can only include alphanumeric characters, underscores, and hyphens. Spaces are not allowed.

FeatureType
Required: Yes
Type: string

The value type of a feature. Valid values are Integral, Fractional, or String.

FeatureGroup

Description

Amazon SageMaker Feature Store stores features in a collection called Feature Group. A Feature Group can be visualized as a table which has rows, with a unique identifier for each row where each column in the table is a feature. In principle, a Feature Group is composed of features and values per features.

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time a FeatureGroup was created.

Description
Type: string

A free form description of a FeatureGroup.

EventTimeFeatureName
Type: string

The name of the feature that stores the EventTime of a Record in a FeatureGroup.

A EventTime is point in time when a new event occurs that corresponds to the creation or update of a Record in FeatureGroup. All Records in the FeatureGroup must have a corresponding EventTime.

FailureReason
Type: string

The reason that the FeatureGroup failed to be replicated in the OfflineStore. This is failure may be due to a failure to create a FeatureGroup in or delete a FeatureGroup from the OfflineStore.

FeatureDefinitions
Type: Array of FeatureDefinition structures

A list of Features. Each Feature must include a FeatureName and a FeatureType.

Valid FeatureTypes are Integral, Fractional and String.

FeatureNames cannot be any of the following: is_deleted, write_time, api_invocation_time.

You can create up to 2,500 FeatureDefinitions per FeatureGroup.

FeatureGroupArn
Type: string

The Amazon Resource Name (ARN) of a FeatureGroup.

FeatureGroupName
Type: string

The name of the FeatureGroup.

FeatureGroupStatus
Type: string

A FeatureGroup status.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp indicating the last time you updated the feature group.

LastUpdateStatus
Type: LastUpdateStatus structure

A value that indicates whether the feature group was updated successfully.

OfflineStoreConfig
Type: OfflineStoreConfig structure

The configuration of an OfflineStore.

Provide an OfflineStoreConfig in a request to CreateFeatureGroup to create an OfflineStore.

To encrypt an OfflineStore using at rest data encryption, specify Amazon Web Services Key Management Service (KMS) key ID, or KMSKeyId, in S3StorageConfig.

OfflineStoreStatus
Type: OfflineStoreStatus structure

The status of OfflineStore.

OnlineStoreConfig
Type: OnlineStoreConfig structure

Use this to specify the Amazon Web Services Key Management Service (KMS) Key ID, or KMSKeyId, for at rest data encryption. You can turn OnlineStore on or off by specifying the EnableOnlineStore flag at General Assembly.

The default value is False.

RecordIdentifierFeatureName
Type: string

The name of the Feature whose value uniquely identifies a Record defined in the FeatureGroup FeatureDefinitions.

RoleArn
Type: string

The Amazon Resource Name (ARN) of the IAM execution role used to create the feature group.

Tags
Type: Array of Tag structures

Tags used to define a FeatureGroup.

FeatureGroupSummary

Description

The name, ARN, CreationTime, FeatureGroup values, LastUpdatedTime and EnableOnlineStorage status of a FeatureGroup.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp indicating the time of creation time of the FeatureGroup.

FeatureGroupArn
Required: Yes
Type: string

Unique identifier for the FeatureGroup.

FeatureGroupName
Required: Yes
Type: string

The name of FeatureGroup.

FeatureGroupStatus
Type: string

The status of a FeatureGroup. The status can be any of the following: Creating, Created, CreateFail, Deleting or DetailFail.

OfflineStoreStatus
Type: OfflineStoreStatus structure

Notifies you if replicating data into the OfflineStore has failed. Returns either: Active or Blocked.

FeatureMetadata

Description

The metadata for a feature. It can either be metadata that you specify, or metadata that is updated automatically.

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp indicating when the feature was created.

Description
Type: string

An optional description that you specify to better describe the feature.

FeatureGroupArn
Type: string

The Amazon Resource Number (ARN) of the feature group.

FeatureGroupName
Type: string

The name of the feature group containing the feature.

FeatureName
Type: string

The name of feature.

FeatureType
Type: string

The data type of the feature.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp indicating when the feature was last modified.

Parameters
Type: Array of FeatureParameter structures

Optional key-value pairs that you specify to better describe the feature.

FeatureParameter

Description

A key-value pair that you specify to describe the feature.

Members
Key
Type: string

A key that must contain a value to describe the feature.

Value
Type: string

The value that belongs to a key.

FileSource

Description

Contains details regarding the file source.

Members
ContentDigest
Type: string

The digest of the file source.

ContentType
Type: string

The type of content stored in the file source.

S3Uri
Required: Yes
Type: string

The Amazon S3 URI for the file source.

FileSystemConfig

Description

The Amazon Elastic File System storage configuration for a SageMaker AI image.

Members
DefaultGid
Type: int

The default POSIX group ID (GID). If not specified, defaults to 100.

DefaultUid
Type: int

The default POSIX user ID (UID). If not specified, defaults to 1000.

MountPath
Type: string

The path within the image to mount the user's EFS home directory. The directory should be empty. If not specified, defaults to /home/sagemaker-user.

FileSystemDataSource

Description

Specifies a file system data source for a channel.

Members
DirectoryPath
Required: Yes
Type: string

The full path to the directory to associate with the channel.

FileSystemAccessMode
Required: Yes
Type: string

The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

FileSystemId
Required: Yes
Type: string

The file system id.

FileSystemType
Required: Yes
Type: string

The file system type.

Filter

Description

A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search API.

If you specify a Value, but not an Operator, SageMaker uses the equals operator.

In search, there are several property types:

Metrics

To define a metric filter, enter a value using the form "Metrics.<name>", where <name> is a metric name. For example, the following filter searches for training jobs with an "accuracy" metric greater than "0.9":

{

"Name": "Metrics.accuracy",

"Operator": "GreaterThan",

"Value": "0.9"

}

HyperParameters

To define a hyperparameter filter, enter a value with the form "HyperParameters.<name>". Decimal hyperparameter values are treated as a decimal in a comparison if the specified Value is also a decimal value. If the specified Value is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a "learning_rate" hyperparameter that is less than "0.5":

{

"Name": "HyperParameters.learning_rate",

"Operator": "LessThan",

"Value": "0.5"

}

Tags

To define a tag filter, enter a value with the form Tags.<key>.

Members
Name
Required: Yes
Type: string

A resource property name. For example, TrainingJobName. For valid property names, see SearchRecord. You must specify a valid property for the resource.

Operator
Type: string

A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:

Equals

The value of Name equals Value.

NotEquals

The value of Name doesn't equal Value.

Exists

The Name property exists.

NotExists

The Name property does not exist.

GreaterThan

The value of Name is greater than Value. Not supported for text properties.

GreaterThanOrEqualTo

The value of Name is greater than or equal to Value. Not supported for text properties.

LessThan

The value of Name is less than Value. Not supported for text properties.

LessThanOrEqualTo

The value of Name is less than or equal to Value. Not supported for text properties.

In

The value of Name is one of the comma delimited strings in Value. Only supported for text properties.

Contains

The value of Name contains the string Value. Only supported for text properties.

A SearchExpression can include the Contains operator multiple times when the value of Name is one of the following:

  • Experiment.DisplayName

  • Experiment.ExperimentName

  • Experiment.Tags

  • Trial.DisplayName

  • Trial.TrialName

  • Trial.Tags

  • TrialComponent.DisplayName

  • TrialComponent.TrialComponentName

  • TrialComponent.Tags

  • TrialComponent.InputArtifacts

  • TrialComponent.OutputArtifacts

A SearchExpression can include only one Contains operator for all other values of Name. In these cases, if you include multiple Contains operators in the SearchExpression, the result is the following error message: "'CONTAINS' operator usage limit of 1 exceeded."

Value
Type: string

A value used with Name and Operator to determine which resources satisfy the filter's condition. For numerical properties, Value must be an integer or floating-point decimal. For timestamp properties, Value must be an ISO 8601 date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS.

FinalAutoMLJobObjectiveMetric

Description

The best candidate result from an AutoML training job.

Members
MetricName
Required: Yes
Type: string

The name of the metric with the best result. For a description of the possible objective metrics, see AutoMLJobObjective$MetricName.

StandardMetricName
Type: string

The name of the standard metric. For a description of the standard metrics, see Autopilot candidate metrics.

Type
Type: string

The type of metric with the best result.

Value
Required: Yes
Type: float

The value of the metric with the best result.

FinalHyperParameterTuningJobObjectiveMetric

Description

Shows the latest objective metric emitted by a training job that was launched by a hyperparameter tuning job. You define the objective metric in the HyperParameterTuningJobObjective parameter of HyperParameterTuningJobConfig.

Members
MetricName
Required: Yes
Type: string

The name of the objective metric. For SageMaker built-in algorithms, metrics are defined per algorithm. See the metrics for XGBoost as an example. You can also use a custom algorithm for training and define your own metrics. For more information, see Define metrics and environment variables.

Type
Type: string

Select if you want to minimize or maximize the objective metric during hyperparameter tuning.

Value
Required: Yes
Type: float

The value of the objective metric.

FlowDefinitionOutputConfig

Description

Contains information about where human output will be stored.

Members
KmsKeyId
Type: string

The Amazon Key Management Service (KMS) key ID for server-side encryption.

S3OutputPath
Required: Yes
Type: string

The Amazon S3 path where the object containing human output will be made available.

To learn more about the format of Amazon A2I output data, see Amazon A2I Output Data.

FlowDefinitionSummary

Description

Contains summary information about the flow definition.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp when SageMaker created the flow definition.

FailureReason
Type: string

The reason why the flow definition creation failed. A failure reason is returned only when the flow definition status is Failed.

FlowDefinitionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the flow definition.

FlowDefinitionName
Required: Yes
Type: string

The name of the flow definition.

FlowDefinitionStatus
Required: Yes
Type: string

The status of the flow definition. Valid values:

GenerativeAiSettings

Description

The generative AI settings for the SageMaker Canvas application.

Configure these settings for Canvas users starting chats with generative AI foundation models. For more information, see Use generative AI with foundation models.

Members
AmazonBedrockRoleArn
Type: string

The ARN of an Amazon Web Services IAM role that allows fine-tuning of large language models (LLMs) in Amazon Bedrock. The IAM role should have Amazon S3 read and write permissions, as well as a trust relationship that establishes bedrock.amazonaws.com as a service principal.

GitConfig

Description

Specifies configuration details for a Git repository in your Amazon Web Services account.

Members
Branch
Type: string

The default branch for the Git repository.

RepositoryUrl
Required: Yes
Type: string

The URL where the Git repository is located.

SecretArn
Type: string

The Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of AWSCURRENT and must be in the following format:

{"username": UserName, "password": Password}

GitConfigForUpdate

Description

Specifies configuration details for a Git repository when the repository is updated.

Members
SecretArn
Type: string

The Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of AWSCURRENT and must be in the following format:

{"username": UserName, "password": Password}

HiddenSageMakerImage

Description

The SageMaker images that are hidden from the Studio user interface. You must specify the SageMaker image name and version aliases.

Members
SageMakerImageName
Type: string

The SageMaker image name that you are hiding from the Studio user interface.

VersionAliases
Type: Array of strings

The version aliases you are hiding from the Studio user interface.

HolidayConfigAttributes

Description

Stores the holiday featurization attributes applicable to each item of time-series datasets during the training of a forecasting model. This allows the model to identify patterns associated with specific holidays.

Members
CountryCode
Type: string

The country code for the holiday calendar.

For the list of public holiday calendars supported by AutoML job V2, see Country Codes. Use the country code corresponding to the country of your choice.

HubContentDependency

Description

Any dependencies related to hub content, such as scripts, model artifacts, datasets, or notebooks.

Members
DependencyCopyPath
Type: string

The hub content dependency copy path.

DependencyOriginPath
Type: string

The hub content dependency origin path.

HubContentInfo

Description

Information about hub content.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the hub content was created.

DocumentSchemaVersion
Required: Yes
Type: string

The version of the hub content document schema.

HubContentArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the hub content.

HubContentDescription
Type: string

A description of the hub content.

HubContentDisplayName
Type: string

The display name of the hub content.

HubContentName
Required: Yes
Type: string

The name of the hub content.

HubContentSearchKeywords
Type: Array of strings

The searchable keywords for the hub content.

HubContentStatus
Required: Yes
Type: string

The status of the hub content.

HubContentType
Required: Yes
Type: string

The type of hub content.

HubContentVersion
Required: Yes
Type: string

The version of the hub content.

OriginalCreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time when the hub content was originally created, before any updates or revisions.

SageMakerPublicHubContentArn
Type: string

The ARN of the public hub content.

SupportStatus
Type: string

The support status of the hub content.

HubInfo

Description

Information about a hub.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the hub was created.

HubArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the hub.

HubDescription
Type: string

A description of the hub.

HubDisplayName
Type: string

The display name of the hub.

HubName
Required: Yes
Type: string

The name of the hub.

HubSearchKeywords
Type: Array of strings

The searchable keywords for the hub.

HubStatus
Required: Yes
Type: string

The status of the hub.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the hub was last modified.

HubS3StorageConfig

Description

The Amazon S3 storage configuration of a hub.

Members
S3OutputPath
Type: string

The Amazon S3 bucket prefix for hosting hub content.

HumanLoopActivationConditionsConfig

Description

Defines under what conditions SageMaker creates a human loop. Used within CreateFlowDefinition. See HumanLoopActivationConditionsConfig for the required format of activation conditions.

Members
HumanLoopActivationConditions
Required: Yes
Type: string (string|number|array|map or anything parsable by json_encode)

JSON expressing use-case specific conditions declaratively. If any condition is matched, atomic tasks are created against the configured work team. The set of conditions is different for Rekognition and Textract. For more information about how to structure the JSON, see JSON Schema for Human Loop Activation Conditions in Amazon Augmented AI in the Amazon SageMaker Developer Guide.

HumanLoopActivationConfig

Description

Provides information about how and under what conditions SageMaker creates a human loop. If HumanLoopActivationConfig is not given, then all requests go to humans.

Members
HumanLoopActivationConditionsConfig
Required: Yes
Type: HumanLoopActivationConditionsConfig structure

Container structure for defining under what conditions SageMaker creates a human loop.

HumanLoopConfig

Description

Describes the work to be performed by human workers.

Members
HumanTaskUiArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the human task user interface.

You can use standard HTML and Crowd HTML Elements to create a custom worker task template. You use this template to create a human task UI.

To learn how to create a custom HTML template, see Create Custom Worker Task Template.

To learn how to create a human task UI, which is a worker task template that can be used in a flow definition, see Create and Delete a Worker Task Templates.

PublicWorkforceTaskPrice
Type: PublicWorkforceTaskPrice structure

Defines the amount of money paid to an Amazon Mechanical Turk worker for each task performed.

Use one of the following prices for bounding box tasks. Prices are in US dollars and should be based on the complexity of the task; the longer it takes in your initial testing, the more you should offer.

  • 0.036

  • 0.048

  • 0.060

  • 0.072

  • 0.120

  • 0.240

  • 0.360

  • 0.480

  • 0.600

  • 0.720

  • 0.840

  • 0.960

  • 1.080

  • 1.200

Use one of the following prices for image classification, text classification, and custom tasks. Prices are in US dollars.

  • 0.012

  • 0.024

  • 0.036

  • 0.048

  • 0.060

  • 0.072

  • 0.120

  • 0.240

  • 0.360

  • 0.480

  • 0.600

  • 0.720

  • 0.840

  • 0.960

  • 1.080

  • 1.200

Use one of the following prices for semantic segmentation tasks. Prices are in US dollars.

  • 0.840

  • 0.960

  • 1.080

  • 1.200

Use one of the following prices for Textract AnalyzeDocument Important Form Key Amazon Augmented AI review tasks. Prices are in US dollars.

  • 2.400

  • 2.280

  • 2.160

  • 2.040

  • 1.920

  • 1.800

  • 1.680

  • 1.560

  • 1.440

  • 1.320

  • 1.200

  • 1.080

  • 0.960

  • 0.840

  • 0.720

  • 0.600

  • 0.480

  • 0.360

  • 0.240

  • 0.120

  • 0.072

  • 0.060

  • 0.048

  • 0.036

  • 0.024

  • 0.012

Use one of the following prices for Rekognition DetectModerationLabels Amazon Augmented AI review tasks. Prices are in US dollars.

  • 1.200

  • 1.080

  • 0.960

  • 0.840

  • 0.720

  • 0.600

  • 0.480

  • 0.360

  • 0.240

  • 0.120

  • 0.072

  • 0.060

  • 0.048

  • 0.036

  • 0.024

  • 0.012

Use one of the following prices for Amazon Augmented AI custom human review tasks. Prices are in US dollars.

  • 1.200

  • 1.080

  • 0.960

  • 0.840

  • 0.720

  • 0.600

  • 0.480

  • 0.360

  • 0.240

  • 0.120

  • 0.072

  • 0.060

  • 0.048

  • 0.036

  • 0.024

  • 0.012

TaskAvailabilityLifetimeInSeconds
Type: int

The length of time that a task remains available for review by human workers.

TaskCount
Required: Yes
Type: int

The number of distinct workers who will perform the same task on each object. For example, if TaskCount is set to 3 for an image classification labeling job, three workers will classify each input image. Increasing TaskCount can improve label accuracy.

TaskDescription
Required: Yes
Type: string

A description for the human worker task.

TaskKeywords
Type: Array of strings

Keywords used to describe the task so that workers can discover the task.

TaskTimeLimitInSeconds
Type: int

The amount of time that a worker has to complete a task. The default value is 3,600 seconds (1 hour).

TaskTitle
Required: Yes
Type: string

A title for the human worker task.

WorkteamArn
Required: Yes
Type: string

Amazon Resource Name (ARN) of a team of workers. To learn more about the types of workforces and work teams you can create and use with Amazon A2I, see Create and Manage Workforces.

HumanLoopRequestSource

Description

Container for configuring the source of human task requests.

Members
AwsManagedHumanLoopRequestSource
Required: Yes
Type: string

Specifies whether Amazon Rekognition or Amazon Textract are used as the integration source. The default field settings and JSON parsing rules are different based on the integration source. Valid values:

HumanTaskConfig

Description

Information required for human workers to complete a labeling task.

Members
AnnotationConsolidationConfig

Configures how labels are consolidated across human workers.

MaxConcurrentTaskCount
Type: int

Defines the maximum number of data objects that can be labeled by human workers at the same time. Also referred to as batch size. Each object may have more than one worker at one time. The default value is 1000 objects. To increase the maximum value to 5000 objects, contact Amazon Web Services Support.

NumberOfHumanWorkersPerDataObject
Required: Yes
Type: int

The number of human workers that will label an object.

PreHumanTaskLambdaArn
Type: string

The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job.

For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for PreHumanTaskLambdaArn. For custom labeling workflows, see Pre-annotation Lambda.

Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox

Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass

Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel

Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation

Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass

Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel

Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition

Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass

Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection

Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking

3D Point Cloud Modalities

Use the following pre-annotation lambdas for 3D point cloud labeling modality tasks. See 3D Point Cloud Task types to learn more.

3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection

3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking

3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation

Use the following ARNs for Label Verification and Adjustment Jobs

Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels .

Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox

Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox

Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation

Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation

Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection

Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking

3D point cloud object detection adjustment - Adjust 3D cuboids in a point cloud frame.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection

3D point cloud object tracking adjustment - Adjust 3D cuboids across a sequence of point cloud frames.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking

3D point cloud semantic segmentation adjustment - Adjust semantic segmentation masks in a 3D point cloud.

  • arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation

  • arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation

PublicWorkforceTaskPrice
Type: PublicWorkforceTaskPrice structure

The price that you pay for each task performed by an Amazon Mechanical Turk worker.

TaskAvailabilityLifetimeInSeconds
Type: int

The length of time that a task remains available for labeling by human workers. The default and maximum values for this parameter depend on the type of workforce you use.

  • If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours (43,200 seconds). The default is 6 hours (21,600 seconds).

  • If you choose a private or vendor workforce, the default value is 30 days (2592,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.

TaskDescription
Required: Yes
Type: string

A description of the task for your human workers.

TaskKeywords
Type: Array of strings

Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.

TaskTimeLimitInSeconds
Required: Yes
Type: int

The amount of time that a worker has to complete a task.

If you create a custom labeling job, the maximum value for this parameter is 8 hours (28,800 seconds).

If you create a labeling job using a built-in task type the maximum for this parameter depends on the task type you use:

  • For image and text labeling jobs, the maximum is 8 hours (28,800 seconds).

  • For 3D point cloud and video frame labeling jobs, the maximum is 30 days (2952,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.

TaskTitle
Required: Yes
Type: string

A title for the task for your human workers.

UiConfig
Required: Yes
Type: UiConfig structure

Information about the user interface that workers use to complete the labeling task.

WorkteamArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.

HumanTaskUiSummary

Description

Container for human task user interface information.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp when SageMaker created the human task user interface.

HumanTaskUiArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the human task user interface.

HumanTaskUiName
Required: Yes
Type: string

The name of the human task user interface.

HyperParameterAlgorithmSpecification

Description

Specifies which training algorithm to use for training jobs that a hyperparameter tuning job launches and the metrics to monitor.

Members
AlgorithmName
Type: string

The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for TrainingImage.

MetricDefinitions
Type: Array of MetricDefinition structures

An array of MetricDefinition objects that specify the metrics that the algorithm emits.

TrainingImage
Type: string

The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

TrainingInputMode
Required: Yes
Type: string

The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

Pipe mode

If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

File mode

If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

FastFile mode

If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.

HyperParameterSpecification

Description

Defines a hyperparameter to be used by an algorithm.

Members
DefaultValue
Type: string

The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot be required.

Description
Type: string

A brief description of the hyperparameter.

IsRequired
Type: boolean

Indicates whether this hyperparameter is required.

IsTunable
Type: boolean

Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.

Name
Required: Yes
Type: string

The name of this hyperparameter. The name must be unique.

Range
Type: ParameterRange structure

The allowed range for this hyperparameter.

Type
Required: Yes
Type: string

The type of this hyperparameter. The valid types are Integer, Continuous, Categorical, and FreeText.

HyperParameterTrainingJobDefinition

Description

Defines the training jobs launched by a hyperparameter tuning job.

Members
AlgorithmSpecification
Required: Yes
Type: HyperParameterAlgorithmSpecification structure

The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.

CheckpointConfig
Type: CheckpointConfig structure

Contains information about the output location for managed spot training checkpoint data.

DefinitionName
Type: string

The job definition name.

EnableInterContainerTrafficEncryption
Type: boolean

To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.

EnableManagedSpotTraining
Type: boolean

A Boolean indicating whether managed spot training is enabled (True) or not (False).

EnableNetworkIsolation
Type: boolean

Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

Environment
Type: Associative array of custom strings keys (HyperParameterTrainingJobEnvironmentKey) to strings

An environment variable that you can pass into the SageMaker CreateTrainingJob API. You can use an existing environment variable from the training container or use your own. See Define metrics and variables for more information.

The maximum number of items specified for Map Entries refers to the maximum number of environment variables for each TrainingJobDefinition and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of environment variables for all the training job definitions can't exceed the maximum number specified.

HyperParameterRanges
Type: ParameterRanges structure

Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.

The maximum number of items specified for Array Members refers to the maximum number of hyperparameters for each range and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of hyperparameters for all the ranges can't exceed the maximum number specified.

HyperParameterTuningResourceConfig

The configuration for the hyperparameter tuning resources, including the compute instances and storage volumes, used for training jobs launched by the tuning job. By default, storage volumes hold model artifacts and incremental states. Choose File for TrainingInputMode in the AlgorithmSpecification parameter to additionally store training data in the storage volume (optional).

InputDataConfig
Type: Array of Channel structures

An array of Channel objects that specify the input for the training jobs that the tuning job launches.

OutputDataConfig
Required: Yes
Type: OutputDataConfig structure

Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.

ResourceConfig
Type: ResourceConfig structure

The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.

Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.

If you want to use hyperparameter optimization with instance type flexibility, use HyperParameterTuningResourceConfig instead.

RetryStrategy
Type: RetryStrategy structure

The number of times to retry the job when the job fails due to an InternalServerError.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.

StaticHyperParameters
Type: Associative array of custom strings keys (HyperParameterKey) to strings

Specifies the values of hyperparameters that do not change for the tuning job.

StoppingCondition
Required: Yes
Type: StoppingCondition structure

Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long a managed spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

TuningObjective

Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter. If you want to define a custom objective metric, see Define metrics and environment variables.

VpcConfig
Type: VpcConfig structure

The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

HyperParameterTrainingJobSummary

Description

The container for the summary information about a training job.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the training job was created.

FailureReason
Type: string

The reason that the training job failed.

FinalHyperParameterTuningJobObjectiveMetric

The FinalHyperParameterTuningJobObjectiveMetric object that specifies the value of the objective metric of the tuning job that launched this training job.

ObjectiveStatus
Type: string

The status of the objective metric for the training job:

  • Succeeded: The final objective metric for the training job was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.

  • Pending: The training job is in progress and evaluation of its final objective metric is pending.

  • Failed: The final objective metric for the training job was not evaluated, and was not used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.

TrainingEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Specifies the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when SageMaker detects a job failure.

TrainingJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the training job.

TrainingJobDefinitionName
Type: string

The training job definition name.

TrainingJobName
Required: Yes
Type: string

The name of the training job.

TrainingJobStatus
Required: Yes
Type: string

The status of the training job.

TrainingStartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the training job started.

TunedHyperParameters
Required: Yes
Type: Associative array of custom strings keys (HyperParameterKey) to strings

A list of the hyperparameters for which you specified ranges to search.

TuningJobName
Type: string

The HyperParameter tuning job that launched the training job.

HyperParameterTuningInstanceConfig

Description

The configuration for hyperparameter tuning resources for use in training jobs launched by the tuning job. These resources include compute instances and storage volumes. Specify one or more compute instance configurations and allocation strategies to select resources (optional).

Members
InstanceCount
Required: Yes
Type: int

The number of instances of the type specified by InstanceType. Choose an instance count larger than 1 for distributed training algorithms. See Step 2: Launch a SageMaker Distributed Training Job Using the SageMaker Python SDK for more information.

InstanceType
Required: Yes
Type: string

The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no GPUs) instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types: ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance type descriptions.

VolumeSizeInGB
Required: Yes
Type: int

The volume size in GB of the data to be processed for hyperparameter optimization (optional).

HyperParameterTuningJobCompletionDetails

Description

A structure that contains runtime information about both current and completed hyperparameter tuning jobs.

Members
ConvergenceDetectedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time in timestamp format that AMT detected model convergence, as defined by a lack of significant improvement over time based on criteria developed over a wide range of diverse benchmarking tests.

NumberOfTrainingJobsObjectiveNotImproving
Type: int

The number of training jobs launched by a tuning job that are not improving (1% or less) as measured by model performance evaluated against an objective function.

HyperParameterTuningJobConfig

Description

Configures a hyperparameter tuning job.

Members
HyperParameterTuningJobObjective

The HyperParameterTuningJobObjective specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.

ParameterRanges
Type: ParameterRanges structure

The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.

RandomSeed
Type: int

A value used to initialize a pseudo-random number generator. Setting a random seed and using the same seed later for the same tuning job will allow hyperparameter optimization to find more a consistent hyperparameter configuration between the two runs.

ResourceLimits
Required: Yes
Type: ResourceLimits structure

The ResourceLimits object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.

Strategy
Required: Yes
Type: string

Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. For information about search strategies, see How Hyperparameter Tuning Works.

StrategyConfig

The configuration for the Hyperband optimization strategy. This parameter should be provided only if Hyperband is selected as the strategy for HyperParameterTuningJobConfig.

TrainingJobEarlyStoppingType
Type: string

Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. Because the Hyperband strategy has its own advanced internal early stopping mechanism, TrainingJobEarlyStoppingType must be OFF to use Hyperband. This parameter can take on one of the following values (the default value is OFF):

OFF

Training jobs launched by the hyperparameter tuning job do not use early stopping.

AUTO

SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.

TuningJobCompletionCriteria
Type: TuningJobCompletionCriteria structure

The tuning job's completion criteria.

HyperParameterTuningJobConsumedResources

Description

The total resources consumed by your hyperparameter tuning job.

Members
RuntimeInSeconds
Type: int

The wall clock runtime in seconds used by your hyperparameter tuning job.

HyperParameterTuningJobObjective

Description

Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter. If you want to define a custom objective metric, see Define metrics and environment variables.

Members
MetricName
Required: Yes
Type: string

The name of the metric to use for the objective metric.

Type
Required: Yes
Type: string

Whether to minimize or maximize the objective metric.

HyperParameterTuningJobSearchEntity

Description

An entity returned by the SearchRecord API containing the properties of a hyperparameter tuning job.

Members
BestTrainingJob

The container for the summary information about a training job.

ConsumedResources

The total amount of resources consumed by a hyperparameter tuning job.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that a hyperparameter tuning job was created.

FailureReason
Type: string

The error that was created when a hyperparameter tuning job failed.

HyperParameterTuningEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that a hyperparameter tuning job ended.

HyperParameterTuningJobArn
Type: string

The Amazon Resource Name (ARN) of a hyperparameter tuning job.

HyperParameterTuningJobConfig

Configures a hyperparameter tuning job.

HyperParameterTuningJobName
Type: string

The name of a hyperparameter tuning job.

HyperParameterTuningJobStatus
Type: string

The status of a hyperparameter tuning job.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that a hyperparameter tuning job was last modified.

ObjectiveStatusCounters
Type: ObjectiveStatusCounters structure

Specifies the number of training jobs that this hyperparameter tuning job launched, categorized by the status of their objective metric. The objective metric status shows whether the final objective metric for the training job has been evaluated by the tuning job and used in the hyperparameter tuning process.

OverallBestTrainingJob

The container for the summary information about a training job.

Tags
Type: Array of Tag structures

The tags associated with a hyperparameter tuning job. For more information see Tagging Amazon Web Services resources.

TrainingJobDefinition

Defines the training jobs launched by a hyperparameter tuning job.

TrainingJobDefinitions
Type: Array of HyperParameterTrainingJobDefinition structures

The job definitions included in a hyperparameter tuning job.

TrainingJobStatusCounters
Type: TrainingJobStatusCounters structure

The numbers of training jobs launched by a hyperparameter tuning job, categorized by status.

TuningJobCompletionDetails

Information about either a current or completed hyperparameter tuning job.

WarmStartConfig

Specifies the configuration for a hyperparameter tuning job that uses one or more previous hyperparameter tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.

All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric, and the training job that performs the best is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.

All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.

HyperParameterTuningJobStrategyConfig

Description

The configuration for a training job launched by a hyperparameter tuning job. Choose Bayesian for Bayesian optimization, and Random for random search optimization. For more advanced use cases, use Hyperband, which evaluates objective metrics for training jobs after every epoch. For more information about strategies, see How Hyperparameter Tuning Works.

Members
HyperbandStrategyConfig
Type: HyperbandStrategyConfig structure

The configuration for the object that specifies the Hyperband strategy. This parameter is only supported for the Hyperband selection for Strategy within the HyperParameterTuningJobConfig API.

HyperParameterTuningJobSummary

Description

Provides summary information about a hyperparameter tuning job.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the tuning job was created.

HyperParameterTuningEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the tuning job ended.

HyperParameterTuningJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the tuning job.

HyperParameterTuningJobName
Required: Yes
Type: string

The name of the tuning job.

HyperParameterTuningJobStatus
Required: Yes
Type: string

The status of the tuning job.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the tuning job was modified.

ObjectiveStatusCounters
Required: Yes
Type: ObjectiveStatusCounters structure

The ObjectiveStatusCounters object that specifies the numbers of training jobs, categorized by objective metric status, that this tuning job launched.

ResourceLimits
Type: ResourceLimits structure

The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs allowed for this tuning job.

Strategy
Required: Yes
Type: string

Specifies the search strategy hyperparameter tuning uses to choose which hyperparameters to evaluate at each iteration.

TrainingJobStatusCounters
Required: Yes
Type: TrainingJobStatusCounters structure

The TrainingJobStatusCounters object that specifies the numbers of training jobs, categorized by status, that this tuning job launched.

HyperParameterTuningJobWarmStartConfig

Description

Specifies the configuration for a hyperparameter tuning job that uses one or more previous hyperparameter tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.

All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric, and the training job that performs the best is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.

All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.

Members
ParentHyperParameterTuningJobs
Required: Yes
Type: Array of ParentHyperParameterTuningJob structures

An array of hyperparameter tuning jobs that are used as the starting point for the new hyperparameter tuning job. For more information about warm starting a hyperparameter tuning job, see Using a Previous Hyperparameter Tuning Job as a Starting Point.

Hyperparameter tuning jobs created before October 1, 2018 cannot be used as parent jobs for warm start tuning jobs.

WarmStartType
Required: Yes
Type: string

Specifies one of the following:

IDENTICAL_DATA_AND_ALGORITHM

The new hyperparameter tuning job uses the same input data and training image as the parent tuning jobs. You can change the hyperparameter ranges to search and the maximum number of training jobs that the hyperparameter tuning job launches. You cannot use a new version of the training algorithm, unless the changes in the new version do not affect the algorithm itself. For example, changes that improve logging or adding support for a different data format are allowed. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.

TRANSFER_LEARNING

The new hyperparameter tuning job can include input data, hyperparameter ranges, maximum number of concurrent training jobs, and maximum number of training jobs that are different than those of its parent hyperparameter tuning jobs. The training image can also be a different version from the version used in the parent hyperparameter tuning job. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.

HyperParameterTuningResourceConfig

Description

The configuration of resources, including compute instances and storage volumes for use in training jobs launched by hyperparameter tuning jobs. HyperParameterTuningResourceConfig is similar to ResourceConfig, but has the additional InstanceConfigs and AllocationStrategy fields to allow for flexible instance management. Specify one or more instance types, count, and the allocation strategy for instance selection.

HyperParameterTuningResourceConfig supports the capabilities of ResourceConfig with the exception of KeepAlivePeriodInSeconds. Hyperparameter tuning jobs use warm pools by default, which reuse clusters between training jobs.

Members
AllocationStrategy
Type: string

The strategy that determines the order of preference for resources specified in InstanceConfigs used in hyperparameter optimization.

InstanceConfigs
Type: Array of HyperParameterTuningInstanceConfig structures

A list containing the configuration(s) for one or more resources for processing hyperparameter jobs. These resources include compute instances and storage volumes to use in model training jobs launched by hyperparameter tuning jobs. The AllocationStrategy controls the order in which multiple configurations provided in InstanceConfigs are used.

If you only want to use a single instance configuration inside the HyperParameterTuningResourceConfig API, do not provide a value for InstanceConfigs. Instead, use InstanceType, VolumeSizeInGB and InstanceCount. If you use InstanceConfigs, do not provide values for InstanceType, VolumeSizeInGB or InstanceCount.

InstanceCount
Type: int

The number of compute instances of type InstanceType to use. For distributed training, select a value greater than 1.

InstanceType
Type: string

The instance type used to run hyperparameter optimization tuning jobs. See descriptions of instance types for more information.

VolumeKmsKeyId
Type: string

A key used by Amazon Web Services Key Management Service to encrypt data on the storage volume attached to the compute instances used to run the training job. You can use either of the following formats to specify a key.

KMS Key ID:

"1234abcd-12ab-34cd-56ef-1234567890ab"

Amazon Resource Name (ARN) of a KMS key:

"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

Some instances use local storage, which use a hardware module to encrypt storage volumes. If you choose one of these instance types, you cannot request a VolumeKmsKeyId. For a list of instance types that use local storage, see instance store volumes. For more information about Amazon Web Services Key Management Service, see KMS encryption for more information.

VolumeSizeInGB
Type: int

The volume size in GB for the storage volume to be used in processing hyperparameter optimization jobs (optional). These volumes store model artifacts, incremental states and optionally, scratch space for training algorithms. Do not provide a value for this parameter if a value for InstanceConfigs is also specified.

Some instance types have a fixed total local storage size. If you select one of these instances for training, VolumeSizeInGB cannot be greater than this total size. For a list of instance types with local instance storage and their sizes, see instance store volumes.

SageMaker supports only the General Purpose SSD (gp2) storage volume type.

HyperbandStrategyConfig

Description

The configuration for Hyperband, a multi-fidelity based hyperparameter tuning strategy. Hyperband uses the final and intermediate results of a training job to dynamically allocate resources to utilized hyperparameter configurations while automatically stopping under-performing configurations. This parameter should be provided only if Hyperband is selected as the StrategyConfig under the HyperParameterTuningJobConfig API.

Members
MaxResource
Type: int

The maximum number of resources (such as epochs) that can be used by a training job launched by a hyperparameter tuning job. Once a job reaches the MaxResource value, it is stopped. If a value for MaxResource is not provided, and Hyperband is selected as the hyperparameter tuning strategy, HyperbandTraining attempts to infer MaxResource from the following keys (if present) in StaticsHyperParameters:

  • epochs

  • numepochs

  • n-epochs

  • n_epochs

  • num_epochs

If HyperbandStrategyConfig is unable to infer a value for MaxResource, it generates a validation error. The maximum value is 20,000 epochs. All metrics that correspond to an objective metric are used to derive early stopping decisions. For distributed training jobs, ensure that duplicate metrics are not printed in the logs across the individual nodes in a training job. If multiple nodes are publishing duplicate or incorrect metrics, training jobs may make an incorrect stopping decision and stop the job prematurely.

MinResource
Type: int

The minimum number of resources (such as epochs) that can be used by a training job launched by a hyperparameter tuning job. If the value for MinResource has not been reached, the training job is not stopped by Hyperband.

IamIdentity

Description

The IAM Identity details associated with the user. These details are associated with model package groups, model packages and project entities only.

Members
Arn
Type: string

The Amazon Resource Name (ARN) of the IAM identity.

PrincipalId
Type: string

The ID of the principal that assumes the IAM identity.

SourceIdentity
Type: string

The person or application which assumes the IAM identity.

IamPolicyConstraints

Description

Use this parameter to specify a supported global condition key that is added to the IAM policy.

Members
SourceIp
Type: string

When SourceIp is Enabled the worker's IP address when a task is rendered in the worker portal is added to the IAM policy as a Condition used to generate the Amazon S3 presigned URL. This IP address is checked by Amazon S3 and must match in order for the Amazon S3 resource to be rendered in the worker portal.

VpcSourceIp
Type: string

When VpcSourceIp is Enabled the worker's IP address when a task is rendered in private worker portal inside the VPC is added to the IAM policy as a Condition used to generate the Amazon S3 presigned URL. To render the task successfully Amazon S3 checks that the presigned URL is being accessed over an Amazon S3 VPC Endpoint, and that the worker's IP address matches the IP address in the IAM policy. To learn more about configuring private worker portal, see Use Amazon VPC mode from a private worker portal.

IdentityProviderOAuthSetting

Description

The Amazon SageMaker Canvas application setting where you configure OAuth for connecting to an external data source, such as Snowflake.

Members
DataSourceName
Type: string

The name of the data source that you're connecting to. Canvas currently supports OAuth for Snowflake and Salesforce Data Cloud.

SecretArn
Type: string

The ARN of an Amazon Web Services Secrets Manager secret that stores the credentials from your identity provider, such as the client ID and secret, authorization URL, and token URL.

Status
Type: string

Describes whether OAuth for a data source is enabled or disabled in the Canvas application.

IdleSettings

Description

Settings related to idle shutdown of Studio applications.

Members
IdleTimeoutInMinutes
Type: int

The time that SageMaker waits after the application becomes idle before shutting it down.

LifecycleManagement
Type: string

Indicates whether idle shutdown is activated for the application type.

MaxIdleTimeoutInMinutes
Type: int

The maximum value in minutes that custom idle shutdown can be set to by the user.

MinIdleTimeoutInMinutes
Type: int

The minimum value in minutes that custom idle shutdown can be set to by the user.

Image

Description

A SageMaker AI image. A SageMaker AI image represents a set of container images that are derived from a common base container image. Each of these container images is represented by a SageMaker AI ImageVersion.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the image was created.

Description
Type: string

The description of the image.

DisplayName
Type: string

The name of the image as displayed.

FailureReason
Type: string

When a create, update, or delete operation fails, the reason for the failure.

ImageArn
Required: Yes
Type: string

The ARN of the image.

ImageName
Required: Yes
Type: string

The name of the image.

ImageStatus
Required: Yes
Type: string

The status of the image.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the image was last modified.

ImageClassificationJobConfig

Description

The collection of settings used by an AutoML job V2 for the image classification problem type.

Members
CompletionCriteria
Type: AutoMLJobCompletionCriteria structure

How long a job is allowed to run, or how many candidates a job is allowed to generate.

ImageConfig

Description

Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC).

Members
RepositoryAccessMode
Required: Yes
Type: string

Set this to one of the following values:

  • Platform - The model image is hosted in Amazon ECR.

  • Vpc - The model image is hosted in a private Docker registry in your VPC.

RepositoryAuthConfig
Type: RepositoryAuthConfig structure

(Optional) Specifies an authentication configuration for the private docker registry where your model image is hosted. Specify a value for this property only if you specified Vpc as the value for the RepositoryAccessMode field, and the private Docker registry where the model image is hosted requires authentication.

ImageVersion

Description

A version of a SageMaker AI Image. A version represents an existing container image.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the version was created.

FailureReason
Type: string

When a create or delete operation fails, the reason for the failure.

ImageArn
Required: Yes
Type: string

The ARN of the image the version is based on.

ImageVersionArn
Required: Yes
Type: string

The ARN of the version.

ImageVersionStatus
Required: Yes
Type: string

The status of the version.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the version was last modified.

Version
Required: Yes
Type: int

The version number.

InferenceComponentComputeResourceRequirements

Description

Defines the compute resources to allocate to run a model, plus any adapter models, that you assign to an inference component. These resources include CPU cores, accelerators, and memory.

Members
MaxMemoryRequiredInMb
Type: int

The maximum MB of memory to allocate to run a model that you assign to an inference component.

MinMemoryRequiredInMb
Required: Yes
Type: int

The minimum MB of memory to allocate to run a model that you assign to an inference component.

NumberOfAcceleratorDevicesRequired
Type: float

The number of accelerators to allocate to run a model that you assign to an inference component. Accelerators include GPUs and Amazon Web Services Inferentia.

NumberOfCpuCoresRequired
Type: float

The number of CPU cores to allocate to run a model that you assign to an inference component.

InferenceComponentContainerSpecification

Description

Defines a container that provides the runtime environment for a model that you deploy with an inference component.

Members
ArtifactUrl
Type: string

The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

Environment
Type: Associative array of custom strings keys (EnvironmentKey) to strings

The environment variables to set in the Docker container. Each key and value in the Environment string-to-string map can have length of up to 1024. We support up to 16 entries in the map.

Image
Type: string

The Amazon Elastic Container Registry (Amazon ECR) path where the Docker image for the model is stored.

InferenceComponentContainerSpecificationSummary

Description

Details about the resources that are deployed with this inference component.

Members
ArtifactUrl
Type: string

The Amazon S3 path where the model artifacts are stored.

DeployedImage
Type: DeployedImage structure

Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant.

If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant, the path resolves to a path of the form registry/repository[@digest]. A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide.

Environment
Type: Associative array of custom strings keys (EnvironmentKey) to strings

The environment variables to set in the Docker container.

InferenceComponentRuntimeConfig

Description

Runtime settings for a model that is deployed with an inference component.

Members
CopyCount
Required: Yes
Type: int

The number of runtime copies of the model container to deploy with the inference component. Each copy can serve inference requests.

InferenceComponentRuntimeConfigSummary

Description

Details about the runtime settings for the model that is deployed with the inference component.

Members
CurrentCopyCount
Type: int

The number of runtime copies of the model container that are currently deployed.

DesiredCopyCount
Type: int

The number of runtime copies of the model container that you requested to deploy with the inference component.

InferenceComponentSpecification

Description

Details about the resources to deploy with this inference component, including the model, container, and compute resources.

Members
BaseInferenceComponentName
Type: string

The name of an existing inference component that is to contain the inference component that you're creating with your request.

Specify this parameter only if your request is meant to create an adapter inference component. An adapter inference component contains the path to an adapter model. The purpose of the adapter model is to tailor the inference output of a base foundation model, which is hosted by the base inference component. The adapter inference component uses the compute resources that you assigned to the base inference component.

When you create an adapter inference component, use the Container parameter to specify the location of the adapter artifacts. In the parameter value, use the ArtifactUrl parameter of the InferenceComponentContainerSpecification data type.

Before you can create an adapter inference component, you must have an existing inference component that contains the foundation model that you want to adapt.

ComputeResourceRequirements

The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component.

Omit this parameter if your request is meant to create an adapter inference component. An adapter inference component is loaded by a base inference component, and it uses the compute resources of the base inference component.

Container

Defines a container that provides the runtime environment for a model that you deploy with an inference component.

ModelName
Type: string

The name of an existing SageMaker AI model object in your account that you want to deploy with the inference component.

StartupParameters

Settings that take effect while the model container starts up.

InferenceComponentSpecificationSummary

Description

Details about the resources that are deployed with this inference component.

Members
BaseInferenceComponentName
Type: string

The name of the base inference component that contains this inference component.

ComputeResourceRequirements

The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component.

Container

Details about the container that provides the runtime environment for the model that is deployed with the inference component.

ModelName
Type: string

The name of the SageMaker AI model object that is deployed with the inference component.

StartupParameters

Settings that take effect while the model container starts up.

InferenceComponentStartupParameters

Description

Settings that take effect while the model container starts up.

Members
ContainerStartupHealthCheckTimeoutInSeconds
Type: int

The timeout value, in seconds, for your inference container to pass health check by Amazon S3 Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.

ModelDataDownloadTimeoutInSeconds
Type: int

The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this inference component.

InferenceComponentSummary

Description

A summary of the properties of an inference component.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the inference component was created.

EndpointArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the endpoint that hosts the inference component.

EndpointName
Required: Yes
Type: string

The name of the endpoint that hosts the inference component.

InferenceComponentArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the inference component.

InferenceComponentName
Required: Yes
Type: string

The name of the inference component.

InferenceComponentStatus
Type: string

The status of the inference component.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the inference component was last updated.

VariantName
Required: Yes
Type: string

The name of the production variant that hosts the inference component.

InferenceExecutionConfig

Description

Specifies details about how containers in a multi-container endpoint are run.

Members
Mode
Required: Yes
Type: string

How containers in a multi-container are run. The following values are valid.

  • SERIAL - Containers run as a serial pipeline.

  • DIRECT - Only the individual container that you specify is run.

InferenceExperimentDataStorageConfig

Description

The Amazon S3 location and configuration for storing inference request and response data.

Members
ContentType
Type: CaptureContentTypeHeader structure

Configuration specifying how to treat different headers. If no headers are specified Amazon SageMaker AI will by default base64 encode when capturing the data.

Destination
Required: Yes
Type: string

The Amazon S3 bucket where the inference request and response data is stored.

KmsKey
Type: string

The Amazon Web Services Key Management Service key that Amazon SageMaker uses to encrypt captured data at rest using Amazon S3 server-side encryption.

InferenceExperimentSchedule

Description

The start and end times of an inference experiment.

The maximum duration that you can set for an inference experiment is 30 days.

Members
EndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp at which the inference experiment ended or will end.

StartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp at which the inference experiment started or will start.

InferenceExperimentSummary

Description

Lists a summary of properties of an inference experiment.

Members
CompletionTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp at which the inference experiment was completed.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp at which the inference experiment was created.

Description
Type: string

The description of the inference experiment.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The timestamp when you last modified the inference experiment.

Name
Required: Yes
Type: string

The name of the inference experiment.

RoleArn
Type: string

The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.

Schedule
Type: InferenceExperimentSchedule structure

The duration for which the inference experiment ran or will run.

The maximum duration that you can set for an inference experiment is 30 days.

Status
Required: Yes
Type: string

The status of the inference experiment.

StatusReason
Type: string

The error message for the inference experiment status result.

Type
Required: Yes
Type: string

The type of the inference experiment.

InferenceHubAccessConfig

Description

Configuration information specifying which hub contents have accessible deployment options.

Members
HubContentArn
Required: Yes
Type: string

The ARN of the hub content for which deployment access is allowed.

InferenceMetrics

Description

The metrics for an existing endpoint compared in an Inference Recommender job.

Members
MaxInvocations
Required: Yes
Type: int

The expected maximum number of requests per minute for the instance.

ModelLatency
Required: Yes
Type: int

The expected model latency at maximum invocations per minute for the instance.

InferenceRecommendation

Description

A list of recommendations made by Amazon SageMaker Inference Recommender.

Members
EndpointConfiguration
Required: Yes
Type: EndpointOutputConfiguration structure

Defines the endpoint configuration parameters.

InvocationEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the benchmark completed.

InvocationStartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the benchmark started.

Metrics
Type: RecommendationMetrics structure

The metrics used to decide what recommendation to make.

ModelConfiguration
Required: Yes
Type: ModelConfiguration structure

Defines the model configuration.

RecommendationId
Type: string

The recommendation ID which uniquely identifies each recommendation.

InferenceRecommendationsJob

Description

A structure that contains a list of recommendation jobs.

Members
CompletionTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the job completed.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the job was created.

FailureReason
Type: string

If the job fails, provides information why the job failed.

JobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the recommendation job.

JobDescription
Required: Yes
Type: string

The job description.

JobName
Required: Yes
Type: string

The name of the job.

JobType
Required: Yes
Type: string

The recommendation job type.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the job was last modified.

ModelName
Type: string

The name of the created model.

ModelPackageVersionArn
Type: string

The Amazon Resource Name (ARN) of a versioned model package.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.

SamplePayloadUrl
Type: string

The Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

Status
Required: Yes
Type: string

The status of the job.

InferenceRecommendationsJobStep

Description

A returned array object for the Steps response field in the ListInferenceRecommendationsJobSteps API command.

Members
InferenceBenchmark

The details for a specific benchmark.

JobName
Required: Yes
Type: string

The name of the Inference Recommender job.

Status
Required: Yes
Type: string

The current status of the benchmark.

StepType
Required: Yes
Type: string

The type of the subtask.

BENCHMARK: Evaluate the performance of your model on different instance types.

InferenceSpecification

Description

Defines how to perform inference generation after a training job is run.

Members
Containers
Required: Yes
Type: Array of ModelPackageContainerDefinition structures

The Amazon ECR registry path of the Docker image that contains the inference code.

SupportedContentTypes
Type: Array of strings

The supported MIME types for the input data.

SupportedRealtimeInferenceInstanceTypes
Type: Array of strings

A list of the instance types that are used to generate inferences in real-time.

This parameter is required for unversioned models, and optional for versioned models.

SupportedResponseMIMETypes
Type: Array of strings

The supported MIME types for the output data.

SupportedTransformInstanceTypes
Type: Array of strings

A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

This parameter is required for unversioned models, and optional for versioned models.

InfraCheckConfig

Description

Configuration information for the infrastructure health check of a training job. A SageMaker-provided health check tests the health of instance hardware and cluster network connectivity.

Members
EnableInfraCheck
Type: boolean

Enables an infrastructure health check.

InputConfig

Description

Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.

Members
DataInputConfig
Type: string

Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are Framework specific.

  • TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

    • Examples for one input:

      • If using the console, {"input":[1,1024,1024,3]}

      • If using the CLI, {\"input\":[1,1024,1024,3]}

    • Examples for two inputs:

      • If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}

      • If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}

  • KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.

    • Examples for one input:

      • If using the console, {"input_1":[1,3,224,224]}

      • If using the CLI, {\"input_1\":[1,3,224,224]}

    • Examples for two inputs:

      • If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}

      • If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}

  • MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

    • Examples for one input:

      • If using the console, {"data":[1,3,1024,1024]}

      • If using the CLI, {\"data\":[1,3,1024,1024]}

    • Examples for two inputs:

      • If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}

      • If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}

  • PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.

    • Examples for one input in dictionary format:

      • If using the console, {"input0":[1,3,224,224]}

      • If using the CLI, {\"input0\":[1,3,224,224]}

    • Example for one input in list format: [[1,3,224,224]]

    • Examples for two inputs in dictionary format:

      • If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}

      • If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}

    • Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]

  • XGBOOST: input data name and shape are not needed.

DataInputConfig supports the following parameters for CoreML TargetDevice (ML Model format):

  • shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In addition to static input shapes, CoreML converter supports Flexible input shapes:

    • Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}

    • Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}

  • default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}

  • type: Input type. Allowed values: Image and Tensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale.

  • bias: If the input type is an Image, you need to provide the bias vector.

  • scale: If the input type is an Image, you need to provide a scale factor.

CoreML ClassifierConfig parameters can be specified using OutputConfig CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:

  • Tensor type input:

    • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}

  • Tensor type input without input name (PyTorch):

    • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]

  • Image type input:

    • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}

    • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

  • Image type input without input name (PyTorch):

    • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]

    • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

Depending on the model format, DataInputConfig requires the following parameters for ml_eia2 OutputConfig:TargetDevice.

  • For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key and the input model shapes for DataInputConfig. Specify the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example:

    • "DataInputConfig": {"inputs": [1, 224, 224, 3]}

    • "CompilerOptions": {"signature_def_key": "serving_custom"}

  • For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example:

    • "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}

    • "CompilerOptions": {"output_names": ["output_tensor:0"]}

Framework
Required: Yes
Type: string

Identifies the framework in which the model was trained. For example: TENSORFLOW.

FrameworkVersion
Type: string

Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.

For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance Types and Frameworks and Edge Supported Frameworks.

S3Uri
Required: Yes
Type: string

The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

InstanceGroup

Description

Defines an instance group for heterogeneous cluster training. When requesting a training job using the CreateTrainingJob API, you can configure multiple instance groups .

Members
InstanceCount
Required: Yes
Type: int

Specifies the number of instances of the instance group.

InstanceGroupName
Required: Yes
Type: string

Specifies the name of the instance group.

InstanceType
Required: Yes
Type: string

Specifies the instance type of the instance group.

InstanceMetadataServiceConfiguration

Description

Information on the IMDS configuration of the notebook instance

Members
MinimumInstanceMetadataServiceVersion
Required: Yes
Type: string

Indicates the minimum IMDS version that the notebook instance supports. When passed as part of CreateNotebookInstance, if no value is selected, then it defaults to IMDSv1. This means that both IMDSv1 and IMDSv2 are supported. If passed as part of UpdateNotebookInstance, there is no default.

IntegerParameterRange

Description

For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.

Members
MaxValue
Required: Yes
Type: string

The maximum value of the hyperparameter to search.

MinValue
Required: Yes
Type: string

The minimum value of the hyperparameter to search.

Name
Required: Yes
Type: string

The name of the hyperparameter to search.

ScalingType
Type: string

The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

Auto

SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

Linear

Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

Logarithmic

Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

Logarithmic scaling works only for ranges that have only values greater than 0.

IntegerParameterRangeSpecification

Description

Defines the possible values for an integer hyperparameter.

Members
MaxValue
Required: Yes
Type: string

The maximum integer value allowed.

MinValue
Required: Yes
Type: string

The minimum integer value allowed.

JupyterLabAppImageConfig

Description

The configuration for the file system and kernels in a SageMaker AI image running as a JupyterLab app. The FileSystemConfig object is not supported.

Members
ContainerConfig
Type: ContainerConfig structure

The configuration used to run the application image container.

FileSystemConfig
Type: FileSystemConfig structure

The Amazon Elastic File System storage configuration for a SageMaker AI image.

JupyterLabAppSettings

Description

The settings for the JupyterLab application.

Members
AppLifecycleManagement
Type: AppLifecycleManagement structure

Indicates whether idle shutdown is activated for JupyterLab applications.

BuiltInLifecycleConfigArn
Type: string

The lifecycle configuration that runs before the default lifecycle configuration. It can override changes made in the default lifecycle configuration.

CodeRepositories
Type: Array of CodeRepository structures

A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterLab application.

CustomImages
Type: Array of CustomImage structures

A list of custom SageMaker images that are configured to run as a JupyterLab app.

DefaultResourceSpec
Type: ResourceSpec structure

Specifies the ARN's of a SageMaker AI image and SageMaker AI image version, and the instance type that the version runs on.

EmrSettings
Type: EmrSettings structure

The configuration parameters that specify the IAM roles assumed by the execution role of SageMaker (assumable roles) and the cluster instances or job execution environments (execution roles or runtime roles) to manage and access resources required for running Amazon EMR clusters or Amazon EMR Serverless applications.

LifecycleConfigArns
Type: Array of strings

The Amazon Resource Name (ARN) of the lifecycle configurations attached to the user profile or domain. To remove a lifecycle config, you must set LifecycleConfigArns to an empty list.

JupyterServerAppSettings

Description

The JupyterServer app settings.

Members
CodeRepositories
Type: Array of CodeRepository structures

A list of Git repositories that SageMaker AI automatically displays to users for cloning in the JupyterServer application.

DefaultResourceSpec
Type: ResourceSpec structure

The default instance type and the Amazon Resource Name (ARN) of the default SageMaker AI image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.

LifecycleConfigArns
Type: Array of strings

The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.

To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

KendraSettings

Description

The Amazon SageMaker Canvas application setting where you configure document querying.

Members
Status
Type: string

Describes whether the document querying feature is enabled or disabled in the Canvas application.

KernelGatewayAppSettings

Description

The KernelGateway app settings.

Members
CustomImages
Type: Array of CustomImage structures

A list of custom SageMaker AI images that are configured to run as a KernelGateway app.

DefaultResourceSpec
Type: ResourceSpec structure

The default instance type and the Amazon Resource Name (ARN) of the default SageMaker AI image used by the KernelGateway app.

The Amazon SageMaker AI Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the CLI or CloudFormation and the instance type parameter value is not passed.

LifecycleConfigArns
Type: Array of strings

The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.

To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.

KernelGatewayImageConfig

Description

The configuration for the file system and kernels in a SageMaker AI image running as a KernelGateway app.

Members
FileSystemConfig
Type: FileSystemConfig structure

The Amazon Elastic File System storage configuration for a SageMaker AI image.

KernelSpecs
Required: Yes
Type: Array of KernelSpec structures

The specification of the Jupyter kernels in the image.

KernelSpec

Description

The specification of a Jupyter kernel.

Members
DisplayName
Type: string

The display name of the kernel.

Name
Required: Yes
Type: string

The name of the Jupyter kernel in the image. This value is case sensitive.

LabelCounters

Description

Provides a breakdown of the number of objects labeled.

Members
FailedNonRetryableError
Type: int

The total number of objects that could not be labeled due to an error.

HumanLabeled
Type: int

The total number of objects labeled by a human worker.

MachineLabeled
Type: int

The total number of objects labeled by automated data labeling.

TotalLabeled
Type: int

The total number of objects labeled.

Unlabeled
Type: int

The total number of objects not yet labeled.

LabelCountersForWorkteam

Description

Provides counts for human-labeled tasks in the labeling job.

Members
HumanLabeled
Type: int

The total number of data objects labeled by a human worker.

PendingHuman
Type: int

The total number of data objects that need to be labeled by a human worker.

Total
Type: int

The total number of tasks in the labeling job.

LabelingJobAlgorithmsConfig

Description

Provides configuration information for auto-labeling of your data objects. A LabelingJobAlgorithmsConfig object must be supplied in order to use auto-labeling.

Members
InitialActiveLearningModelArn
Type: string

At the end of an auto-label job Ground Truth sends the Amazon Resource Name (ARN) of the final model used for auto-labeling. You can use this model as the starting point for subsequent similar jobs by providing the ARN of the model here.

LabelingJobAlgorithmSpecificationArn
Required: Yes
Type: string

Specifies the Amazon Resource Name (ARN) of the algorithm used for auto-labeling. You must select one of the following ARNs:

  • Image classification

    arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification

  • Text classification

    arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification

  • Object detection

    arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection

  • Semantic Segmentation

    arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation

LabelingJobResourceConfig
Type: LabelingJobResourceConfig structure

Provides configuration information for a labeling job.

LabelingJobDataAttributes

Description

Attributes of the data specified by the customer. Use these to describe the data to be labeled.

Members
ContentClassifiers
Type: Array of strings

Declares that your content is free of personally identifiable information or adult content. SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this information.

LabelingJobDataSource

Description

Provides information about the location of input data.

You must specify at least one of the following: S3DataSource or SnsDataSource.

Use SnsDataSource to specify an SNS input topic for a streaming labeling job. If you do not specify and SNS input topic ARN, Ground Truth will create a one-time labeling job.

Use S3DataSource to specify an input manifest file for both streaming and one-time labeling jobs. Adding an S3DataSource is optional if you use SnsDataSource to create a streaming labeling job.

Members
S3DataSource
Type: LabelingJobS3DataSource structure

The Amazon S3 location of the input data objects.

SnsDataSource
Type: LabelingJobSnsDataSource structure

An Amazon SNS data source used for streaming labeling jobs. To learn more, see Send Data to a Streaming Labeling Job.

LabelingJobForWorkteamSummary

Description

Provides summary information for a work team.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the labeling job was created.

JobReferenceCode
Required: Yes
Type: string

A unique identifier for a labeling job. You can use this to refer to a specific labeling job.

LabelCounters
Type: LabelCountersForWorkteam structure

Provides information about the progress of a labeling job.

LabelingJobName
Type: string

The name of the labeling job that the work team is assigned to.

NumberOfHumanWorkersPerDataObject
Type: int

The configured number of workers per data object.

WorkRequesterAccountId
Required: Yes
Type: string

The Amazon Web Services account ID of the account used to start the labeling job.

LabelingJobInputConfig

Description

Input configuration information for a labeling job.

Members
DataAttributes
Type: LabelingJobDataAttributes structure

Attributes of the data specified by the customer.

DataSource
Required: Yes
Type: LabelingJobDataSource structure

The location of the input data.

LabelingJobOutput

Description

Specifies the location of the output produced by the labeling job.

Members
FinalActiveLearningModelArn
Type: string

The Amazon Resource Name (ARN) for the most recent SageMaker model trained as part of automated data labeling.

OutputDatasetS3Uri
Required: Yes
Type: string

The Amazon S3 bucket location of the manifest file for labeled data.

LabelingJobOutputConfig

Description

Output configuration information for a labeling job.

Members
KmsKeyId
Type: string

The Amazon Web Services Key Management Service ID of the key used to encrypt the output data, if any.

If you provide your own KMS key ID, you must add the required permissions to your KMS key described in Encrypt Output Data and Storage Volume with Amazon Web Services KMS.

If you don't provide a KMS key ID, Amazon SageMaker uses the default Amazon Web Services KMS key for Amazon S3 for your role's account to encrypt your output data.

If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

S3OutputPath
Required: Yes
Type: string

The Amazon S3 location to write output data.

SnsTopicArn
Type: string

An Amazon Simple Notification Service (Amazon SNS) output topic ARN. Provide a SnsTopicArn if you want to do real time chaining to another streaming job and receive an Amazon SNS notifications each time a data object is submitted by a worker.

If you provide an SnsTopicArn in OutputConfig, when workers complete labeling tasks, Ground Truth will send labeling task output data to the SNS output topic you specify here.

To learn more, see Receive Output Data from a Streaming Labeling Job.

LabelingJobResourceConfig

Description

Configure encryption on the storage volume attached to the ML compute instance used to run automated data labeling model training and inference.

Members
VolumeKmsKeyId
Type: string

The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training and inference jobs used for automated data labeling.

You can only specify a VolumeKmsKeyId when you create a labeling job with automated data labeling enabled using the API operation CreateLabelingJob. You cannot specify an Amazon Web Services KMS key to encrypt the storage volume used for automated data labeling model training and inference when you create a labeling job using the console. To learn more, see Output Data and Storage Volume Encryption.

The VolumeKmsKeyId can be any of the following formats:

  • KMS Key ID

    "1234abcd-12ab-34cd-56ef-1234567890ab"

  • Amazon Resource Name (ARN) of a KMS Key

    "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

VpcConfig
Type: VpcConfig structure

Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC.

LabelingJobS3DataSource

Description

The Amazon S3 location of the input data objects.

Members
ManifestS3Uri
Required: Yes
Type: string

The Amazon S3 location of the manifest file that describes the input data objects.

The input manifest file referenced in ManifestS3Uri must contain one of the following keys: source-ref or source. The value of the keys are interpreted as follows:

  • source-ref: The source of the object is the Amazon S3 object specified in the value. Use this value when the object is a binary object, such as an image.

  • source: The source of the object is the value. Use this value when the object is a text value.

If you are a new user of Ground Truth, it is recommended you review Use an Input Manifest File in the Amazon SageMaker Developer Guide to learn how to create an input manifest file.

LabelingJobSnsDataSource

Description

An Amazon SNS data source used for streaming labeling jobs.

Members
SnsTopicArn
Required: Yes
Type: string

The Amazon SNS input topic Amazon Resource Name (ARN). Specify the ARN of the input topic you will use to send new data objects to a streaming labeling job.

LabelingJobStoppingConditions

Description

A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.

Labeling jobs fail after 30 days with an appropriate client error message.

Members
MaxHumanLabeledObjectCount
Type: int

The maximum number of objects that can be labeled by human workers.

MaxPercentageOfInputDatasetLabeled
Type: int

The maximum number of input data objects that should be labeled.

LabelingJobSummary

Description

Provides summary information about a labeling job.

Members
AnnotationConsolidationLambdaArn
Type: string

The Amazon Resource Name (ARN) of the Lambda function used to consolidate the annotations from individual workers into a label for a data object. For more information, see Annotation Consolidation.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the job was created (timestamp).

FailureReason
Type: string

If the LabelingJobStatus field is Failed, this field contains a description of the error.

InputConfig
Type: LabelingJobInputConfig structure

Input configuration for the labeling job.

LabelCounters
Required: Yes
Type: LabelCounters structure

Counts showing the progress of the labeling job.

LabelingJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) assigned to the labeling job when it was created.

LabelingJobName
Required: Yes
Type: string

The name of the labeling job.

LabelingJobOutput
Type: LabelingJobOutput structure

The location of the output produced by the labeling job.

LabelingJobStatus
Required: Yes
Type: string

The current status of the labeling job.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the job was last modified (timestamp).

PreHumanTaskLambdaArn
Type: string

The Amazon Resource Name (ARN) of a Lambda function. The function is run before each data object is sent to a worker.

WorkteamArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the work team assigned to the job.

LambdaStepMetadata

Description

Metadata for a Lambda step.

Members
Arn
Type: string

The Amazon Resource Name (ARN) of the Lambda function that was run by this step execution.

OutputParameters
Type: Array of OutputParameter structures

A list of the output parameters of the Lambda step.

LastUpdateStatus

Description

A value that indicates whether the update was successful.

Members
FailureReason
Type: string

If the update wasn't successful, indicates the reason why it failed.

Status
Required: Yes
Type: string

A value that indicates whether the update was made successful.

LineageGroupSummary

Description

Lists a summary of the properties of a lineage group. A lineage group provides a group of shareable lineage entity resources.

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time of the lineage group summary.

DisplayName
Type: string

The display name of the lineage group summary.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last modified time of the lineage group summary.

LineageGroupArn
Type: string

The Amazon Resource Name (ARN) of the lineage group resource.

LineageGroupName
Type: string

The name or Amazon Resource Name (ARN) of the lineage group.

MemberDefinition

Description

Defines an Amazon Cognito or your own OIDC IdP user group that is part of a work team.

Members
CognitoMemberDefinition
Type: CognitoMemberDefinition structure

The Amazon Cognito user group that is part of the work team.

OidcMemberDefinition
Type: OidcMemberDefinition structure

A list user groups that exist in your OIDC Identity Provider (IdP). One to ten groups can be used to create a single private work team. When you add a user group to the list of Groups, you can add that user group to one or more private work teams. If you add a user group to a private work team, all workers in that user group are added to the work team.

MetadataProperties

Description

Metadata properties of the tracking entity, trial, or trial component.

Members
CommitId
Type: string

The commit ID.

GeneratedBy
Type: string

The entity this entity was generated by.

ProjectId
Type: string

The project ID.

Repository
Type: string

The repository.

MetricData

Description

The name, value, and date and time of a metric that was emitted to Amazon CloudWatch.

Members
MetricName
Type: string

The name of the metric.

Timestamp
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the algorithm emitted the metric.

Value
Type: float

The value of the metric.

MetricDatum

Description

Information about the metric for a candidate produced by an AutoML job.

Members
MetricName
Type: string

The name of the metric.

Set
Type: string

The dataset split from which the AutoML job produced the metric.

StandardMetricName
Type: string

The name of the standard metric.

For definitions of the standard metrics, see Autopilot candidate metrics .

Value
Type: float

The value of the metric.

MetricDefinition

Description

Specifies a metric that the training algorithm writes to stderr or stdout. You can view these logs to understand how your training job performs and check for any errors encountered during training. SageMaker hyperparameter tuning captures all defined metrics. Specify one of the defined metrics to use as an objective metric using the TuningObjective parameter in the HyperParameterTrainingJobDefinition API to evaluate job performance during hyperparameter tuning.

Members
Name
Required: Yes
Type: string

The name of the metric.

Regex
Required: Yes
Type: string

A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining metrics and environment variables.

MetricsSource

Description

Details about the metrics source.

Members
ContentDigest
Type: string

The hash key used for the metrics source.

ContentType
Required: Yes
Type: string

The metric source content type.

S3Uri
Required: Yes
Type: string

The S3 URI for the metrics source.

Model

Description

The properties of a model as returned by the Search API.

Members
Containers
Type: Array of ContainerDefinition structures

The containers in the inference pipeline.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that indicates when the model was created.

DeploymentRecommendation
Type: DeploymentRecommendation structure

A set of recommended deployment configurations for the model.

EnableNetworkIsolation
Type: boolean

Isolates the model container. No inbound or outbound network calls can be made to or from the model container.

ExecutionRoleArn
Type: string

The Amazon Resource Name (ARN) of the IAM role that you specified for the model.

InferenceExecutionConfig
Type: InferenceExecutionConfig structure

Specifies details about how containers in a multi-container endpoint are run.

ModelArn
Type: string

The Amazon Resource Name (ARN) of the model.

ModelName
Type: string

The name of the model.

PrimaryContainer
Type: ContainerDefinition structure

Describes the container, as part of model definition.

Tags
Type: Array of Tag structures

A list of key-value pairs associated with the model. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.

VpcConfig
Type: VpcConfig structure

Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC.

ModelAccessConfig

Description

The access configuration file to control access to the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig.

Members
AcceptEula
Required: Yes
Type: boolean

Specifies agreement to the model end-user license agreement (EULA). The AcceptEula value must be explicitly defined as True in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.

ModelArtifacts

Description

Provides information about the location that is configured for storing model artifacts.

Model artifacts are outputs that result from training a model. They typically consist of trained parameters, a model definition that describes how to compute inferences, and other metadata. A SageMaker container stores your trained model artifacts in the /opt/ml/model directory. After training has completed, by default, these artifacts are uploaded to your Amazon S3 bucket as compressed files.

Members
S3ModelArtifacts
Required: Yes
Type: string

The path of the S3 object that contains the model artifacts. For example, s3://bucket-name/keynameprefix/model.tar.gz.

ModelBiasAppSpecification

Description

Docker container image configuration object for the model bias job.

Members
ConfigUri
Required: Yes
Type: string

JSON formatted S3 file that defines bias parameters. For more information on this JSON configuration file, see Configure bias parameters.

Environment
Type: Associative array of custom strings keys (ProcessingEnvironmentKey) to strings

Sets the environment variables in the Docker container.

ImageUri
Required: Yes
Type: string

The container image to be run by the model bias job.

ModelBiasBaselineConfig

Description

The configuration for a baseline model bias job.

Members
BaseliningJobName
Type: string

The name of the baseline model bias job.

ConstraintsResource

The constraints resource for a monitoring job.

ModelBiasJobInput

Description

Inputs for the model bias job.

Members
BatchTransformInput
Type: BatchTransformInput structure

Input object for the batch transform job.

EndpointInput
Type: EndpointInput structure

Input object for the endpoint

GroundTruthS3Input
Required: Yes
Type: MonitoringGroundTruthS3Input structure

Location of ground truth labels to use in model bias job.

ModelCard

Description

An Amazon SageMaker Model Card.

Members
Content
Type: string

The content of the model card. Content uses the model card JSON schema and provided as a string.

CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the model card was created.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the model card was last modified.

ModelCardArn
Type: string

The Amazon Resource Name (ARN) of the model card.

ModelCardName
Type: string

The unique name of the model card.

ModelCardStatus
Type: string

The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.

  • Draft: The model card is a work in progress.

  • PendingReview: The model card is pending review.

  • Approved: The model card is approved.

  • Archived: The model card is archived. No more updates should be made to the model card, but it can still be exported.

ModelCardVersion
Type: int

The version of the model card.

ModelId
Type: string

The unique name (ID) of the model.

ModelPackageGroupName
Type: string

The model package group that contains the model package. Only relevant for model cards created for model packages in the Amazon SageMaker Model Registry.

RiskRating
Type: string

The risk rating of the model. Different organizations might have different criteria for model card risk ratings. For more information, see Risk ratings.

SecurityConfig
Type: ModelCardSecurityConfig structure

The security configuration used to protect model card data.

Tags
Type: Array of Tag structures

Key-value pairs used to manage metadata for the model card.

ModelCardExportArtifacts

Description

The artifacts of the model card export job.

Members
S3ExportArtifacts
Required: Yes
Type: string

The Amazon S3 URI of the exported model artifacts.

ModelCardExportJobSummary

Description

The summary of the Amazon SageMaker Model Card export job.

Members
CreatedAt
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the model card export job was created.

LastModifiedAt
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the model card export job was last modified..

ModelCardExportJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model card export job.

ModelCardExportJobName
Required: Yes
Type: string

The name of the model card export job.

ModelCardName
Required: Yes
Type: string

The name of the model card that the export job exports.

ModelCardVersion
Required: Yes
Type: int

The version of the model card that the export job exports.

Status
Required: Yes
Type: string

The completion status of the model card export job.

ModelCardExportOutputConfig

Description

Configure the export output details for an Amazon SageMaker Model Card.

Members
S3OutputPath
Required: Yes
Type: string

The Amazon S3 output path to export your model card PDF.

ModelCardSecurityConfig

Description

Configure the security settings to protect model card data.

Members
KmsKeyId
Type: string

A Key Management Service key ID to use for encrypting a model card.

ModelCardSummary

Description

A summary of the model card.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the model card was created.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the model card was last modified.

ModelCardArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model card.

ModelCardName
Required: Yes
Type: string

The name of the model card.

ModelCardStatus
Required: Yes
Type: string

The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.

  • Draft: The model card is a work in progress.

  • PendingReview: The model card is pending review.

  • Approved: The model card is approved.

  • Archived: The model card is archived. No more updates should be made to the model card, but it can still be exported.

ModelCardVersionSummary

Description

A summary of a specific version of the model card.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the model card version was created.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time date and time that the model card version was last modified.

ModelCardArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model card.

ModelCardName
Required: Yes
Type: string

The name of the model card.

ModelCardStatus
Required: Yes
Type: string

The approval status of the model card version within your organization. Different organizations might have different criteria for model card review and approval.

  • Draft: The model card is a work in progress.

  • PendingReview: The model card is pending review.

  • Approved: The model card is approved.

  • Archived: The model card is archived. No more updates should be made to the model card, but it can still be exported.

ModelCardVersion
Required: Yes
Type: int

A version of the model card.

ModelClientConfig

Description

Configures the timeout and maximum number of retries for processing a transform job invocation.

Members
InvocationsMaxRetries
Type: int

The maximum number of retries when invocation requests are failing. The default value is 3.

InvocationsTimeoutInSeconds
Type: int

The timeout value in seconds for an invocation request. The default value is 600.

ModelCompilationConfig

Description

Settings for the model compilation technique that's applied by a model optimization job.

Members
Image
Type: string

The URI of an LMI DLC in Amazon ECR. SageMaker uses this image to run the optimization.

OverrideEnvironment
Type: Associative array of custom strings keys (NonEmptyString256) to strings

Environment variables that override the default ones in the model container.

ModelConfiguration

Description

Defines the model configuration. Includes the specification name and environment parameters.

Members
CompilationJobName
Type: string

The name of the compilation job used to create the recommended model artifacts.

EnvironmentParameters
Type: Array of EnvironmentParameter structures

Defines the environment parameters that includes key, value types, and values.

InferenceSpecificationName
Type: string

The inference specification name in the model package version.

ModelDashboardEndpoint

Description

An endpoint that hosts a model displayed in the Amazon SageMaker Model Dashboard.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that indicates when the endpoint was created.

EndpointArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the endpoint.

EndpointName
Required: Yes
Type: string

The endpoint name.

EndpointStatus
Required: Yes
Type: string

The endpoint status.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last time the endpoint was modified.

ModelDashboardIndicatorAction

Description

An alert action taken to light up an icon on the Amazon SageMaker Model Dashboard when an alert goes into InAlert status.

Members
Enabled
Type: boolean

Indicates whether the alert action is turned on.

ModelDashboardModel

Description

A model displayed in the Amazon SageMaker Model Dashboard.

Members
Endpoints
Type: Array of ModelDashboardEndpoint structures

The endpoints that host a model.

LastBatchTransformJob
Type: TransformJob structure

A batch transform job. For information about SageMaker batch transform, see Use Batch Transform.

Model
Type: Model structure

A model displayed in the Model Dashboard.

ModelCard
Type: ModelDashboardModelCard structure

The model card for a model.

MonitoringSchedules
Type: Array of ModelDashboardMonitoringSchedule structures

The monitoring schedules for a model.

ModelDashboardModelCard

Description

The model card for a model displayed in the Amazon SageMaker Model Dashboard.

Members
CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that indicates when the model card was created.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that indicates when the model card was last updated.

ModelCardArn
Type: string

The Amazon Resource Name (ARN) for a model card.

ModelCardName
Type: string

The name of a model card.

ModelCardStatus
Type: string

The model card status.

ModelCardVersion
Type: int

The model card version.

ModelId
Type: string

For models created in SageMaker, this is the model ARN. For models created outside of SageMaker, this is a user-customized string.

RiskRating
Type: string

A model card's risk rating. Can be low, medium, or high.

SecurityConfig
Type: ModelCardSecurityConfig structure

The KMS Key ID (KMSKeyId) for encryption of model card information.

Tags
Type: Array of Tag structures

The tags associated with a model card.

ModelDashboardMonitoringSchedule

Description

A monitoring schedule for a model displayed in the Amazon SageMaker Model Dashboard.

Members
BatchTransformInput
Type: BatchTransformInput structure

Input object for the batch transform job.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that indicates when the monitoring schedule was created.

EndpointName
Type: string

The endpoint which is monitored.

FailureReason
Type: string

If a monitoring job failed, provides the reason.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that indicates when the monitoring schedule was last updated.

LastMonitoringExecutionSummary
Type: MonitoringExecutionSummary structure

Summary of information about the last monitoring job to run.

MonitoringAlertSummaries
Type: Array of MonitoringAlertSummary structures

A JSON array where each element is a summary for a monitoring alert.

MonitoringScheduleArn
Type: string

The Amazon Resource Name (ARN) of a monitoring schedule.

MonitoringScheduleConfig
Type: MonitoringScheduleConfig structure

Configures the monitoring schedule and defines the monitoring job.

MonitoringScheduleName
Type: string

The name of a monitoring schedule.

MonitoringScheduleStatus
Type: string

The status of the monitoring schedule.

MonitoringType
Type: string

The monitor type of a model monitor.

ModelDataQuality

Description

Data quality constraints and statistics for a model.

Members
Constraints
Type: MetricsSource structure

Data quality constraints for a model.

Statistics
Type: MetricsSource structure

Data quality statistics for a model.

ModelDataSource

Description

Specifies the location of ML model data to deploy. If specified, you must specify one and only one of the available data sources.

Members
S3DataSource
Type: S3ModelDataSource structure

Specifies the S3 location of ML model data to deploy.

ModelDeployConfig

Description

Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.

Members
AutoGenerateEndpointName
Type: boolean

Set to True to automatically generate an endpoint name for a one-click Autopilot model deployment; set to False otherwise. The default value is False.

If you set AutoGenerateEndpointName to True, do not specify the EndpointName; otherwise a 400 error is thrown.

EndpointName
Type: string

Specifies the endpoint name to use for a one-click Autopilot model deployment if the endpoint name is not generated automatically.

Specify the EndpointName if and only if you set AutoGenerateEndpointName to False; otherwise a 400 error is thrown.

ModelDeployResult

Description

Provides information about the endpoint of the model deployment.

Members
EndpointName
Type: string

The name of the endpoint to which the model has been deployed.

If model deployment fails, this field is omitted from the response.

ModelDigests

Description

Provides information to verify the integrity of stored model artifacts.

Members
ArtifactDigest
Type: string

Provides a hash value that uniquely identifies the stored model artifacts.

ModelExplainabilityAppSpecification

Description

Docker container image configuration object for the model explainability job.

Members
ConfigUri
Required: Yes
Type: string

JSON formatted Amazon S3 file that defines explainability parameters. For more information on this JSON configuration file, see Configure model explainability parameters.

Environment
Type: Associative array of custom strings keys (ProcessingEnvironmentKey) to strings

Sets the environment variables in the Docker container.

ImageUri
Required: Yes
Type: string

The container image to be run by the model explainability job.

ModelExplainabilityBaselineConfig

Description

The configuration for a baseline model explainability job.

Members
BaseliningJobName
Type: string

The name of the baseline model explainability job.

ConstraintsResource

The constraints resource for a monitoring job.

ModelExplainabilityJobInput

Description

Inputs for the model explainability job.

Members
BatchTransformInput
Type: BatchTransformInput structure

Input object for the batch transform job.

EndpointInput
Type: EndpointInput structure

Input object for the endpoint

ModelInfrastructureConfig

Description

The configuration for the infrastructure that the model will be deployed to.

Members
InfrastructureType
Required: Yes
Type: string

The inference option to which to deploy your model. Possible values are the following:

  • RealTime: Deploy to real-time inference.

RealTimeInferenceConfig
Required: Yes
Type: RealTimeInferenceConfig structure

The infrastructure configuration for deploying the model to real-time inference.

ModelInput

Description

Input object for the model.

Members
DataInputConfig
Required: Yes
Type: string

The input configuration object for the model.

ModelLatencyThreshold

Description

The model latency threshold.

Members
Percentile
Type: string

The model latency percentile threshold. Acceptable values are P95 and P99. For custom load tests, specify the value as P95.

ValueInMilliseconds
Type: int

The model latency percentile value in milliseconds.

ModelLifeCycle

Description

A structure describing the current state of the model in its life cycle.

Members
Stage
Required: Yes
Type: string

The current stage in the model life cycle.

StageDescription
Type: string

Describes the stage related details.

StageStatus
Required: Yes
Type: string

The current status of a stage in model life cycle.

ModelMetadataFilter

Description

Part of the search expression. You can specify the name and value (domain, task, framework, framework version, task, and model).

Members
Name
Required: Yes
Type: string

The name of the of the model to filter by.

Value
Required: Yes
Type: string

The value to filter the model metadata.

ModelMetadataSearchExpression

Description

One or more filters that searches for the specified resource or resources in a search. All resource objects that satisfy the expression's condition are included in the search results

Members
Filters
Type: Array of ModelMetadataFilter structures

A list of filter objects.

ModelMetadataSummary

Description

A summary of the model metadata.

Members
Domain
Required: Yes
Type: string

The machine learning domain of the model.

Framework
Required: Yes
Type: string

The machine learning framework of the model.

FrameworkVersion
Required: Yes
Type: string

The framework version of the model.

Model
Required: Yes
Type: string

The name of the model.

Task
Required: Yes
Type: string

The machine learning task of the model.

ModelMetrics

Description

Contains metrics captured from a model.

Members
Bias
Type: Bias structure

Metrics that measure bias in a model.

Explainability
Type: Explainability structure

Metrics that help explain a model.

ModelDataQuality
Type: ModelDataQuality structure

Metrics that measure the quality of the input data for a model.

ModelQuality
Type: ModelQuality structure

Metrics that measure the quality of a model.

ModelPackage

Description

A versioned model that can be deployed for SageMaker inference.

Members
AdditionalInferenceSpecifications
Type: Array of AdditionalInferenceSpecificationDefinition structures

An array of additional Inference Specification objects.

ApprovalDescription
Type: string

A description provided when the model approval is set.

CertifyForMarketplace
Type: boolean

Whether the model package is to be certified to be listed on Amazon Web Services Marketplace. For information about listing model packages on Amazon Web Services Marketplace, see List Your Algorithm or Model Package on Amazon Web Services Marketplace.

CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, or project.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the model package was created.

CustomerMetadataProperties
Type: Associative array of custom strings keys (CustomerMetadataKey) to strings

The metadata properties for the model package.

Domain
Type: string

The machine learning domain of your model package and its components. Common machine learning domains include computer vision and natural language processing.

DriftCheckBaselines
Type: DriftCheckBaselines structure

Represents the drift check baselines that can be used when the model monitor is set using the model package.

InferenceSpecification
Type: InferenceSpecification structure

Defines how to perform inference generation after a training job is run.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, or project.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last time the model package was modified.

MetadataProperties
Type: MetadataProperties structure

Metadata properties of the tracking entity, trial, or trial component.

ModelApprovalStatus
Type: string

The approval status of the model. This can be one of the following values.

  • APPROVED - The model is approved

  • REJECTED - The model is rejected.

  • PENDING_MANUAL_APPROVAL - The model is waiting for manual approval.

ModelCard
Type: ModelPackageModelCard structure

The model card associated with the model package. Since ModelPackageModelCard is tied to a model package, it is a specific usage of a model card and its schema is simplified compared to the schema of ModelCard. The ModelPackageModelCard schema does not include model_package_details, and model_overview is composed of the model_creator and model_artifact properties. For more information about the model package model card schema, see Model package model card schema. For more information about the model card associated with the model package, see View the Details of a Model Version.

ModelLifeCycle
Type: ModelLifeCycle structure

A structure describing the current state of the model in its life cycle.

ModelMetrics
Type: ModelMetrics structure

Metrics for the model.

ModelPackageArn
Type: string

The Amazon Resource Name (ARN) of the model package.

ModelPackageDescription
Type: string

The description of the model package.

ModelPackageGroupName
Type: string

The model group to which the model belongs.

ModelPackageName
Type: string

The name of the model.

ModelPackageStatus
Type: string

The status of the model package. This can be one of the following values.

  • PENDING - The model package is pending being created.

  • IN_PROGRESS - The model package is in the process of being created.

  • COMPLETED - The model package was successfully created.

  • FAILED - The model package failed.

  • DELETING - The model package is in the process of being deleted.

ModelPackageStatusDetails
Type: ModelPackageStatusDetails structure

Specifies the validation and image scan statuses of the model package.

ModelPackageVersion
Type: int

The version number of a versioned model.

SamplePayloadUrl
Type: string

The Amazon Simple Storage Service path where the sample payload are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

SecurityConfig
Type: ModelPackageSecurityConfig structure

An optional Key Management Service key to encrypt, decrypt, and re-encrypt model package information for regulated workloads with highly sensitive data.

SkipModelValidation
Type: string

Indicates if you want to skip model validation.

SourceAlgorithmSpecification

A list of algorithms that were used to create a model package.

SourceUri
Type: string

The URI of the source for the model package.

Tags
Type: Array of Tag structures

A list of the tags associated with the model package. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.

Task
Type: string

The machine learning task your model package accomplishes. Common machine learning tasks include object detection and image classification.

ValidationSpecification

Specifies batch transform jobs that SageMaker runs to validate your model package.

ModelPackageContainerDefinition

Description

Describes the Docker container for the model package.

Members
AdditionalS3DataSource
Type: AdditionalS3DataSource structure

The additional data source that is used during inference in the Docker container for your model package.

ContainerHostname
Type: string

The DNS host name for the Docker container.

Environment
Type: Associative array of custom strings keys (EnvironmentKey) to strings

The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

Framework
Type: string

The machine learning framework of the model package container image.

FrameworkVersion
Type: string

The framework version of the Model Package Container Image.

Image
Required: Yes
Type: string

The Amazon Elastic Container Registry (Amazon ECR) path where inference code is stored.

If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

ImageDigest
Type: string

An MD5 hash of the training algorithm that identifies the Docker image used for training.

ModelDataETag
Type: string

The ETag associated with Model Data URL.

ModelDataSource
Type: ModelDataSource structure

Specifies the location of ML model data to deploy during endpoint creation.

ModelDataUrl
Type: string

The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

The model artifacts must be in an S3 bucket that is in the same region as the model package.

ModelInput
Type: ModelInput structure

A structure with Model Input details.

NearestModelName
Type: string

The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata.

ProductId
Type: string

The Amazon Web Services Marketplace product ID of the model package.

ModelPackageGroup

Description

A group of versioned models in the model registry.

Members
CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the model group was created.

ModelPackageGroupArn
Type: string

The Amazon Resource Name (ARN) of the model group.

ModelPackageGroupDescription
Type: string

The description for the model group.

ModelPackageGroupName
Type: string

The name of the model group.

ModelPackageGroupStatus
Type: string

The status of the model group. This can be one of the following values.

  • PENDING - The model group is pending being created.

  • IN_PROGRESS - The model group is in the process of being created.

  • COMPLETED - The model group was successfully created.

  • FAILED - The model group failed.

  • DELETING - The model group is in the process of being deleted.

  • DELETE_FAILED - SageMaker failed to delete the model group.

Tags
Type: Array of Tag structures

A list of the tags associated with the model group. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.

ModelPackageGroupSummary

Description

Summary information about a model group.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the model group was created.

ModelPackageGroupArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model group.

ModelPackageGroupDescription
Type: string

A description of the model group.

ModelPackageGroupName
Required: Yes
Type: string

The name of the model group.

ModelPackageGroupStatus
Required: Yes
Type: string

The status of the model group.

ModelPackageModelCard

Description

The model card associated with the model package. Since ModelPackageModelCard is tied to a model package, it is a specific usage of a model card and its schema is simplified compared to the schema of ModelCard. The ModelPackageModelCard schema does not include model_package_details, and model_overview is composed of the model_creator and model_artifact properties. For more information about the model package model card schema, see Model package model card schema. For more information about the model card associated with the model package, see View the Details of a Model Version.

Members
ModelCardContent
Type: string

The content of the model card. The content must follow the schema described in Model Package Model Card Schema.

ModelCardStatus
Type: string

The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.

  • Draft: The model card is a work in progress.

  • PendingReview: The model card is pending review.

  • Approved: The model card is approved.

  • Archived: The model card is archived. No more updates can be made to the model card content. If you try to update the model card content, you will receive the message Model Card is in Archived state.

ModelPackageSecurityConfig

Description

An optional Key Management Service key to encrypt, decrypt, and re-encrypt model package information for regulated workloads with highly sensitive data.

Members
KmsKeyId
Required: Yes
Type: string

The KMS Key ID (KMSKeyId) used for encryption of model package information.

ModelPackageStatusDetails

Description

Specifies the validation and image scan statuses of the model package.

Members
ImageScanStatuses
Type: Array of ModelPackageStatusItem structures

The status of the scan of the Docker image container for the model package.

ValidationStatuses
Required: Yes
Type: Array of ModelPackageStatusItem structures

The validation status of the model package.

ModelPackageStatusItem

Description

Represents the overall status of a model package.

Members
FailureReason
Type: string

if the overall status is Failed, the reason for the failure.

Name
Required: Yes
Type: string

The name of the model package for which the overall status is being reported.

Status
Required: Yes
Type: string

The current status.

ModelPackageSummary

Description

Provides summary information about a model package.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the model package was created.

ModelApprovalStatus
Type: string

The approval status of the model. This can be one of the following values.

  • APPROVED - The model is approved

  • REJECTED - The model is rejected.

  • PENDING_MANUAL_APPROVAL - The model is waiting for manual approval.

ModelPackageArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model package.

ModelPackageDescription
Type: string

A brief description of the model package.

ModelPackageGroupName
Type: string

If the model package is a versioned model, the model group that the versioned model belongs to.

ModelPackageName
Type: string

The name of the model package.

ModelPackageStatus
Required: Yes
Type: string

The overall status of the model package.

ModelPackageVersion
Type: int

If the model package is a versioned model, the version of the model.

ModelPackageValidationProfile

Description

Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package.

The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.

Members
ProfileName
Required: Yes
Type: string

The name of the profile for the model package.

TransformJobDefinition
Required: Yes
Type: TransformJobDefinition structure

The TransformJobDefinition object that describes the transform job used for the validation of the model package.

ModelPackageValidationSpecification

Description

Specifies batch transform jobs that SageMaker runs to validate your model package.

Members
ValidationProfiles
Required: Yes
Type: Array of ModelPackageValidationProfile structures

An array of ModelPackageValidationProfile objects, each of which specifies a batch transform job that SageMaker runs to validate your model package.

ValidationRole
Required: Yes
Type: string

The IAM roles to be used for the validation of the model package.

ModelQuality

Description

Model quality statistics and constraints.

Members
Constraints
Type: MetricsSource structure

Model quality constraints.

Statistics
Type: MetricsSource structure

Model quality statistics.

ModelQualityAppSpecification

Description

Container image configuration object for the monitoring job.

Members
ContainerArguments
Type: Array of strings

An array of arguments for the container used to run the monitoring job.

ContainerEntrypoint
Type: Array of strings

Specifies the entrypoint for a container that the monitoring job runs.

Environment
Type: Associative array of custom strings keys (ProcessingEnvironmentKey) to strings

Sets the environment variables in the container that the monitoring job runs.

ImageUri
Required: Yes
Type: string

The address of the container image that the monitoring job runs.

PostAnalyticsProcessorSourceUri
Type: string

An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.

ProblemType
Type: string

The machine learning problem type of the model that the monitoring job monitors.

RecordPreprocessorSourceUri
Type: string

An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flattened JSON so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.

ModelQualityBaselineConfig

Description

Configuration for monitoring constraints and monitoring statistics. These baseline resources are compared against the results of the current job from the series of jobs scheduled to collect data periodically.

Members
BaseliningJobName
Type: string

The name of the job that performs baselining for the monitoring job.

ConstraintsResource

The constraints resource for a monitoring job.

ModelQualityJobInput

Description

The input for the model quality monitoring job. Currently endpoints are supported for input for model quality monitoring jobs.

Members
BatchTransformInput
Type: BatchTransformInput structure

Input object for the batch transform job.

EndpointInput
Type: EndpointInput structure

Input object for the endpoint

GroundTruthS3Input
Required: Yes
Type: MonitoringGroundTruthS3Input structure

The ground truth label provided for the model.

ModelQuantizationConfig

Description

Settings for the model quantization technique that's applied by a model optimization job.

Members
Image
Type: string

The URI of an LMI DLC in Amazon ECR. SageMaker uses this image to run the optimization.

OverrideEnvironment
Type: Associative array of custom strings keys (NonEmptyString256) to strings

Environment variables that override the default ones in the model container.

ModelRegisterSettings

Description

The model registry settings for the SageMaker Canvas application.

Members
CrossAccountModelRegisterRoleArn
Type: string

The Amazon Resource Name (ARN) of the SageMaker model registry account. Required only to register model versions created by a different SageMaker Canvas Amazon Web Services account than the Amazon Web Services account in which SageMaker model registry is set up.

Status
Type: string

Describes whether the integration to the model registry is enabled or disabled in the Canvas application.

ModelShardingConfig

Description

Settings for the model sharding technique that's applied by a model optimization job.

Members
Image
Type: string

The URI of an LMI DLC in Amazon ECR. SageMaker uses this image to run the optimization.

OverrideEnvironment
Type: Associative array of custom strings keys (NonEmptyString256) to strings

Environment variables that override the default ones in the model container.

ModelStepMetadata

Description

Metadata for Model steps.

Members
Arn
Type: string

The Amazon Resource Name (ARN) of the created model.

ModelSummary

Description

Provides summary information about a model.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that indicates when the model was created.

ModelArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the model.

ModelName
Required: Yes
Type: string

The name of the model that you want a summary for.

ModelVariantConfig

Description

Contains information about the deployment options of a model.

Members
InfrastructureConfig
Required: Yes
Type: ModelInfrastructureConfig structure

The configuration for the infrastructure that the model will be deployed to.

ModelName
Required: Yes
Type: string

The name of the Amazon SageMaker Model entity.

VariantName
Required: Yes
Type: string

The name of the variant.

ModelVariantConfigSummary

Description

Summary of the deployment configuration of a model.

Members
InfrastructureConfig
Required: Yes
Type: ModelInfrastructureConfig structure

The configuration of the infrastructure that the model has been deployed to.

ModelName
Required: Yes
Type: string

The name of the Amazon SageMaker Model entity.

Status
Required: Yes
Type: string

The status of deployment for the model variant on the hosted inference endpoint.

  • Creating - Amazon SageMaker is preparing the model variant on the hosted inference endpoint.

  • InService - The model variant is running on the hosted inference endpoint.

  • Updating - Amazon SageMaker is updating the model variant on the hosted inference endpoint.

  • Deleting - Amazon SageMaker is deleting the model variant on the hosted inference endpoint.

  • Deleted - The model variant has been deleted on the hosted inference endpoint. This can only happen after stopping the experiment.

VariantName
Required: Yes
Type: string

The name of the variant.

MonitoringAlertActions

Description

A list of alert actions taken in response to an alert going into InAlert status.

Members
ModelDashboardIndicator

An alert action taken to light up an icon on the Model Dashboard when an alert goes into InAlert status.

MonitoringAlertHistorySummary

Description

Provides summary information of an alert's history.

Members
AlertStatus
Required: Yes
Type: string

The current alert status of an alert.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that indicates when the first alert transition occurred in an alert history. An alert transition can be from status InAlert to OK, or from OK to InAlert.

MonitoringAlertName
Required: Yes
Type: string

The name of a monitoring alert.

MonitoringScheduleName
Required: Yes
Type: string

The name of a monitoring schedule.

MonitoringAlertSummary

Description

Provides summary information about a monitor alert.

Members
Actions
Required: Yes
Type: MonitoringAlertActions structure

A list of alert actions taken in response to an alert going into InAlert status.

AlertStatus
Required: Yes
Type: string

The current status of an alert.

CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that indicates when a monitor alert was created.

DatapointsToAlert
Required: Yes
Type: int

Within EvaluationPeriod, how many execution failures will raise an alert.

EvaluationPeriod
Required: Yes
Type: int

The number of most recent monitoring executions to consider when evaluating alert status.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that indicates when a monitor alert was last updated.

MonitoringAlertName
Required: Yes
Type: string

The name of a monitoring alert.

MonitoringAppSpecification

Description

Container image configuration object for the monitoring job.

Members
ContainerArguments
Type: Array of strings

An array of arguments for the container used to run the monitoring job.

ContainerEntrypoint
Type: Array of strings

Specifies the entrypoint for a container used to run the monitoring job.

ImageUri
Required: Yes
Type: string

The container image to be run by the monitoring job.

PostAnalyticsProcessorSourceUri
Type: string

An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.

RecordPreprocessorSourceUri
Type: string

An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flattened JSON so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.

MonitoringBaselineConfig

Description

Configuration for monitoring constraints and monitoring statistics. These baseline resources are compared against the results of the current job from the series of jobs scheduled to collect data periodically.

Members
BaseliningJobName
Type: string

The name of the job that performs baselining for the monitoring job.

ConstraintsResource

The baseline constraint file in Amazon S3 that the current monitoring job should validated against.

StatisticsResource

The baseline statistics file in Amazon S3 that the current monitoring job should be validated against.

MonitoringClusterConfig

Description

Configuration for the cluster used to run model monitoring jobs.

Members
InstanceCount
Required: Yes
Type: int

The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

InstanceType
Required: Yes
Type: string

The ML compute instance type for the processing job.

VolumeKmsKeyId
Type: string

The Key Management Service (KMS) key that Amazon SageMaker AI uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

VolumeSizeInGB
Required: Yes
Type: int

The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

MonitoringConstraintsResource

Description

The constraints resource for a monitoring job.

Members
S3Uri
Type: string

The Amazon S3 URI for the constraints resource.

MonitoringCsvDatasetFormat

Description

Represents the CSV dataset format used when running a monitoring job.

Members
Header
Type: boolean

Indicates if the CSV data has a header.

MonitoringExecutionSummary

Description

Summary of information about the last monitoring job to run.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time at which the monitoring job was created.

EndpointName
Type: string

The name of the endpoint used to run the monitoring job.

FailureReason
Type: string

Contains the reason a monitoring job failed, if it failed.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that indicates the last time the monitoring job was modified.

MonitoringExecutionStatus
Required: Yes
Type: string

The status of the monitoring job.

MonitoringJobDefinitionName
Type: string

The name of the monitoring job.

MonitoringScheduleName
Required: Yes
Type: string

The name of the monitoring schedule.

MonitoringType
Type: string

The type of the monitoring job.

ProcessingJobArn
Type: string

The Amazon Resource Name (ARN) of the monitoring job.

ScheduledTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time the monitoring job was scheduled.

MonitoringGroundTruthS3Input

Description

The ground truth labels for the dataset used for the monitoring job.

Members
S3Uri
Type: string

The address of the Amazon S3 location of the ground truth labels.

MonitoringInput

Description

The inputs for a monitoring job.

Members
BatchTransformInput
Type: BatchTransformInput structure

Input object for the batch transform job.

EndpointInput
Type: EndpointInput structure

The endpoint for a monitoring job.

MonitoringJobDefinition

Description

Defines the monitoring job.

Members
BaselineConfig
Type: MonitoringBaselineConfig structure

Baseline configuration used to validate that the data conforms to the specified constraints and statistics

Environment
Type: Associative array of custom strings keys (ProcessingEnvironmentKey) to strings

Sets the environment variables in the Docker container.

MonitoringAppSpecification
Required: Yes
Type: MonitoringAppSpecification structure

Configures the monitoring job to run a specified Docker container image.

MonitoringInputs
Required: Yes
Type: Array of MonitoringInput structures

The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker AI Endpoint.

MonitoringOutputConfig
Required: Yes
Type: MonitoringOutputConfig structure

The array of outputs from the monitoring job to be uploaded to Amazon S3.

MonitoringResources
Required: Yes
Type: MonitoringResources structure

Identifies the resources, ML compute instances, and ML storage volumes to deploy for a monitoring job. In distributed processing, you specify more than one instance.

NetworkConfig
Type: NetworkConfig structure

Specifies networking options for an monitoring job.

RoleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.

StoppingCondition
Type: MonitoringStoppingCondition structure

Specifies a time limit for how long the monitoring job is allowed to run.

MonitoringJobDefinitionSummary

Description

Summary information about a monitoring job.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the monitoring job was created.

EndpointName
Required: Yes
Type: string

The name of the endpoint that the job monitors.

MonitoringJobDefinitionArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the monitoring job.

MonitoringJobDefinitionName
Required: Yes
Type: string

The name of the monitoring job.

MonitoringJsonDatasetFormat

Description

Represents the JSON dataset format used when running a monitoring job.

Members
Line
Type: boolean

Indicates if the file should be read as a JSON object per line.

MonitoringNetworkConfig

Description

The networking configuration for the monitoring job.

Members
EnableInterContainerTrafficEncryption
Type: boolean

Whether to encrypt all communications between the instances used for the monitoring jobs. Choose True to encrypt communications. Encryption provides greater security for distributed jobs, but the processing might take longer.

EnableNetworkIsolation
Type: boolean

Whether to allow inbound and outbound network calls to and from the containers used for the monitoring job.

VpcConfig
Type: VpcConfig structure

Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC.

MonitoringOutput

Description

The output object for a monitoring job.

Members
S3Output
Required: Yes
Type: MonitoringS3Output structure

The Amazon S3 storage location where the results of a monitoring job are saved.

MonitoringOutputConfig

Description

The output configuration for monitoring jobs.

Members
KmsKeyId
Type: string

The Key Management Service (KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.

MonitoringOutputs
Required: Yes
Type: Array of MonitoringOutput structures

Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.

MonitoringParquetDatasetFormat

Description

Represents the Parquet dataset format used when running a monitoring job.

Members

MonitoringResources

Description

Identifies the resources to deploy for a monitoring job.

Members
ClusterConfig
Required: Yes
Type: MonitoringClusterConfig structure

The configuration for the cluster resources used to run the processing job.

MonitoringS3Output

Description

Information about where and how you want to store the results of a monitoring job.

Members
LocalPath
Required: Yes
Type: string

The local path to the Amazon S3 storage location where Amazon SageMaker AI saves the results of a monitoring job. LocalPath is an absolute path for the output data.

S3UploadMode
Type: string

Whether to upload the results of the monitoring job continuously or after the job completes.

S3Uri
Required: Yes
Type: string

A URI that identifies the Amazon S3 storage location where Amazon SageMaker AI saves the results of a monitoring job.

MonitoringSchedule

Description

A schedule for a model monitoring job. For information about model monitor, see Amazon SageMaker Model Monitor.

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the monitoring schedule was created.

EndpointName
Type: string

The endpoint that hosts the model being monitored.

FailureReason
Type: string

If the monitoring schedule failed, the reason it failed.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last time the monitoring schedule was changed.

LastMonitoringExecutionSummary
Type: MonitoringExecutionSummary structure

Summary of information about the last monitoring job to run.

MonitoringScheduleArn
Type: string

The Amazon Resource Name (ARN) of the monitoring schedule.

MonitoringScheduleConfig
Type: MonitoringScheduleConfig structure

Configures the monitoring schedule and defines the monitoring job.

MonitoringScheduleName
Type: string

The name of the monitoring schedule.

MonitoringScheduleStatus
Type: string

The status of the monitoring schedule. This can be one of the following values.

  • PENDING - The schedule is pending being created.

  • FAILED - The schedule failed.

  • SCHEDULED - The schedule was successfully created.

  • STOPPED - The schedule was stopped.

MonitoringType
Type: string

The type of the monitoring job definition to schedule.

Tags
Type: Array of Tag structures

A list of the tags associated with the monitoring schedlue. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.

MonitoringScheduleConfig

Description

Configures the monitoring schedule and defines the monitoring job.

Members
MonitoringJobDefinition
Type: MonitoringJobDefinition structure

Defines the monitoring job.

MonitoringJobDefinitionName
Type: string

The name of the monitoring job definition to schedule.

MonitoringType
Type: string

The type of the monitoring job definition to schedule.

ScheduleConfig
Type: ScheduleConfig structure

Configures the monitoring schedule.

MonitoringScheduleSummary

Description

Summarizes the monitoring schedule.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time of the monitoring schedule.

EndpointName
Type: string

The name of the endpoint using the monitoring schedule.

LastModifiedTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last time the monitoring schedule was modified.

MonitoringJobDefinitionName
Type: string

The name of the monitoring job definition that the schedule is for.

MonitoringScheduleArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the monitoring schedule.

MonitoringScheduleName
Required: Yes
Type: string

The name of the monitoring schedule.

MonitoringScheduleStatus
Required: Yes
Type: string

The status of the monitoring schedule.

MonitoringType
Type: string

The type of the monitoring job definition that the schedule is for.

MonitoringStatisticsResource

Description

The statistics resource for a monitoring job.

Members
S3Uri
Type: string

The Amazon S3 URI for the statistics resource.

MonitoringStoppingCondition

Description

A time limit for how long the monitoring job is allowed to run before stopping.

Members
MaxRuntimeInSeconds
Required: Yes
Type: int

The maximum runtime allowed in seconds.

The MaxRuntimeInSeconds cannot exceed the frequency of the job. For data quality and model explainability, this can be up to 3600 seconds for an hourly schedule. For model bias and model quality hourly schedules, this can be up to 1800 seconds.

MultiModelConfig

Description

Specifies additional configuration for hosting multi-model endpoints.

Members
ModelCacheSetting
Type: string

Whether to cache models for a multi-model endpoint. By default, multi-model endpoints cache models so that a model does not have to be loaded into memory each time it is invoked. Some use cases do not benefit from model caching. For example, if an endpoint hosts a large number of models that are each invoked infrequently, the endpoint might perform better if you disable model caching. To disable model caching, set the value of this parameter to Disabled.

NeoVpcConfig

Description

The VpcConfig configuration object that specifies the VPC that you want the compilation jobs to connect to. For more information on controlling access to your Amazon S3 buckets used for compilation job, see Give Amazon SageMaker AI Compilation Jobs Access to Resources in Your Amazon VPC.

Members
SecurityGroupIds
Required: Yes
Type: Array of strings

The VPC security group IDs. IDs have the form of sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

Subnets
Required: Yes
Type: Array of strings

The ID of the subnets in the VPC that you want to connect the compilation job to for accessing the model in Amazon S3.

NestedFilters

Description

A list of nested Filter objects. A resource must satisfy the conditions of all filters to be included in the results returned from the Search API.

For example, to filter on a training job's InputDataConfig property with a specific channel name and S3Uri prefix, define the following filters:

  • '{Name:"InputDataConfig.ChannelName", "Operator":"Equals", "Value":"train"}',

  • '{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri", "Operator":"Contains", "Value":"mybucket/catdata"}'

Members
Filters
Required: Yes
Type: Array of Filter structures

A list of filters. Each filter acts on a property. Filters must contain at least one Filters value. For example, a NestedFilters call might include a filter on the PropertyName parameter of the InputDataConfig property: InputDataConfig.DataSource.S3DataSource.S3Uri.

NestedPropertyName
Required: Yes
Type: string

The name of the property to use in the nested filters. The value must match a listed property name, such as InputDataConfig.

NetworkConfig

Description

Networking options for a job, such as network traffic encryption between containers, whether to allow inbound and outbound network calls to and from containers, and the VPC subnets and security groups to use for VPC-enabled jobs.

Members
EnableInterContainerTrafficEncryption
Type: boolean

Whether to encrypt all communications between distributed processing jobs. Choose True to encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.

EnableNetworkIsolation
Type: boolean

Whether to allow inbound and outbound network calls to and from the containers used for the processing job.

VpcConfig
Type: VpcConfig structure

Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC.

NotebookInstanceLifecycleConfigSummary

Description

Provides a summary of a notebook instance lifecycle configuration.

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that tells when the lifecycle configuration was created.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that tells when the lifecycle configuration was last modified.

NotebookInstanceLifecycleConfigArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the lifecycle configuration.

NotebookInstanceLifecycleConfigName
Required: Yes
Type: string

The name of the lifecycle configuration.

NotebookInstanceLifecycleHook

Description

Contains the notebook instance lifecycle configuration script.

Each lifecycle configuration script has a limit of 16384 characters.

The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin.

View Amazon CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook].

Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.

For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

Members
Content
Type: string

A base64-encoded string that contains a shell script for a notebook instance lifecycle configuration.

NotebookInstanceSummary

Description

Provides summary information for an SageMaker AI notebook instance.

Members
AdditionalCodeRepositories
Type: Array of strings

An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the notebook instance was created.

DefaultCodeRepository
Type: string

The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.

InstanceType
Type: string

The type of ML compute instance that the notebook instance is running on.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the notebook instance was last modified.

NotebookInstanceArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the notebook instance.

NotebookInstanceLifecycleConfigName
Type: string

The name of a notebook instance lifecycle configuration associated with this notebook instance.

For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

NotebookInstanceName
Required: Yes
Type: string

The name of the notebook instance that you want a summary for.

NotebookInstanceStatus
Type: string

The status of the notebook instance.

Url
Type: string

The URL that you use to connect to the Jupyter notebook running in your notebook instance.

NotificationConfiguration

Description

Configures Amazon SNS notifications of available or expiring work items for work teams.

Members
NotificationTopicArn
Type: string

The ARN for the Amazon SNS topic to which notifications should be published.

ObjectiveStatusCounters

Description

Specifies the number of training jobs that this hyperparameter tuning job launched, categorized by the status of their objective metric. The objective metric status shows whether the final objective metric for the training job has been evaluated by the tuning job and used in the hyperparameter tuning process.

Members
Failed
Type: int

The number of training jobs whose final objective metric was not evaluated and used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.

Pending
Type: int

The number of training jobs that are in progress and pending evaluation of their final objective metric.

Succeeded
Type: int

The number of training jobs whose final objective metric was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.

OfflineStoreConfig

Description

The configuration of an OfflineStore.

Provide an OfflineStoreConfig in a request to CreateFeatureGroup to create an OfflineStore.

To encrypt an OfflineStore using at rest data encryption, specify Amazon Web Services Key Management Service (KMS) key ID, or KMSKeyId, in S3StorageConfig.

Members
DataCatalogConfig
Type: DataCatalogConfig structure

The meta data of the Glue table that is autogenerated when an OfflineStore is created.

DisableGlueTableCreation
Type: boolean

Set to True to disable the automatic creation of an Amazon Web Services Glue table when configuring an OfflineStore. If set to False, Feature Store will name the OfflineStore Glue table following Athena's naming recommendations.

The default value is False.

S3StorageConfig
Required: Yes
Type: S3StorageConfig structure

The Amazon Simple Storage (Amazon S3) location of OfflineStore.

TableFormat
Type: string

Format for the offline store table. Supported formats are Glue (Default) and Apache Iceberg.

OfflineStoreStatus

Description

The status of OfflineStore.

Members
BlockedReason
Type: string

The justification for why the OfflineStoreStatus is Blocked (if applicable).

Status
Required: Yes
Type: string

An OfflineStore status.

OidcConfig

Description

Use this parameter to configure your OIDC Identity Provider (IdP).

Members
AuthenticationRequestExtraParams
Type: Associative array of custom strings keys (AuthenticationRequestExtraParamsKey) to strings

A string to string map of identifiers specific to the custom identity provider (IdP) being used.

AuthorizationEndpoint
Required: Yes
Type: string

The OIDC IdP authorization endpoint used to configure your private workforce.

ClientId
Required: Yes
Type: string

The OIDC IdP client ID used to configure your private workforce.

ClientSecret
Required: Yes
Type: string

The OIDC IdP client secret used to configure your private workforce.

Issuer
Required: Yes
Type: string

The OIDC IdP issuer used to configure your private workforce.

JwksUri
Required: Yes
Type: string

The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.

LogoutEndpoint
Required: Yes
Type: string

The OIDC IdP logout endpoint used to configure your private workforce.

Scope
Type: string

An array of string identifiers used to refer to the specific pieces of user data or claims that the client application wants to access.

TokenEndpoint
Required: Yes
Type: string

The OIDC IdP token endpoint used to configure your private workforce.

UserInfoEndpoint
Required: Yes
Type: string

The OIDC IdP user information endpoint used to configure your private workforce.

OidcConfigForResponse

Description

Your OIDC IdP workforce configuration.

Members
AuthenticationRequestExtraParams
Type: Associative array of custom strings keys (AuthenticationRequestExtraParamsKey) to strings

A string to string map of identifiers specific to the custom identity provider (IdP) being used.

AuthorizationEndpoint
Type: string

The OIDC IdP authorization endpoint used to configure your private workforce.

ClientId
Type: string

The OIDC IdP client ID used to configure your private workforce.

Issuer
Type: string

The OIDC IdP issuer used to configure your private workforce.

JwksUri
Type: string

The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.

LogoutEndpoint
Type: string

The OIDC IdP logout endpoint used to configure your private workforce.

Scope
Type: string

An array of string identifiers used to refer to the specific pieces of user data or claims that the client application wants to access.

TokenEndpoint
Type: string

The OIDC IdP token endpoint used to configure your private workforce.

UserInfoEndpoint
Type: string

The OIDC IdP user information endpoint used to configure your private workforce.

OidcMemberDefinition

Description

A list of user groups that exist in your OIDC Identity Provider (IdP). One to ten groups can be used to create a single private work team. When you add a user group to the list of Groups, you can add that user group to one or more private work teams. If you add a user group to a private work team, all workers in that user group are added to the work team.

Members
Groups
Type: Array of strings

A list of comma seperated strings that identifies user groups in your OIDC IdP. Each user group is made up of a group of private workers.

OnlineStoreConfig

Description

Use this to specify the Amazon Web Services Key Management Service (KMS) Key ID, or KMSKeyId, for at rest data encryption. You can turn OnlineStore on or off by specifying the EnableOnlineStore flag at General Assembly.

The default value is False.

Members
EnableOnlineStore
Type: boolean

Turn OnlineStore off by specifying False for the EnableOnlineStore flag. Turn OnlineStore on by specifying True for the EnableOnlineStore flag.

The default value is False.

SecurityConfig
Type: OnlineStoreSecurityConfig structure

Use to specify KMS Key ID (KMSKeyId) for at-rest encryption of your OnlineStore.

StorageType
Type: string

Option for different tiers of low latency storage for real-time data retrieval.

  • Standard: A managed low latency data store for feature groups.

  • InMemory: A managed data store for feature groups that supports very low latency retrieval.

TtlDuration
Type: TtlDuration structure

Time to live duration, where the record is hard deleted after the expiration time is reached; ExpiresAt = EventTime + TtlDuration. For information on HardDelete, see the DeleteRecord API in the Amazon SageMaker API Reference guide.

OnlineStoreConfigUpdate

Description

Updates the feature group online store configuration.

Members
TtlDuration
Type: TtlDuration structure

Time to live duration, where the record is hard deleted after the expiration time is reached; ExpiresAt = EventTime + TtlDuration. For information on HardDelete, see the DeleteRecord API in the Amazon SageMaker API Reference guide.

OnlineStoreSecurityConfig

Description

The security configuration for OnlineStore.

Members
KmsKeyId
Type: string

The Amazon Web Services Key Management Service (KMS) key ARN that SageMaker Feature Store uses to encrypt the Amazon S3 objects at rest using Amazon S3 server-side encryption.

The caller (either user or IAM role) of CreateFeatureGroup must have below permissions to the OnlineStore KmsKeyId:

  • "kms:Encrypt"

  • "kms:Decrypt"

  • "kms:DescribeKey"

  • "kms:CreateGrant"

  • "kms:RetireGrant"

  • "kms:ReEncryptFrom"

  • "kms:ReEncryptTo"

  • "kms:GenerateDataKey"

  • "kms:ListAliases"

  • "kms:ListGrants"

  • "kms:RevokeGrant"

The caller (either user or IAM role) to all DataPlane operations (PutRecord, GetRecord, DeleteRecord) must have the following permissions to the KmsKeyId:

  • "kms:Decrypt"

OptimizationConfig

Description

Settings for an optimization technique that you apply with a model optimization job.

Members
ModelCompilationConfig
Type: ModelCompilationConfig structure

Settings for the model compilation technique that's applied by a model optimization job.

ModelQuantizationConfig
Type: ModelQuantizationConfig structure

Settings for the model quantization technique that's applied by a model optimization job.

ModelShardingConfig
Type: ModelShardingConfig structure

Settings for the model sharding technique that's applied by a model optimization job.

OptimizationJobModelSource

Description

The location of the source model to optimize with an optimization job.

Members
S3

The Amazon S3 location of a source model to optimize with an optimization job.

OptimizationJobModelSourceS3

Description

The Amazon S3 location of a source model to optimize with an optimization job.

Members
ModelAccessConfig

The access configuration settings for the source ML model for an optimization job, where you can accept the model end-user license agreement (EULA).

S3Uri
Type: string

An Amazon S3 URI that locates a source model to optimize with an optimization job.

OptimizationJobOutputConfig

Description

Details for where to store the optimized model that you create with the optimization job.

Members
KmsKeyId
Type: string

The Amazon Resource Name (ARN) of a key in Amazon Web Services KMS. SageMaker uses they key to encrypt the artifacts of the optimized model when SageMaker uploads the model to Amazon S3.

S3OutputLocation
Required: Yes
Type: string

The Amazon S3 URI for where to store the optimized model that you create with an optimization job.

OptimizationJobSummary

Description

Summarizes an optimization job by providing some of its key properties.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when you created the optimization job.

DeploymentInstanceType
Required: Yes
Type: string

The type of instance that hosts the optimized model that you create with the optimization job.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the optimization job was last updated.

OptimizationEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the optimization job finished processing.

OptimizationJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the optimization job.

OptimizationJobName
Required: Yes
Type: string

The name that you assigned to the optimization job.

OptimizationJobStatus
Required: Yes
Type: string

The current status of the optimization job.

OptimizationStartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the optimization job started.

OptimizationTypes
Required: Yes
Type: Array of strings

The optimization techniques that are applied by the optimization job.

OptimizationModelAccessConfig

Description

The access configuration settings for the source ML model for an optimization job, where you can accept the model end-user license agreement (EULA).

Members
AcceptEula
Required: Yes
Type: boolean

Specifies agreement to the model end-user license agreement (EULA). The AcceptEula value must be explicitly defined as True in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.

OptimizationOutput

Description

Output values produced by an optimization job.

Members
RecommendedInferenceImage
Type: string

The image that SageMaker recommends that you use to host the optimized model that you created with an optimization job.

OptimizationVpcConfig

Description

A VPC in Amazon VPC that's accessible to an optimized that you create with an optimization job. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC.

Members
SecurityGroupIds
Required: Yes
Type: Array of strings

The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

Subnets
Required: Yes
Type: Array of strings

The ID of the subnets in the VPC to which you want to connect your optimized model.

OutputConfig

Description

Contains information about the output location for the compiled model and the target device that the model runs on. TargetDevice and TargetPlatform are mutually exclusive, so you need to choose one between the two to specify your target device or platform. If you cannot find your device you want to use from the TargetDevice list, use TargetPlatform to describe the platform of your edge device and CompilerOptions if there are specific settings that are required or recommended to use for particular TargetPlatform.

Members
CompilerOptions
Type: string

Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions.

  • DTYPE: Specifies the data type for the input. When compiling for ml_* (except for ml_inf) instances using PyTorch framework, provide the data type (dtype) of the model's input. "float32" is used if "DTYPE" is not specified. Options for data type are:

    • float32: Use either "float" or "float32".

    • int64: Use either "int64" or "long".

    For example, {"dtype" : "float32"}.

  • CPU: Compilation for CPU supports the following compiler options.

    • mcpu: CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'}

    • mattr: CPU flags. For example, {'mattr': ['+neon', '+vfpv4']}

  • ARM: Details of ARM CPU compilations.

    • NEON: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors.

      For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support.

  • NVIDIA: Compilation for NVIDIA GPU supports the following compiler options.

    • gpu_code: Specifies the targeted architecture.

    • trt-ver: Specifies the TensorRT versions in x.y.z. format.

    • cuda-ver: Specifies the CUDA version in x.y format.

    For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'}

  • ANDROID: Compilation for the Android OS supports the following compiler options:

    • ANDROID_PLATFORM: Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28}.

    • mattr: Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support.

  • INFERENTIA: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, "CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\"".

    For information about supported compiler options, see Neuron Compiler CLI Reference Guide.

  • CoreML: Compilation for the CoreML OutputConfig TargetDevice supports the following compiler options:

    • class_labels: Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"}. Labels inside the txt file should be separated by newlines.

KmsKeyId
Type: string

The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker AI uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker AI uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

The KmsKeyId can be any of the following formats:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

  • Alias name: alias/ExampleAlias

  • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

S3OutputLocation
Required: Yes
Type: string

Identifies the S3 bucket where you want Amazon SageMaker AI to store the model artifacts. For example, s3://bucket-name/key-name-prefix.

TargetDevice
Type: string

Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform.

Currently ml_trn1 is available only in US East (N. Virginia) Region, and ml_inf2 is available only in US East (Ohio) Region.

TargetPlatform
Type: TargetPlatform structure

Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice.

The following examples show how to configure the TargetPlatform and CompilerOptions JSON strings for popular target platforms:

  • Raspberry Pi 3 Model B+

    "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"},

    "CompilerOptions": {'mattr': ['+neon']}

  • Jetson TX2

    "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"},

    "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'}

  • EC2 m5.2xlarge instance OS

    "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"},

    "CompilerOptions": {'mcpu': 'skylake-avx512'}

  • RK3399

    "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"}

  • ARMv7 phone (CPU)

    "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},

    "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}

  • ARMv8 phone (CPU)

    "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},

    "CompilerOptions": {'ANDROID_PLATFORM': 29}

OutputDataConfig

Description

Provides information about how to store model training results (model artifacts).

Members
CompressionType
Type: string

The model output compression type. Select None to output an uncompressed model, recommended for large model outputs. Defaults to gzip.

KmsKeyId
Type: string

The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

  • // KMS Key ID

    "1234abcd-12ab-34cd-56ef-1234567890ab"

  • // Amazon Resource Name (ARN) of a KMS Key

    "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

  • // KMS Key Alias

    "alias/ExampleAlias"

  • // Amazon Resource Name (ARN) of a KMS Key Alias

    "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. If the output data is stored in Amazon S3 Express One Zone, it is encrypted with server-side encryption with Amazon S3 managed keys (SSE-S3). KMS key is not supported for Amazon S3 Express One Zone

The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob, CreateTransformJob, or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.

S3OutputPath
Required: Yes
Type: string

Identifies the S3 path where you want SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.

OutputParameter

Description

An output parameter of a pipeline step.

Members
Name
Required: Yes
Type: string

The name of the output parameter.

Value
Required: Yes
Type: string

The value of the output parameter.

OwnershipSettings

Description

The collection of ownership settings for a space.

Members
OwnerUserProfileName
Required: Yes
Type: string

The user profile who is the owner of the space.

OwnershipSettingsSummary

Description

Specifies summary information about the ownership settings.

Members
OwnerUserProfileName
Type: string

The user profile who is the owner of the space.

ParallelismConfiguration

Description

Configuration that controls the parallelism of the pipeline. By default, the parallelism configuration specified applies to all executions of the pipeline unless overridden.

Members
MaxParallelExecutionSteps
Required: Yes
Type: int

The max number of steps that can be executed in parallel.

Parameter

Description

Assigns a value to a named Pipeline parameter.

Members
Name
Required: Yes
Type: string

The name of the parameter to assign a value to. This parameter name must match a named parameter in the pipeline definition.

Value
Required: Yes
Type: string

The literal value for the parameter.

ParameterRange

Description

Defines the possible values for categorical, continuous, and integer hyperparameters to be used by an algorithm.

Members
CategoricalParameterRangeSpecification

A CategoricalParameterRangeSpecification object that defines the possible values for a categorical hyperparameter.

ContinuousParameterRangeSpecification

A ContinuousParameterRangeSpecification object that defines the possible values for a continuous hyperparameter.

IntegerParameterRangeSpecification

A IntegerParameterRangeSpecification object that defines the possible values for an integer hyperparameter.

ParameterRanges

Description

Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.

The maximum number of items specified for Array Members refers to the maximum number of hyperparameters for each range and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of hyperparameters for all the ranges can't exceed the maximum number specified.

Members
AutoParameters
Type: Array of AutoParameter structures

A list containing hyperparameter names and example values to be used by Autotune to determine optimal ranges for your tuning job.

CategoricalParameterRanges
Type: Array of CategoricalParameterRange structures

The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.

ContinuousParameterRanges
Type: Array of ContinuousParameterRange structures

The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.

IntegerParameterRanges
Type: Array of IntegerParameterRange structures

The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.

Parent

Description

The trial that a trial component is associated with and the experiment the trial is part of. A component might not be associated with a trial. A component can be associated with multiple trials.

Members
ExperimentName
Type: string

The name of the experiment.

TrialName
Type: string

The name of the trial.

ParentHyperParameterTuningJob

Description

A previously completed or stopped hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.

Members
HyperParameterTuningJobName
Type: string

The name of the hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.

PartnerAppConfig

Description

Configuration settings for the SageMaker Partner AI App.

Members
AdminUsers
Type: Array of strings

The list of users that are given admin access to the SageMaker Partner AI App.

Arguments
Type: Associative array of custom strings keys (NonEmptyString256) to strings

This is a map of required inputs for a SageMaker Partner AI App. Based on the application type, the map is populated with a key and value pair that is specific to the user and application.

PartnerAppMaintenanceConfig

Description

Maintenance configuration settings for the SageMaker Partner AI App.

Members
MaintenanceWindowStart
Type: string

The day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. This value must take the following format: 3-letter-day:24-h-hour:minute. For example: TUE:03:30.

PartnerAppSummary

Description

A subset of information related to a SageMaker Partner AI App. This information is used as part of the ListPartnerApps API response.

Members
Arn
Type: string

The ARN of the SageMaker Partner AI App.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time of the SageMaker Partner AI App.

Name
Type: string

The name of the SageMaker Partner AI App.

Status
Type: string

The status of the SageMaker Partner AI App.

Type
Type: string

The type of SageMaker Partner AI App to create. Must be one of the following: lakera-guard, comet, deepchecks-llm-evaluation, or fiddler.

PendingDeploymentSummary

Description

The summary of an in-progress deployment when an endpoint is creating or updating with a new endpoint configuration.

Members
EndpointConfigName
Required: Yes
Type: string

The name of the endpoint configuration used in the deployment.

ProductionVariants
Type: Array of PendingProductionVariantSummary structures

An array of PendingProductionVariantSummary objects, one for each model hosted behind this endpoint for the in-progress deployment.

ShadowProductionVariants
Type: Array of PendingProductionVariantSummary structures

An array of PendingProductionVariantSummary objects, one for each model hosted behind this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants for the in-progress deployment.

StartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The start time of the deployment.

PendingProductionVariantSummary

Description

The production variant summary for a deployment when an endpoint is creating or updating with the CreateEndpoint or UpdateEndpoint operations. Describes the VariantStatus , weight and capacity for a production variant associated with an endpoint.

Members
AcceleratorType
Type: string

This parameter is no longer supported. Elastic Inference (EI) is no longer available.

This parameter was used to specify the size of the EI instance to use for the production variant.

CurrentInstanceCount
Type: int

The number of instances associated with the variant.

CurrentServerlessConfig

The serverless configuration for the endpoint.

CurrentWeight
Type: float

The weight associated with the variant.

DeployedImages
Type: Array of DeployedImage structures

An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant.

DesiredInstanceCount
Type: int

The number of instances requested in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.

DesiredServerlessConfig

The serverless configuration requested for this deployment, as specified in the endpoint configuration for the endpoint.

DesiredWeight
Type: float

The requested weight for the variant in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.

InstanceType
Type: string

The type of instances associated with the variant.

ManagedInstanceScaling

Settings that control the range in the number of instances that the endpoint provisions as it scales up or down to accommodate traffic.

RoutingConfig

Settings that control how the endpoint routes incoming traffic to the instances that the endpoint hosts.

VariantName
Required: Yes
Type: string

The name of the variant.

VariantStatus
Type: Array of ProductionVariantStatus structures

The endpoint variant status which describes the current deployment stage status or operational status.

Phase

Description

Defines the traffic pattern.

Members
DurationInSeconds
Type: int

Specifies how long a traffic phase should be. For custom load tests, the value should be between 120 and 3600. This value should not exceed JobDurationInSeconds.

InitialNumberOfUsers
Type: int

Specifies how many concurrent users to start with. The value should be between 1 and 3.

SpawnRate
Type: int

Specified how many new users to spawn in a minute.

Pipeline

Description

A SageMaker Model Building Pipeline instance.

Members
CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time of the pipeline.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the pipeline was last modified.

LastRunTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time when the pipeline was last run.

ParallelismConfiguration
Type: ParallelismConfiguration structure

The parallelism configuration applied to the pipeline.

PipelineArn
Type: string

The Amazon Resource Name (ARN) of the pipeline.

PipelineDescription
Type: string

The description of the pipeline.

PipelineDisplayName
Type: string

The display name of the pipeline.

PipelineName
Type: string

The name of the pipeline.

PipelineStatus
Type: string

The status of the pipeline.

RoleArn
Type: string

The Amazon Resource Name (ARN) of the role that created the pipeline.

Tags
Type: Array of Tag structures

A list of tags that apply to the pipeline.

PipelineDefinitionS3Location

Description

The location of the pipeline definition stored in Amazon S3.

Members
Bucket
Required: Yes
Type: string

Name of the S3 bucket.

ObjectKey
Required: Yes
Type: string

The object key (or key name) uniquely identifies the object in an S3 bucket.

VersionId
Type: string

Version Id of the pipeline definition file. If not specified, Amazon SageMaker will retrieve the latest version.

PipelineExecution

Description

An execution of a pipeline.

Members
CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time of the pipeline execution.

FailureReason
Type: string

If the execution failed, a message describing why.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the pipeline execution was last modified.

ParallelismConfiguration
Type: ParallelismConfiguration structure

The parallelism configuration applied to the pipeline execution.

PipelineArn
Type: string

The Amazon Resource Name (ARN) of the pipeline that was executed.

PipelineExecutionArn
Type: string

The Amazon Resource Name (ARN) of the pipeline execution.

PipelineExecutionDescription
Type: string

The description of the pipeline execution.

PipelineExecutionDisplayName
Type: string

The display name of the pipeline execution.

PipelineExecutionStatus
Type: string

The status of the pipeline status.

PipelineExperimentConfig
Type: PipelineExperimentConfig structure

Specifies the names of the experiment and trial created by a pipeline.

PipelineParameters
Type: Array of Parameter structures

Contains a list of pipeline parameters. This list can be empty.

SelectiveExecutionConfig
Type: SelectiveExecutionConfig structure

The selective execution configuration applied to the pipeline run.

PipelineExecutionStep

Description

An execution of a step in a pipeline.

Members
AttemptCount
Type: int

The current attempt of the execution step. For more information, see Retry Policy for SageMaker Pipelines steps.

CacheHitResult
Type: CacheHitResult structure

If this pipeline execution step was cached, details on the cache hit.

EndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the step stopped executing.

FailureReason
Type: string

The reason why the step failed execution. This is only returned if the step failed its execution.

Metadata

Metadata to run the pipeline step.

SelectiveExecutionResult
Type: SelectiveExecutionResult structure

The ARN from an execution of the current pipeline from which results are reused for this step.

StartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the step started executing.

StepDescription
Type: string

The description of the step.

StepDisplayName
Type: string

The display name of the step.

StepName
Type: string

The name of the step that is executed.

StepStatus
Type: string

The status of the step execution.

PipelineExecutionStepMetadata

Description

Metadata for a step execution.

Members
AutoMLJob
Type: AutoMLJobStepMetadata structure

The Amazon Resource Name (ARN) of the AutoML job that was run by this step.

Callback
Type: CallbackStepMetadata structure

The URL of the Amazon SQS queue used by this step execution, the pipeline generated token, and a list of output parameters.

ClarifyCheck
Type: ClarifyCheckStepMetadata structure

Container for the metadata for a Clarify check step. The configurations and outcomes of the check step execution. This includes:

  • The type of the check conducted,

  • The Amazon S3 URIs of baseline constraints and statistics files to be used for the drift check.

  • The Amazon S3 URIs of newly calculated baseline constraints and statistics.

  • The model package group name provided.

  • The Amazon S3 URI of the violation report if violations detected.

  • The Amazon Resource Name (ARN) of check processing job initiated by the step execution.

  • The boolean flags indicating if the drift check is skipped.

  • If step property BaselineUsedForDriftCheck is set the same as CalculatedBaseline.

Condition
Type: ConditionStepMetadata structure

The outcome of the condition evaluation that was run by this step execution.

EMR
Type: EMRStepMetadata structure

The configurations and outcomes of an Amazon EMR step execution.

Endpoint
Type: EndpointStepMetadata structure

The endpoint that was invoked during this step execution.

EndpointConfig
Type: EndpointConfigStepMetadata structure

The endpoint configuration used to create an endpoint during this step execution.

Fail
Type: FailStepMetadata structure

The configurations and outcomes of a Fail step execution.

Lambda
Type: LambdaStepMetadata structure

The Amazon Resource Name (ARN) of the Lambda function that was run by this step execution and a list of output parameters.

Model
Type: ModelStepMetadata structure

The Amazon Resource Name (ARN) of the model that was created by this step execution.

ProcessingJob
Type: ProcessingJobStepMetadata structure

The Amazon Resource Name (ARN) of the processing job that was run by this step execution.

QualityCheck
Type: QualityCheckStepMetadata structure

The configurations and outcomes of the check step execution. This includes:

  • The type of the check conducted.

  • The Amazon S3 URIs of baseline constraints and statistics files to be used for the drift check.

  • The Amazon S3 URIs of newly calculated baseline constraints and statistics.

  • The model package group name provided.

  • The Amazon S3 URI of the violation report if violations detected.

  • The Amazon Resource Name (ARN) of check processing job initiated by the step execution.

  • The Boolean flags indicating if the drift check is skipped.

  • If step property BaselineUsedForDriftCheck is set the same as CalculatedBaseline.

RegisterModel
Type: RegisterModelStepMetadata structure

The Amazon Resource Name (ARN) of the model package that the model was registered to by this step execution.

TrainingJob
Type: TrainingJobStepMetadata structure

The Amazon Resource Name (ARN) of the training job that was run by this step execution.

TransformJob
Type: TransformJobStepMetadata structure

The Amazon Resource Name (ARN) of the transform job that was run by this step execution.

TuningJob
Type: TuningJobStepMetaData structure

The Amazon Resource Name (ARN) of the tuning job that was run by this step execution.

PipelineExecutionSummary

Description

A pipeline execution summary.

Members
PipelineExecutionArn
Type: string

The Amazon Resource Name (ARN) of the pipeline execution.

PipelineExecutionDescription
Type: string

The description of the pipeline execution.

PipelineExecutionDisplayName
Type: string

The display name of the pipeline execution.

PipelineExecutionFailureReason
Type: string

A message generated by SageMaker Pipelines describing why the pipeline execution failed.

PipelineExecutionStatus
Type: string

The status of the pipeline execution.

StartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The start time of the pipeline execution.

PipelineExperimentConfig

Description

Specifies the names of the experiment and trial created by a pipeline.

Members
ExperimentName
Type: string

The name of the experiment.

TrialName
Type: string

The name of the trial.

PipelineSummary

Description

A summary of a pipeline.

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time of the pipeline.

LastExecutionTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last time that a pipeline execution began.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the pipeline was last modified.

PipelineArn
Type: string

The Amazon Resource Name (ARN) of the pipeline.

PipelineDescription
Type: string

The description of the pipeline.

PipelineDisplayName
Type: string

The display name of the pipeline.

PipelineName
Type: string

The name of the pipeline.

RoleArn
Type: string

The Amazon Resource Name (ARN) that the pipeline used to execute.

PredefinedMetricSpecification

Description

A specification for a predefined metric.

Members
PredefinedMetricType
Type: string

The metric type. You can only apply SageMaker metric types to SageMaker endpoints.

PriorityClass

Description

Priority class configuration. When included in PriorityClasses, these class configurations define how tasks are queued.

Members
Name
Required: Yes
Type: string

Name of the priority class.

Weight
Required: Yes
Type: int

Weight of the priority class. The value is within a range from 0 to 100, where 0 is the default.

A weight of 0 is the lowest priority and 100 is the highest. Weight 0 is the default.

ProcessingClusterConfig

Description

Configuration for the cluster used to run a processing job.

Members
InstanceCount
Required: Yes
Type: int

The number of ML compute instances to use in the processing job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

InstanceType
Required: Yes
Type: string

The ML compute instance type for the processing job.

VolumeKmsKeyId
Type: string

The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the processing job.

Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

For a list of instance types that support local instance storage, see Instance Store Volumes.

For more information about local instance storage encryption, see SSD Instance Store Volumes.

VolumeSizeInGB
Required: Yes
Type: int

The size of the ML storage volume in gigabytes that you want to provision. You must specify sufficient ML storage for your scenario.

Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for processing, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.

For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.

ProcessingFeatureStoreOutput

Description

Configuration for processing job outputs in Amazon SageMaker Feature Store.

Members
FeatureGroupName
Required: Yes
Type: string

The name of the Amazon SageMaker FeatureGroup to use as the destination for processing job output. Note that your processing script is responsible for putting records into your Feature Store.

ProcessingInput

Description

The inputs for a processing job. The processing input must specify exactly one of either S3Input or DatasetDefinition types.

Members
AppManaged
Type: boolean

When True, input operations such as data download are managed natively by the processing job application. When False (default), input operations are managed by Amazon SageMaker.

DatasetDefinition
Type: DatasetDefinition structure

Configuration for a Dataset Definition input.

InputName
Required: Yes
Type: string

The name for the processing job input.

S3Input
Type: ProcessingS3Input structure

Configuration for downloading input data from Amazon S3 into the processing container.

ProcessingJob

Description

An Amazon SageMaker processing job that is used to analyze data and evaluate models. For more information, see Process Data and Evaluate Models.

Members
AppSpecification
Type: AppSpecification structure

Configuration to run a processing job in a specified container image.

AutoMLJobArn
Type: string

The Amazon Resource Name (ARN) of the AutoML job associated with this processing job.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time the processing job was created.

Environment
Type: Associative array of custom strings keys (ProcessingEnvironmentKey) to strings

Sets the environment variables in the Docker container.

ExitMessage
Type: string

A string, up to one KB in size, that contains metadata from the processing container when the processing job exits.

ExperimentConfig
Type: ExperimentConfig structure

Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

FailureReason
Type: string

A string, up to one KB in size, that contains the reason a processing job failed, if it failed.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time the processing job was last modified.

MonitoringScheduleArn
Type: string

The ARN of a monitoring schedule for an endpoint associated with this processing job.

NetworkConfig
Type: NetworkConfig structure

Networking options for a job, such as network traffic encryption between containers, whether to allow inbound and outbound network calls to and from containers, and the VPC subnets and security groups to use for VPC-enabled jobs.

ProcessingEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the processing job ended.

ProcessingInputs
Type: Array of ProcessingInput structures

List of input configurations for the processing job.

ProcessingJobArn
Type: string

The ARN of the processing job.

ProcessingJobName
Type: string

The name of the processing job.

ProcessingJobStatus
Type: string

The status of the processing job.

ProcessingOutputConfig
Type: ProcessingOutputConfig structure

Configuration for uploading output from the processing container.

ProcessingResources
Type: ProcessingResources structure

Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.

ProcessingStartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the processing job started.

RoleArn
Type: string

The ARN of the role used to create the processing job.

StoppingCondition
Type: ProcessingStoppingCondition structure

Configures conditions under which the processing job should be stopped, such as how long the processing job has been running. After the condition is met, the processing job is stopped.

Tags
Type: Array of Tag structures

An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.

TrainingJobArn
Type: string

The ARN of the training job associated with this processing job.

ProcessingJobStepMetadata

Description

Metadata for a processing job step.

Members
Arn
Type: string

The Amazon Resource Name (ARN) of the processing job.

ProcessingJobSummary

Description

Summary of information about a processing job.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time at which the processing job was created.

ExitMessage
Type: string

An optional string, up to one KB in size, that contains metadata from the processing container when the processing job exits.

FailureReason
Type: string

A string, up to one KB in size, that contains the reason a processing job failed, if it failed.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that indicates the last time the processing job was modified.

ProcessingEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time at which the processing job completed.

ProcessingJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the processing job..

ProcessingJobName
Required: Yes
Type: string

The name of the processing job.

ProcessingJobStatus
Required: Yes
Type: string

The status of the processing job.

ProcessingOutput

Description

Describes the results of a processing job. The processing output must specify exactly one of either S3Output or FeatureStoreOutput types.

Members
AppManaged
Type: boolean

When True, output operations such as data upload are managed natively by the processing job application. When False (default), output operations are managed by Amazon SageMaker.

FeatureStoreOutput

Configuration for processing job outputs in Amazon SageMaker Feature Store. This processing output type is only supported when AppManaged is specified.

OutputName
Required: Yes
Type: string

The name for the processing job output.

S3Output
Type: ProcessingS3Output structure

Configuration for processing job outputs in Amazon S3.

ProcessingOutputConfig

Description

Configuration for uploading output from the processing container.

Members
KmsKeyId
Type: string

The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the processing job output. KmsKeyId can be an ID of a KMS key, ARN of a KMS key, alias of a KMS key, or alias of a KMS key. The KmsKeyId is applied to all outputs.

Outputs
Required: Yes
Type: Array of ProcessingOutput structures

An array of outputs configuring the data to upload from the processing container.

ProcessingResources

Description

Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.

Members
ClusterConfig
Required: Yes
Type: ProcessingClusterConfig structure

The configuration for the resources in a cluster used to run the processing job.

ProcessingS3Input

Description

Configuration for downloading input data from Amazon S3 into the processing container.

Members
LocalPath
Type: string

The local path in your container where you want Amazon SageMaker to write input data to. LocalPath is an absolute path to the input data and must begin with /opt/ml/processing/. LocalPath is a required parameter when AppManaged is False (default).

S3CompressionType
Type: string

Whether to GZIP-decompress the data in Amazon S3 as it is streamed into the processing container. Gzip can only be used when Pipe mode is specified as the S3InputMode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your container without using the EBS volume.

S3DataDistributionType
Type: string

Whether to distribute the data from Amazon S3 to all processing instances with FullyReplicated, or whether the data from Amazon S3 is shared by Amazon S3 key, downloading one shard of data to each processing instance.

S3DataType
Required: Yes
Type: string

Whether you use an S3Prefix or a ManifestFile for the data type. If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for the processing job. If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for the processing job.

S3InputMode
Type: string

Whether to use File or Pipe input mode. In File mode, Amazon SageMaker copies the data from the input source onto the local ML storage volume before starting your processing container. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your processing container into named pipes without using the ML storage volume.

S3Uri
Required: Yes
Type: string

The URI of the Amazon S3 prefix Amazon SageMaker downloads data required to run a processing job.

ProcessingS3Output

Description

Configuration for uploading output data to Amazon S3 from the processing container.

Members
LocalPath
Type: string

The local path of a directory where you want Amazon SageMaker to upload its contents to Amazon S3. LocalPath is an absolute path to a directory containing output files. This directory will be created by the platform and exist when your container's entrypoint is invoked.

S3UploadMode
Required: Yes
Type: string

Whether to upload the results of the processing job continuously or after the job completes.

S3Uri
Required: Yes
Type: string

A URI that identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of a processing job.

ProcessingStoppingCondition

Description

Configures conditions under which the processing job should be stopped, such as how long the processing job has been running. After the condition is met, the processing job is stopped.

Members
MaxRuntimeInSeconds
Required: Yes
Type: int

Specifies the maximum runtime in seconds.

ProductionVariant

Description

Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell SageMaker how to distribute traffic among the models by specifying variant weights. For more information on production variants, check Production variants.

Members
AcceleratorType
Type: string

This parameter is no longer supported. Elastic Inference (EI) is no longer available.

This parameter was used to specify the size of the EI instance to use for the production variant.

ContainerStartupHealthCheckTimeoutInSeconds
Type: int

The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.

CoreDumpConfig

Specifies configuration for a core dump from the model container when the process crashes.

EnableSSMAccess
Type: boolean

You can use this parameter to turn on native Amazon Web Services Systems Manager (SSM) access for a production variant behind an endpoint. By default, SSM access is disabled for all production variants behind an endpoint. You can turn on or turn off SSM access for a production variant behind an existing endpoint by creating a new endpoint configuration and calling UpdateEndpoint.

InferenceAmiVersion
Type: string

Specifies an option from a collection of preconfigured Amazon Machine Image (AMI) images. Each image is configured by Amazon Web Services with a set of software and driver versions. Amazon Web Services optimizes these configurations for different machine learning workloads.

By selecting an AMI version, you can ensure that your inference environment is compatible with specific software requirements, such as CUDA driver versions, Linux kernel versions, or Amazon Web Services Neuron driver versions.

The AMI version names, and their configurations, are the following:

al2-ami-sagemaker-inference-gpu-2
  • Accelerator: GPU

  • NVIDIA driver version: 535.54.03

  • CUDA driver version: 12.2

  • Supported instance types: ml.g4dn.*, ml.g5.*, ml.g6.*, ml.p3.*, ml.p4d.*, ml.p4de.*, ml.p5.*

InitialInstanceCount
Type: int

Number of instances to launch initially.

InitialVariantWeight
Type: float

Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.

InstanceType
Type: string

The ML compute instance type.

ManagedInstanceScaling

Settings that control the range in the number of instances that the endpoint provisions as it scales up or down to accommodate traffic.

ModelDataDownloadTimeoutInSeconds
Type: int

The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.

ModelName
Type: string

The name of the model that you want to host. This is the name that you specified when creating the model.

RoutingConfig

Settings that control how the endpoint routes incoming traffic to the instances that the endpoint hosts.

ServerlessConfig

The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.

VariantName
Required: Yes
Type: string

The name of the production variant.

VolumeSizeInGB
Type: int

The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currently only Amazon EBS gp2 storage volumes are supported.

ProductionVariantCoreDumpConfig

Description

Specifies configuration for a core dump from the model container when the process crashes.

Members
DestinationS3Uri
Required: Yes
Type: string

The Amazon S3 bucket to send the core dump to.

KmsKeyId
Type: string

The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

  • // KMS Key ID

    "1234abcd-12ab-34cd-56ef-1234567890ab"

  • // Amazon Resource Name (ARN) of a KMS Key

    "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

  • // KMS Key Alias

    "alias/ExampleAlias"

  • // Amazon Resource Name (ARN) of a KMS Key Alias

    "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig. If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.

ProductionVariantManagedInstanceScaling

Description

Settings that control the range in the number of instances that the endpoint provisions as it scales up or down to accommodate traffic.

Members
MaxInstanceCount
Type: int

The maximum number of instances that the endpoint can provision when it scales up to accommodate an increase in traffic.

MinInstanceCount
Type: int

The minimum number of instances that the endpoint must retain when it scales down to accommodate a decrease in traffic.

Status
Type: string

Indicates whether managed instance scaling is enabled.

ProductionVariantRoutingConfig

Description

Settings that control how the endpoint routes incoming traffic to the instances that the endpoint hosts.

Members
RoutingStrategy
Required: Yes
Type: string

Sets how the endpoint routes incoming traffic:

  • LEAST_OUTSTANDING_REQUESTS: The endpoint routes requests to the specific instances that have more capacity to process them.

  • RANDOM: The endpoint routes each request to a randomly chosen instance.

ProductionVariantServerlessConfig

Description

Specifies the serverless configuration for an endpoint variant.

Members
MaxConcurrency
Required: Yes
Type: int

The maximum number of concurrent invocations your serverless endpoint can process.

MemorySizeInMB
Required: Yes
Type: int

The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

ProvisionedConcurrency
Type: int

The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency.

This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

ProductionVariantServerlessUpdateConfig

Description

Specifies the serverless update concurrency configuration for an endpoint variant.

Members
MaxConcurrency
Type: int

The updated maximum number of concurrent invocations your serverless endpoint can process.

ProvisionedConcurrency
Type: int

The updated amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency.

ProductionVariantStatus

Description

Describes the status of the production variant.

Members
StartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The start time of the current status change.

Status
Required: Yes
Type: string

The endpoint variant status which describes the current deployment stage status or operational status.

  • Creating: Creating inference resources for the production variant.

  • Deleting: Terminating inference resources for the production variant.

  • Updating: Updating capacity for the production variant.

  • ActivatingTraffic: Turning on traffic for the production variant.

  • Baking: Waiting period to monitor the CloudWatch alarms in the automatic rollback configuration.

StatusMessage
Type: string

A message that describes the status of the production variant.

ProductionVariantSummary

Description

Describes weight and capacities for a production variant associated with an endpoint. If you sent a request to the UpdateEndpointWeightsAndCapacities API and the endpoint status is Updating, you get different desired and current values.

Members
CurrentInstanceCount
Type: int

The number of instances associated with the variant.

CurrentServerlessConfig

The serverless configuration for the endpoint.

CurrentWeight
Type: float

The weight associated with the variant.

DeployedImages
Type: Array of DeployedImage structures

An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant.

DesiredInstanceCount
Type: int

The number of instances requested in the UpdateEndpointWeightsAndCapacities request.

DesiredServerlessConfig

The serverless configuration requested for the endpoint update.

DesiredWeight
Type: float

The requested weight, as specified in the UpdateEndpointWeightsAndCapacities request.

ManagedInstanceScaling

Settings that control the range in the number of instances that the endpoint provisions as it scales up or down to accommodate traffic.

RoutingConfig

Settings that control how the endpoint routes incoming traffic to the instances that the endpoint hosts.

VariantName
Required: Yes
Type: string

The name of the variant.

VariantStatus
Type: Array of ProductionVariantStatus structures

The endpoint variant status which describes the current deployment stage status or operational status.

ProfilerConfig

Description

Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.

Members
DisableProfiler
Type: boolean

Configuration to turn off Amazon SageMaker Debugger's system monitoring and profiling functionality. To turn it off, set to True.

ProfilingIntervalInMilliseconds
Type: long (int|float)

A time interval for capturing system metrics in milliseconds. Available values are 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute) milliseconds. The default value is 500 milliseconds.

ProfilingParameters
Type: Associative array of custom strings keys (ConfigKey) to strings

Configuration information for capturing framework metrics. Available key strings for different profiling options are DetailedProfilingConfig, PythonProfilingConfig, and DataLoaderProfilingConfig. The following codes are configuration structures for the ProfilingParameters parameter. To learn more about how to configure the ProfilingParameters parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

S3OutputPath
Type: string

Path to Amazon S3 storage location for system and framework metrics.

ProfilerConfigForUpdate

Description

Configuration information for updating the Amazon SageMaker Debugger profile parameters, system and framework metrics configurations, and storage paths.

Members
DisableProfiler
Type: boolean

To turn off Amazon SageMaker Debugger monitoring and profiling while a training job is in progress, set to True.

ProfilingIntervalInMilliseconds
Type: long (int|float)

A time interval for capturing system metrics in milliseconds. Available values are 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute) milliseconds. The default value is 500 milliseconds.

ProfilingParameters
Type: Associative array of custom strings keys (ConfigKey) to strings

Configuration information for capturing framework metrics. Available key strings for different profiling options are DetailedProfilingConfig, PythonProfilingConfig, and DataLoaderProfilingConfig. The following codes are configuration structures for the ProfilingParameters parameter. To learn more about how to configure the ProfilingParameters parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

S3OutputPath
Type: string

Path to Amazon S3 storage location for system and framework metrics.

ProfilerRuleConfiguration

Description

Configuration information for profiling rules.

Members
InstanceType
Type: string

The instance type to deploy a custom rule for profiling a training job.

LocalPath
Type: string

Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/.

RuleConfigurationName
Required: Yes
Type: string

The name of the rule configuration. It must be unique relative to other rule configuration names.

RuleEvaluatorImage
Required: Yes
Type: string

The Amazon Elastic Container Registry Image for the managed rule evaluation.

RuleParameters
Type: Associative array of custom strings keys (ConfigKey) to strings

Runtime configuration for rule container.

S3OutputPath
Type: string

Path to Amazon S3 storage location for rules.

VolumeSizeInGB
Type: int

The size, in GB, of the ML storage volume attached to the processing instance.

ProfilerRuleEvaluationStatus

Description

Information about the status of the rule evaluation.

Members
LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Timestamp when the rule evaluation status was last modified.

RuleConfigurationName
Type: string

The name of the rule configuration.

RuleEvaluationJobArn
Type: string

The Amazon Resource Name (ARN) of the rule evaluation job.

RuleEvaluationStatus
Type: string

Status of the rule evaluation.

StatusDetails
Type: string

Details from the rule evaluation.

Project

Description

The properties of a project as returned by the Search API.

Members
CreatedBy
Type: UserContext structure

Who created the project.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp specifying when the project was created.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp container for when the project was last modified.

ProjectArn
Type: string

The Amazon Resource Name (ARN) of the project.

ProjectDescription
Type: string

The description of the project.

ProjectId
Type: string

The ID of the project.

ProjectName
Type: string

The name of the project.

ProjectStatus
Type: string

The status of the project.

ServiceCatalogProvisionedProductDetails

Details of a provisioned service catalog product. For information about service catalog, see What is Amazon Web Services Service Catalog.

ServiceCatalogProvisioningDetails

Details that you specify to provision a service catalog product. For information about service catalog, see What is Amazon Web Services Service Catalog.

Tags
Type: Array of Tag structures

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

ProjectSummary

Description

Information about a project.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time that the project was created.

ProjectArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the project.

ProjectDescription
Type: string

The description of the project.

ProjectId
Required: Yes
Type: string

The ID of the project.

ProjectName
Required: Yes
Type: string

The name of the project.

ProjectStatus
Required: Yes
Type: string

The status of the project.

PropertyNameQuery

Description

Part of the SuggestionQuery type. Specifies a hint for retrieving property names that begin with the specified text.

Members
PropertyNameHint
Required: Yes
Type: string

Text that begins a property's name.

PropertyNameSuggestion

Description

A property name returned from a GetSearchSuggestions call that specifies a value in the PropertyNameQuery field.

Members
PropertyName
Type: string

A suggested property name based on what you entered in the search textbox in the SageMaker console.

ProvisioningParameter

Description

A key value pair used when you provision a project as a service catalog product. For information, see What is Amazon Web Services Service Catalog.

Members
Key
Type: string

The key that identifies a provisioning parameter.

Value
Type: string

The value of the provisioning parameter.

PublicWorkforceTaskPrice

Description

Defines the amount of money paid to an Amazon Mechanical Turk worker for each task performed.

Use one of the following prices for bounding box tasks. Prices are in US dollars and should be based on the complexity of the task; the longer it takes in your initial testing, the more you should offer.

  • 0.036

  • 0.048

  • 0.060

  • 0.072

  • 0.120

  • 0.240

  • 0.360

  • 0.480

  • 0.600

  • 0.720

  • 0.840

  • 0.960

  • 1.080

  • 1.200

Use one of the following prices for image classification, text classification, and custom tasks. Prices are in US dollars.

  • 0.012

  • 0.024

  • 0.036

  • 0.048

  • 0.060

  • 0.072

  • 0.120

  • 0.240

  • 0.360

  • 0.480

  • 0.600

  • 0.720

  • 0.840

  • 0.960

  • 1.080

  • 1.200

Use one of the following prices for semantic segmentation tasks. Prices are in US dollars.

  • 0.840

  • 0.960

  • 1.080

  • 1.200

Use one of the following prices for Textract AnalyzeDocument Important Form Key Amazon Augmented AI review tasks. Prices are in US dollars.

  • 2.400

  • 2.280

  • 2.160

  • 2.040

  • 1.920

  • 1.800

  • 1.680

  • 1.560

  • 1.440

  • 1.320

  • 1.200

  • 1.080

  • 0.960

  • 0.840

  • 0.720

  • 0.600

  • 0.480

  • 0.360

  • 0.240

  • 0.120

  • 0.072

  • 0.060

  • 0.048

  • 0.036

  • 0.024

  • 0.012

Use one of the following prices for Rekognition DetectModerationLabels Amazon Augmented AI review tasks. Prices are in US dollars.

  • 1.200

  • 1.080

  • 0.960

  • 0.840

  • 0.720

  • 0.600

  • 0.480

  • 0.360

  • 0.240

  • 0.120

  • 0.072

  • 0.060

  • 0.048

  • 0.036

  • 0.024

  • 0.012

Use one of the following prices for Amazon Augmented AI custom human review tasks. Prices are in US dollars.

  • 1.200

  • 1.080

  • 0.960

  • 0.840

  • 0.720

  • 0.600

  • 0.480

  • 0.360

  • 0.240

  • 0.120

  • 0.072

  • 0.060

  • 0.048

  • 0.036

  • 0.024

  • 0.012

Members
AmountInUsd
Type: USD structure

Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.

QualityCheckStepMetadata

Description

Container for the metadata for a Quality check step. For more information, see the topic on QualityCheck step in the Amazon SageMaker Developer Guide.

Members
BaselineUsedForDriftCheckConstraints
Type: string

The Amazon S3 URI of the baseline constraints file used for the drift check.

BaselineUsedForDriftCheckStatistics
Type: string

The Amazon S3 URI of the baseline statistics file used for the drift check.

CalculatedBaselineConstraints
Type: string

The Amazon S3 URI of the newly calculated baseline constraints file.

CalculatedBaselineStatistics
Type: string

The Amazon S3 URI of the newly calculated baseline statistics file.

CheckJobArn
Type: string

The Amazon Resource Name (ARN) of the Quality check processing job that was run by this step execution.

CheckType
Type: string

The type of the Quality check step.

ModelPackageGroupName
Type: string

The model package group name.

RegisterNewBaseline
Type: boolean

This flag indicates if a newly calculated baseline can be accessed through step properties BaselineUsedForDriftCheckConstraints and BaselineUsedForDriftCheckStatistics. If it is set to False, the previous baseline of the configured check type must also be available. These can be accessed through the BaselineUsedForDriftCheckConstraints and BaselineUsedForDriftCheckStatistics properties.

SkipCheck
Type: boolean

This flag indicates if the drift check against the previous baseline will be skipped or not. If it is set to False, the previous baseline of the configured check type must be available.

ViolationReport
Type: string

The Amazon S3 URI of violation report if violations are detected.

QueryFilters

Description

A set of filters to narrow the set of lineage entities connected to the StartArn(s) returned by the QueryLineage API action.

Members
CreatedAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filter the lineage entities connected to the StartArn(s) after the create date.

CreatedBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filter the lineage entities connected to the StartArn(s) by created date.

LineageTypes
Type: Array of strings

Filter the lineage entities connected to the StartArn(s) by the type of the lineage entity.

ModifiedAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filter the lineage entities connected to the StartArn(s) after the last modified date.

ModifiedBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

Filter the lineage entities connected to the StartArn(s) before the last modified date.

Properties
Type: Associative array of custom strings keys (String256) to strings

Filter the lineage entities connected to the StartArn(s) by a set if property key value pairs. If multiple pairs are provided, an entity is included in the results if it matches any of the provided pairs.

Types
Type: Array of strings

Filter the lineage entities connected to the StartArn by type. For example: DataSet, Model, Endpoint, or ModelDeployment.

RSessionAppSettings

Description

A collection of settings that apply to an RSessionGateway app.

Members
CustomImages
Type: Array of CustomImage structures

A list of custom SageMaker AI images that are configured to run as a RSession app.

DefaultResourceSpec
Type: ResourceSpec structure

Specifies the ARN's of a SageMaker AI image and SageMaker AI image version, and the instance type that the version runs on.

RStudioServerProAppSettings

Description

A collection of settings that configure user interaction with the RStudioServerPro app.

Members
AccessStatus
Type: string

Indicates whether the current user has access to the RStudioServerPro app.

UserGroup
Type: string

The level of permissions that the user has within the RStudioServerPro app. This value defaults to `User`. The `Admin` value allows the user access to the RStudio Administrative Dashboard.

RStudioServerProDomainSettings

Description

A collection of settings that configure the RStudioServerPro Domain-level app.

Members
DefaultResourceSpec
Type: ResourceSpec structure

Specifies the ARN's of a SageMaker AI image and SageMaker AI image version, and the instance type that the version runs on.

DomainExecutionRoleArn
Required: Yes
Type: string

The ARN of the execution role for the RStudioServerPro Domain-level app.

RStudioConnectUrl
Type: string

A URL pointing to an RStudio Connect server.

RStudioPackageManagerUrl
Type: string

A URL pointing to an RStudio Package Manager server.

RStudioServerProDomainSettingsForUpdate

Description

A collection of settings that update the current configuration for the RStudioServerPro Domain-level app.

Members
DefaultResourceSpec
Type: ResourceSpec structure

Specifies the ARN's of a SageMaker AI image and SageMaker AI image version, and the instance type that the version runs on.

DomainExecutionRoleArn
Required: Yes
Type: string

The execution role for the RStudioServerPro Domain-level app.

RStudioConnectUrl
Type: string

A URL pointing to an RStudio Connect server.

RStudioPackageManagerUrl
Type: string

A URL pointing to an RStudio Package Manager server.

RealTimeInferenceConfig

Description

The infrastructure configuration for deploying the model to a real-time inference endpoint.

Members
InstanceCount
Required: Yes
Type: int

The number of instances of the type specified by InstanceType.

InstanceType
Required: Yes
Type: string

The instance type the model is deployed to.

RealTimeInferenceRecommendation

Description

The recommended configuration to use for Real-Time Inference.

Members
Environment
Type: Associative array of custom strings keys (EnvironmentKey) to strings

The recommended environment variables to set in the model container for Real-Time Inference.

InstanceType
Required: Yes
Type: string

The recommended instance type for Real-Time Inference.

RecommendationId
Required: Yes
Type: string

The recommendation ID which uniquely identifies each recommendation.

RecommendationJobCompiledOutputConfig

Description

Provides information about the output configuration for the compiled model.

Members
S3OutputUri
Type: string

Identifies the Amazon S3 bucket where you want SageMaker to store the compiled model artifacts.

RecommendationJobContainerConfig

Description

Specifies mandatory fields for running an Inference Recommender job directly in the CreateInferenceRecommendationsJob API. The fields specified in ContainerConfig override the corresponding fields in the model package. Use ContainerConfig if you want to specify these fields for the recommendation job but don't want to edit them in your model package.

Members
DataInputConfig
Type: string

Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig.

Domain
Type: string

The machine learning domain of the model and its components.

Valid Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING

Framework
Type: string

The machine learning framework of the container image.

Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN

FrameworkVersion
Type: string

The framework version of the container image.

NearestModelName
Type: string

The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that matches your model.

Valid Values: efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet

PayloadConfig

Specifies the SamplePayloadUrl and all other sample payload-related fields.

SupportedEndpointType
Type: string

The endpoint type to receive recommendations for. By default this is null, and the results of the inference recommendation job return a combined list of both real-time and serverless benchmarks. By specifying a value for this field, you can receive a longer list of benchmarks for the desired endpoint type.

SupportedInstanceTypes
Type: Array of strings

A list of the instance types that are used to generate inferences in real-time.

SupportedResponseMIMETypes
Type: Array of strings

The supported MIME types for the output data.

Task
Type: string

The machine learning task that the model accomplishes.

Valid Values: IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER

RecommendationJobInferenceBenchmark

Description

The details for a specific benchmark from an Inference Recommender job.

Members
EndpointConfiguration
Type: EndpointOutputConfiguration structure

The endpoint configuration made by Inference Recommender during a recommendation job.

EndpointMetrics
Type: InferenceMetrics structure

The metrics for an existing endpoint compared in an Inference Recommender job.

FailureReason
Type: string

The reason why a benchmark failed.

InvocationEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the benchmark completed.

InvocationStartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the benchmark started.

Metrics
Type: RecommendationMetrics structure

The metrics of recommendations.

ModelConfiguration
Required: Yes
Type: ModelConfiguration structure

Defines the model configuration. Includes the specification name and environment parameters.

RecommendationJobInputConfig

Description

The input configuration of the recommendation job.

Members
ContainerConfig

Specifies mandatory fields for running an Inference Recommender job. The fields specified in ContainerConfig override the corresponding fields in the model package.

EndpointConfigurations
Type: Array of EndpointInputConfiguration structures

Specifies the endpoint configuration to use for a job.

Endpoints
Type: Array of EndpointInfo structures

Existing customer endpoints on which to run an Inference Recommender job.

JobDurationInSeconds
Type: int

Specifies the maximum duration of the job, in seconds. The maximum value is 18,000 seconds.

ModelName
Type: string

The name of the created model.

ModelPackageVersionArn
Type: string

The Amazon Resource Name (ARN) of a versioned model package.

ResourceLimit

Defines the resource limit of the job.

TrafficPattern
Type: TrafficPattern structure

Specifies the traffic pattern of the job.

VolumeKmsKeyId
Type: string

The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. This key will be passed to SageMaker Hosting for endpoint creation.

The SageMaker execution role must have kms:CreateGrant permission in order to encrypt data on the storage volume of the endpoints created for inference recommendation. The inference recommendation job will fail asynchronously during endpoint configuration creation if the role passed does not have kms:CreateGrant permission.

The KmsKeyId can be any of the following formats:

  • // KMS Key ID

    "1234abcd-12ab-34cd-56ef-1234567890ab"

  • // Amazon Resource Name (ARN) of a KMS Key

    "arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"

  • // KMS Key Alias

    "alias/ExampleAlias"

  • // Amazon Resource Name (ARN) of a KMS Key Alias

    "arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"

For more information about key identifiers, see Key identifiers (KeyID) in the Amazon Web Services Key Management Service (Amazon Web Services KMS) documentation.

VpcConfig
Type: RecommendationJobVpcConfig structure

Inference Recommender provisions SageMaker endpoints with access to VPC in the inference recommendation job.

RecommendationJobOutputConfig

Description

Provides information about the output configuration for the compiled model.

Members
CompiledOutputConfig

Provides information about the output configuration for the compiled model.

KmsKeyId
Type: string

The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt your output artifacts with Amazon S3 server-side encryption. The SageMaker execution role must have kms:GenerateDataKey permission.

The KmsKeyId can be any of the following formats:

  • // KMS Key ID

    "1234abcd-12ab-34cd-56ef-1234567890ab"

  • // Amazon Resource Name (ARN) of a KMS Key

    "arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"

  • // KMS Key Alias

    "alias/ExampleAlias"

  • // Amazon Resource Name (ARN) of a KMS Key Alias

    "arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"

For more information about key identifiers, see Key identifiers (KeyID) in the Amazon Web Services Key Management Service (Amazon Web Services KMS) documentation.

RecommendationJobPayloadConfig

Description

The configuration for the payload for a recommendation job.

Members
SamplePayloadUrl
Type: string

The Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

SupportedContentTypes
Type: Array of strings

The supported MIME types for the input data.

RecommendationJobResourceLimit

Description

Specifies the maximum number of jobs that can run in parallel and the maximum number of jobs that can run.

Members
MaxNumberOfTests
Type: int

Defines the maximum number of load tests.

MaxParallelOfTests
Type: int

Defines the maximum number of parallel load tests.

RecommendationJobStoppingConditions

Description

Specifies conditions for stopping a job. When a job reaches a stopping condition limit, SageMaker ends the job.

Members
FlatInvocations
Type: string

Stops a load test when the number of invocations (TPS) peaks and flattens, which means that the instance has reached capacity. The default value is Stop. If you want the load test to continue after invocations have flattened, set the value to Continue.

MaxInvocations
Type: int

The maximum number of requests per minute expected for the endpoint.

ModelLatencyThresholds
Type: Array of ModelLatencyThreshold structures

The interval of time taken by a model to respond as viewed from SageMaker. The interval includes the local communication time taken to send the request and to fetch the response from the container of a model and the time taken to complete the inference in the container.

RecommendationJobVpcConfig

Description

Inference Recommender provisions SageMaker endpoints with access to VPC in the inference recommendation job.

Members
SecurityGroupIds
Required: Yes
Type: Array of strings

The VPC security group IDs. IDs have the form of sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

Subnets
Required: Yes
Type: Array of strings

The ID of the subnets in the VPC to which you want to connect your model.

RecommendationMetrics

Description

The metrics of recommendations.

Members
CostPerHour
Type: float

Defines the cost per hour for the instance.

CostPerInference
Type: float

Defines the cost per inference for the instance .

CpuUtilization
Type: float

The expected CPU utilization at maximum invocations per minute for the instance.

NaN indicates that the value is not available.

MaxInvocations
Type: int

The expected maximum number of requests per minute for the instance.

MemoryUtilization
Type: float

The expected memory utilization at maximum invocations per minute for the instance.

NaN indicates that the value is not available.

ModelLatency
Type: int

The expected model latency at maximum invocation per minute for the instance.

ModelSetupTime
Type: int

The time it takes to launch new compute resources for a serverless endpoint. The time can vary depending on the model size, how long it takes to download the model, and the start-up time of the container.

NaN indicates that the value is not available.

RedshiftDatasetDefinition

Description

Configuration for Redshift Dataset Definition input.

Members
ClusterId
Required: Yes
Type: string

The Redshift cluster Identifier.

ClusterRoleArn
Required: Yes
Type: string

The IAM role attached to your Redshift cluster that Amazon SageMaker uses to generate datasets.

Database
Required: Yes
Type: string

The name of the Redshift database used in Redshift query execution.

DbUser
Required: Yes
Type: string

The database user name used in Redshift query execution.

KmsKeyId
Type: string

The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data from a Redshift execution.

OutputCompression
Type: string

The compression used for Redshift query results.

OutputFormat
Required: Yes
Type: string

The data storage format for Redshift query results.

OutputS3Uri
Required: Yes
Type: string

The location in Amazon S3 where the Redshift query results are stored.

QueryString
Required: Yes
Type: string

The SQL query statements to be executed.

RegisterModelStepMetadata

Description

Metadata for a register model job step.

Members
Arn
Type: string

The Amazon Resource Name (ARN) of the model package.

RenderableTask

Description

Contains input values for a task.

Members
Input
Required: Yes
Type: string

A JSON object that contains values for the variables defined in the template. It is made available to the template under the substitution variable task.input. For example, if you define a variable task.input.text in your template, you can supply the variable in the JSON object as "text": "sample text".

RenderingError

Description

A description of an error that occurred while rendering the template.

Members
Code
Required: Yes
Type: string

A unique identifier for a specific class of errors.

Message
Required: Yes
Type: string

A human-readable message describing the error.

RepositoryAuthConfig

Description

Specifies an authentication configuration for the private docker registry where your model image is hosted. Specify a value for this property only if you specified Vpc as the value for the RepositoryAccessMode field of the ImageConfig object that you passed to a call to CreateModel and the private Docker registry where the model image is hosted requires authentication.

Members
RepositoryCredentialsProviderArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function that provides credentials to authenticate to the private Docker registry where your model image is hosted. For information about how to create an Amazon Web Services Lambda function, see Create a Lambda function with the console in the Amazon Web Services Lambda Developer Guide.

ReservedCapacityOffering

Description

Details about a reserved capacity offering for a training plan offering.

For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .

Members
AvailabilityZone
Type: string

The availability zone for the reserved capacity offering.

DurationHours
Type: long (int|float)

The number of whole hours in the total duration for this reserved capacity offering.

DurationMinutes
Type: long (int|float)

The additional minutes beyond whole hours in the total duration for this reserved capacity offering.

EndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The end time of the reserved capacity offering.

InstanceCount
Required: Yes
Type: int

The number of instances in the reserved capacity offering.

InstanceType
Required: Yes
Type: string

The instance type for the reserved capacity offering.

StartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The start time of the reserved capacity offering.

ReservedCapacitySummary

Description

Details of a reserved capacity for the training plan.

For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .

Members
AvailabilityZone
Type: string

The availability zone for the reserved capacity.

DurationHours
Type: long (int|float)

The number of whole hours in the total duration for this reserved capacity.

DurationMinutes
Type: long (int|float)

The additional minutes beyond whole hours in the total duration for this reserved capacity.

EndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The end time of the reserved capacity.

InstanceType
Required: Yes
Type: string

The instance type for the reserved capacity.

ReservedCapacityArn
Required: Yes
Type: string

The Amazon Resource Name (ARN); of the reserved capacity.

StartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The start time of the reserved capacity.

Status
Required: Yes
Type: string

The current status of the reserved capacity.

TotalInstanceCount
Required: Yes
Type: int

The total number of instances in the reserved capacity.

ResolvedAttributes

Description

The resolved attributes.

Members
AutoMLJobObjective
Type: AutoMLJobObjective structure

Specifies a metric to minimize or maximize as the objective of an AutoML job.

CompletionCriteria
Type: AutoMLJobCompletionCriteria structure

How long a job is allowed to run, or how many candidates a job is allowed to generate.

ProblemType
Type: string

The problem type.

ResourceCatalog

Description

A resource catalog containing all of the resources of a specific resource type within a resource owner account. For an example on sharing the Amazon SageMaker Feature Store DefaultFeatureGroupCatalog, see Share Amazon SageMaker Catalog resource type in the Amazon SageMaker Developer Guide.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

The time the ResourceCatalog was created.

Description
Required: Yes
Type: string

A free form description of the ResourceCatalog.

ResourceCatalogArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the ResourceCatalog.

ResourceCatalogName
Required: Yes
Type: string

The name of the ResourceCatalog.

ResourceConfig

Description

Describes the resources, including machine learning (ML) compute instances and ML storage volumes, to use for model training.

Members
InstanceCount
Type: int

The number of ML compute instances to use. For distributed training, provide a value greater than 1.

InstanceGroups
Type: Array of InstanceGroup structures

The configuration of a heterogeneous cluster in JSON format.

InstanceType
Type: string

The ML compute instance type.

SageMaker Training on Amazon Elastic Compute Cloud (EC2) P4de instances is in preview release starting December 9th, 2022.

Amazon EC2 P4de instances (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB high-performance HBM2e GPU memory, which accelerate the speed of training ML models that need to be trained on large datasets of high-resolution data. In this preview release, Amazon SageMaker supports ML training jobs on P4de instances (ml.p4de.24xlarge) to reduce model training time. The ml.p4de.24xlarge instances are available in the following Amazon Web Services Regions.

  • US East (N. Virginia) (us-east-1)

  • US West (Oregon) (us-west-2)

To request quota limit increase and start using P4de instances, contact the SageMaker Training service team through your account team.

KeepAlivePeriodInSeconds
Type: int

The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.

TrainingPlanArn
Type: string

The Amazon Resource Name (ARN); of the training plan to use for this resource configuration.

VolumeKmsKeyId
Type: string

The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

For a list of instance types that support local instance storage, see Instance Store Volumes.

For more information about local instance storage encryption, see SSD Instance Store Volumes.

The VolumeKmsKeyId can be in any of the following formats:

  • // KMS Key ID

    "1234abcd-12ab-34cd-56ef-1234567890ab"

  • // Amazon Resource Name (ARN) of a KMS Key

    "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

VolumeSizeInGB
Required: Yes
Type: int

The size of the ML storage volume that you want to provision.

ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include ml.p4d, ml.g4dn, and ml.g5.

When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through VolumeSizeInGB in the ResourceConfig API. For example, ML instance families that use EBS volumes include ml.c5 and ml.p2.

To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.

To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.

ResourceConfigForUpdate

Description

The ResourceConfig to update KeepAlivePeriodInSeconds. Other fields in the ResourceConfig cannot be updated.

Members
KeepAlivePeriodInSeconds
Required: Yes
Type: int

The KeepAlivePeriodInSeconds value specified in the ResourceConfig to update.

ResourceInUse

Description

Resource being accessed is in use.

Members
Message
Type: string

ResourceLimitExceeded

Description

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

Members
Message
Type: string

ResourceLimits

Description

Specifies the maximum number of training jobs and parallel training jobs that a hyperparameter tuning job can launch.

Members
MaxNumberOfTrainingJobs
Type: int

The maximum number of training jobs that a hyperparameter tuning job can launch.

MaxParallelTrainingJobs
Required: Yes
Type: int

The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.

MaxRuntimeInSeconds
Type: int

The maximum time in seconds that a hyperparameter tuning job can run.

ResourceNotFound

Description

Resource being access is not found.

Members
Message
Type: string

ResourceSharingConfig

Description

Resource sharing configuration.

Members
BorrowLimit
Type: int

The limit on how much idle compute can be borrowed.The values can be 1 - 500 percent of idle compute that the team is allowed to borrow.

Default is 50.

Strategy
Required: Yes
Type: string

The strategy of how idle compute is shared within the cluster. The following are the options of strategies.

  • DontLend: entities do not lend idle compute.

  • Lend: entities can lend idle compute to entities that can borrow.

  • LendandBorrow: entities can lend idle compute and borrow idle compute from other entities.

Default is LendandBorrow.

ResourceSpec

Description

Specifies the ARN's of a SageMaker AI image and SageMaker AI image version, and the instance type that the version runs on.

Members
InstanceType
Type: string

The instance type that the image version runs on.

JupyterServer apps only support the system value.

For KernelGateway apps, the system value is translated to ml.t3.medium. KernelGateway apps also support all other values for available instance types.

LifecycleConfigArn
Type: string

The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.

SageMakerImageArn
Type: string

The ARN of the SageMaker AI image that the image version belongs to.

SageMakerImageVersionAlias
Type: string

The SageMakerImageVersionAlias of the image to launch with. This value is in SemVer 2.0.0 versioning format.

SageMakerImageVersionArn
Type: string

The ARN of the image version created on the instance.

RetentionPolicy

Description

The retention policy for data stored on an Amazon Elastic File System volume.

Members
HomeEfsFileSystem
Type: string

The default is Retain, which specifies to keep the data stored on the Amazon EFS volume.

Specify Delete to delete the data stored on the Amazon EFS volume.

RetryStrategy

Description

The retry strategy to use when a training job fails due to an InternalServerError. RetryStrategy is specified as part of the CreateTrainingJob and CreateHyperParameterTuningJob requests. You can add the StoppingCondition parameter to the request to limit the training time for the complete job.

Members
MaximumRetryAttempts
Required: Yes
Type: int

The number of times to retry the job. When the job is retried, it's SecondaryStatus is changed to STARTING.

RollingUpdatePolicy

Description

Specifies a rolling deployment strategy for updating a SageMaker endpoint.

Members
MaximumBatchSize
Required: Yes
Type: CapacitySize structure

Batch size for each rolling step to provision capacity and turn on traffic on the new endpoint fleet, and terminate capacity on the old endpoint fleet. Value must be between 5% to 50% of the variant's total instance count.

MaximumExecutionTimeoutInSeconds
Type: int

The time limit for the total deployment. Exceeding this limit causes a timeout.

RollbackMaximumBatchSize
Type: CapacitySize structure

Batch size for rollback to the old endpoint fleet. Each rolling step to provision capacity and turn on traffic on the old endpoint fleet, and terminate capacity on the new endpoint fleet. If this field is absent, the default value will be set to 100% of total capacity which means to bring up the whole capacity of the old fleet at once during rollback.

WaitIntervalInSeconds
Required: Yes
Type: int

The length of the baking period, during which SageMaker monitors alarms for each batch on the new fleet.

S3DataSource

Description

Describes the S3 data source.

Your input bucket must be in the same Amazon Web Services region as your training job.

Members
AttributeNames
Type: Array of strings

A list of one or more attribute names to use that are found in a specified augmented manifest file.

InstanceGroupNames
Type: Array of strings

A list of names of instance groups that get data from the S3 data source.

S3DataDistributionType
Type: string

If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated.

If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key. If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key. If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File), this copies 1/n of the number of objects.

S3DataType
Required: Yes
Type: string

If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.

If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.

If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe.

S3Uri
Required: Yes
Type: string

Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example:

  • A key name prefix might look like this: s3://bucketname/exampleprefix/

  • A manifest might look like this: s3://bucketname/example.manifest

    A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri. Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets.

    The following code example shows a valid manifest format:

    [ {"prefix": "s3://customer_bucket/some/prefix/"},

    "relative/path/to/custdata-1",

    "relative/path/custdata-2",

    ...

    "relative/path/custdata-N"

    ]

    This JSON is equivalent to the following S3Uri list:

    s3://customer_bucket/some/prefix/relative/path/to/custdata-1

    s3://customer_bucket/some/prefix/relative/path/custdata-2

    ...

    s3://customer_bucket/some/prefix/relative/path/custdata-N

    The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.

Your input bucket must be located in same Amazon Web Services region as your training job.

S3ModelDataSource

Description

Specifies the S3 location of ML model data to deploy.

Members
CompressionType
Required: Yes
Type: string

Specifies how the ML model data is prepared.

If you choose Gzip and choose S3Object as the value of S3DataType, S3Uri identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.

If you choose None and chooose S3Object as the value of S3DataType, S3Uri identifies an object that represents an uncompressed ML model to deploy.

If you choose None and choose S3Prefix as the value of S3DataType, S3Uri identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.

If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:

  • If you choose S3Object as the value of S3DataType, then SageMaker will split the key of the S3 object referenced by S3Uri by slash (/), and use the last part as the filename of the file holding the content of the S3 object.

  • If you choose S3Prefix as the value of S3DataType, then for each S3 object under the key name pefix referenced by S3Uri, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to /opt/ml/model) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.

  • Do not use any of the following as file names or directory names:

    • An empty or blank string

    • A string which contains null bytes

    • A string longer than 255 bytes

    • A single dot (.)

    • A double dot (..)

  • Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value of S3DataType, then it will result in name clash between /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a directory).

  • Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.

ETag
Type: string

The ETag associated with S3 URI.

HubAccessConfig
Type: InferenceHubAccessConfig structure

Configuration information for hub access.

ManifestEtag
Type: string

The ETag associated with Manifest S3 URI.

ManifestS3Uri
Type: string

The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.

ModelAccessConfig
Type: ModelAccessConfig structure

Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.

S3DataType
Required: Yes
Type: string

Specifies the type of ML model data to deploy.

If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified by S3Uri always ends with a forward slash (/).

If you choose S3Object, S3Uri identifies an object that is the ML model data to deploy.

S3Uri
Required: Yes
Type: string

Specifies the S3 path of ML model data to deploy.

S3Presign

Description

This object defines the access restrictions to Amazon S3 resources that are included in custom worker task templates using the Liquid filter, grant_read_access.

To learn more about how custom templates are created, see Create custom worker task templates.

Members
IamPolicyConstraints
Type: IamPolicyConstraints structure

Use this parameter to specify the allowed request source. Possible sources are either SourceIp or VpcSourceIp.

S3StorageConfig

Description

The Amazon Simple Storage (Amazon S3) location and security configuration for OfflineStore.

Members
KmsKeyId
Type: string

The Amazon Web Services Key Management Service (KMS) key ARN of the key used to encrypt any objects written into the OfflineStore S3 location.

The IAM roleARN that is passed as a parameter to CreateFeatureGroup must have below permissions to the KmsKeyId:

  • "kms:GenerateDataKey"

ResolvedOutputS3Uri
Type: string

The S3 path where offline records are written.

S3Uri
Required: Yes
Type: string

The S3 URI, or location in Amazon S3, of OfflineStore.

S3 URIs have a format similar to the following: s3://example-bucket/prefix/.

ScalingPolicy

Description

An object containing a recommended scaling policy.

Members
TargetTracking

A target tracking scaling policy. Includes support for predefined or customized metrics.

ScalingPolicyMetric

Description

The metric for a scaling policy.

Members
InvocationsPerInstance
Type: int

The number of invocations sent to a model, normalized by InstanceCount in each ProductionVariant. 1/numberOfInstances is sent as the value on each request, where numberOfInstances is the number of active instances for the ProductionVariant behind the endpoint at the time of the request.

ModelLatency
Type: int

The interval of time taken by a model to respond as viewed from SageMaker. This interval includes the local communication times taken to send the request and to fetch the response from the container of a model and the time taken to complete the inference in the container.

ScalingPolicyObjective

Description

An object where you specify the anticipated traffic pattern for an endpoint.

Members
MaxInvocationsPerMinute
Type: int

The maximum number of expected requests to your endpoint per minute.

MinInvocationsPerMinute
Type: int

The minimum number of expected requests to your endpoint per minute.

ScheduleConfig

Description

Configuration details about the monitoring schedule.

Members
DataAnalysisEndTime
Type: string

Sets the end time for a monitoring job window. Express this time as an offset to the times that you schedule your monitoring jobs to run. You schedule monitoring jobs with the ScheduleExpression parameter. Specify this offset in ISO 8601 duration format. For example, if you want to end the window one hour before the start of each monitoring job, you would specify: "-PT1H".

The end time that you specify must not follow the start time that you specify by more than 24 hours. You specify the start time with the DataAnalysisStartTime parameter.

If you set ScheduleExpression to NOW, this parameter is required.

DataAnalysisStartTime
Type: string

Sets the start time for a monitoring job window. Express this time as an offset to the times that you schedule your monitoring jobs to run. You schedule monitoring jobs with the ScheduleExpression parameter. Specify this offset in ISO 8601 duration format. For example, if you want to monitor the five hours of data in your dataset that precede the start of each monitoring job, you would specify: "-PT5H".

The start time that you specify must not precede the end time that you specify by more than 24 hours. You specify the end time with the DataAnalysisEndTime parameter.

If you set ScheduleExpression to NOW, this parameter is required.

ScheduleExpression
Required: Yes
Type: string

A cron expression that describes details about the monitoring schedule.

The supported cron expressions are:

  • If you want to set the job to start every hour, use the following:

    Hourly: cron(0 * ? * * *)

  • If you want to start the job daily:

    cron(0 [00-23] ? * * *)

  • If you want to run the job one time, immediately, use the following keyword:

    NOW

For example, the following are valid cron expressions:

  • Daily at noon UTC: cron(0 12 ? * * *)

  • Daily at midnight UTC: cron(0 0 ? * * *)

To support running every 6, 12 hours, the following are also supported:

cron(0 [00-23]/[01-24] ? * * *)

For example, the following are valid cron expressions:

  • Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? * * *)

  • Every two hours starting at midnight: cron(0 0/2 ? * * *)

  • Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution.

  • We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker AI will pick a time for running every day.

You can also specify the keyword NOW to run the monitoring job immediately, one time, without recurring.

SchedulerConfig

Description

Cluster policy configuration. This policy is used for task prioritization and fair-share allocation. This helps prioritize critical workloads and distributes idle compute across entities.

Members
FairShare
Type: string

When enabled, entities borrow idle compute based on their assigned FairShareWeight.

When disabled, entities borrow idle compute based on a first-come first-serve basis.

Default is Enabled.

PriorityClasses
Type: Array of PriorityClass structures

List of the priority classes, PriorityClass, of the cluster policy. When specified, these class configurations define how tasks are queued.

SearchExpression

Description

A multi-expression that searches for the specified resource or resources in a search. All resource objects that satisfy the expression's condition are included in the search results. You must specify at least one subexpression, filter, or nested filter. A SearchExpression can contain up to twenty elements.

A SearchExpression contains the following components:

  • A list of Filter objects. Each filter defines a simple Boolean expression comprised of a resource property name, Boolean operator, and value.

  • A list of NestedFilter objects. Each nested filter defines a list of Boolean expressions using a list of resource properties. A nested filter is satisfied if a single object in the list satisfies all Boolean expressions.

  • A list of SearchExpression objects. A search expression object can be nested in a list of search expression objects.

  • A Boolean operator: And or Or.

Members
Filters
Type: Array of Filter structures

A list of filter objects.

NestedFilters
Type: Array of NestedFilters structures

A list of nested filter objects.

Operator
Type: string

A Boolean operator used to evaluate the search expression. If you want every conditional statement in all lists to be satisfied for the entire search expression to be true, specify And. If only a single conditional statement needs to be true for the entire search expression to be true, specify Or. The default value is And.

SubExpressions
Type: Array of SearchExpression structures

A list of search expression objects.

SearchRecord

Description

A single resource returned as part of the Search API response.

Members
Endpoint
Type: Endpoint structure

A hosted endpoint for real-time inference.

Experiment
Type: Experiment structure

The properties of an experiment.

FeatureGroup
Type: FeatureGroup structure

Amazon SageMaker Feature Store stores features in a collection called Feature Group. A Feature Group can be visualized as a table which has rows, with a unique identifier for each row where each column in the table is a feature. In principle, a Feature Group is composed of features and values per features.

FeatureMetadata
Type: FeatureMetadata structure

The feature metadata used to search through the features.

HyperParameterTuningJob

The properties of a hyperparameter tuning job.

Model
Type: ModelDashboardModel structure

A model displayed in the Amazon SageMaker Model Dashboard.

ModelCard
Type: ModelCard structure

An Amazon SageMaker Model Card that documents details about a machine learning model.

ModelPackage
Type: ModelPackage structure

A versioned model that can be deployed for SageMaker inference.

ModelPackageGroup
Type: ModelPackageGroup structure

A group of versioned models in the model registry.

Pipeline
Type: Pipeline structure

A SageMaker Model Building Pipeline instance.

PipelineExecution
Type: PipelineExecution structure

An execution of a pipeline.

Project
Type: Project structure

The properties of a project.

TrainingJob
Type: TrainingJob structure

The properties of a training job.

Trial
Type: Trial structure

The properties of a trial.

TrialComponent
Type: TrialComponent structure

The properties of a trial component.

SecondaryStatusTransition

Description

An array element of SecondaryStatusTransitions for DescribeTrainingJob. It provides additional details about a status that the training job has transitioned through. A training job can be in one of several states, for example, starting, downloading, training, or uploading. Within each state, there are a number of intermediate states. For example, within the starting state, SageMaker could be starting the training job or launching the ML instances. These transitional states are referred to as the job's secondary status.

Members
EndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the training job transitioned out of this secondary status state into another secondary status state or when the training job has ended.

StartTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the training job transitioned to the current secondary status state.

Status
Required: Yes
Type: string

Contains a secondary status information from a training job.

Status might be one of the following secondary statuses:

InProgress
  • Starting - Starting the training job.

  • Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.

  • Training - Training is in progress.

  • Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.

Completed
  • Completed - The training job has completed.

Failed
  • Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse.

Stopped
  • MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.

  • Stopped - The training job has stopped.

Stopping
  • Stopping - Stopping the training job.

We no longer support the following secondary statuses:

  • LaunchingMLInstances

  • PreparingTrainingStack

  • DownloadingTrainingImage

StatusMessage
Type: string

A detailed description of the progress within a secondary status.

SageMaker provides secondary statuses and status messages that apply to each of them:

Starting
  • Starting the training job.

  • Launching requested ML instances.

  • Insufficient capacity error from EC2 while launching instances, retrying!

  • Launched instance was unhealthy, replacing it!

  • Preparing the instances for training.

Training
  • Training image download completed. Training in progress.

Status messages are subject to change. Therefore, we recommend not including them in code that programmatically initiates actions. For examples, don't use status messages in if statements.

To have an overview of your training job's progress, view TrainingJobStatus and SecondaryStatus in DescribeTrainingJob, and StatusMessage together. For example, at the start of a training job, you might see the following:

  • TrainingJobStatus - InProgress

  • SecondaryStatus - Training

  • StatusMessage - Downloading the training image

SelectedStep

Description

A step selected to run in selective execution mode.

Members
StepName
Required: Yes
Type: string

The name of the pipeline step.

SelectiveExecutionConfig

Description

The selective execution configuration applied to the pipeline run.

Members
SelectedSteps
Required: Yes
Type: Array of SelectedStep structures

A list of pipeline steps to run. All step(s) in all path(s) between two selected steps should be included.

SourcePipelineExecutionArn
Type: string

The ARN from a reference execution of the current pipeline. Used to copy input collaterals needed for the selected steps to run. The execution status of the pipeline can be either Failed or Success.

This field is required if the steps you specify for SelectedSteps depend on output collaterals from any non-specified pipeline steps. For more information, see Selective Execution for Pipeline Steps.

SelectiveExecutionResult

Description

The ARN from an execution of the current pipeline.

Members
SourcePipelineExecutionArn
Type: string

The ARN from an execution of the current pipeline.

ServiceCatalogProvisionedProductDetails

Description

Details of a provisioned service catalog product. For information about service catalog, see What is Amazon Web Services Service Catalog.

Members
ProvisionedProductId
Type: string

The ID of the provisioned product.

ProvisionedProductStatusMessage
Type: string

The current status of the product.

  • AVAILABLE - Stable state, ready to perform any operation. The most recent operation succeeded and completed.

  • UNDER_CHANGE - Transitive state. Operations performed might not have valid results. Wait for an AVAILABLE status before performing operations.

  • TAINTED - Stable state, ready to perform any operation. The stack has completed the requested operation but is not exactly what was requested. For example, a request to update to a new version failed and the stack rolled back to the current version.

  • ERROR - An unexpected error occurred. The provisioned product exists but the stack is not running. For example, CloudFormation received a parameter value that was not valid and could not launch the stack.

  • PLAN_IN_PROGRESS - Transitive state. The plan operations were performed to provision a new product, but resources have not yet been created. After reviewing the list of resources to be created, execute the plan. Wait for an AVAILABLE status before performing operations.

ServiceCatalogProvisioningDetails

Description

Details that you specify to provision a service catalog product. For information about service catalog, see What is Amazon Web Services Service Catalog.

Members
PathId
Type: string

The path identifier of the product. This value is optional if the product has a default path, and required if the product has more than one path.

ProductId
Required: Yes
Type: string

The ID of the product to provision.

ProvisioningArtifactId
Type: string

The ID of the provisioning artifact.

ProvisioningParameters
Type: Array of ProvisioningParameter structures

A list of key value pairs that you specify when you provision a product.

ServiceCatalogProvisioningUpdateDetails

Description

Details that you specify to provision a service catalog product. For information about service catalog, see What is Amazon Web Services Service Catalog.

Members
ProvisioningArtifactId
Type: string

The ID of the provisioning artifact.

ProvisioningParameters
Type: Array of ProvisioningParameter structures

A list of key value pairs that you specify when you provision a product.

SessionChainingConfig

Description

Contains information about attribute-based access control (ABAC) for a training job. The session chaining configuration uses Amazon Security Token Service (STS) for your training job to request temporary, limited-privilege credentials to tenants. For more information, see Attribute-based access control (ABAC) for multi-tenancy training.

Members
EnableSessionTagChaining
Type: boolean

Set to True to allow SageMaker to extract session tags from a training job creation role and reuse these tags when assuming the training job execution role.

ShadowModeConfig

Description

The configuration of ShadowMode inference experiment type, which specifies a production variant to take all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant it also specifies the percentage of requests that Amazon SageMaker replicates.

Members
ShadowModelVariants
Required: Yes
Type: Array of ShadowModelVariantConfig structures

List of shadow variant configurations.

SourceModelVariantName
Required: Yes
Type: string

The name of the production variant, which takes all the inference requests.

ShadowModelVariantConfig

Description

The name and sampling percentage of a shadow variant.

Members
SamplingPercentage
Required: Yes
Type: int

The percentage of inference requests that Amazon SageMaker replicates from the production variant to the shadow variant.

ShadowModelVariantName
Required: Yes
Type: string

The name of the shadow variant.

SharingSettings

Description

Specifies options for sharing Amazon SageMaker AI Studio notebooks. These settings are specified as part of DefaultUserSettings when the CreateDomain API is called, and as part of UserSettings when the CreateUserProfile API is called. When SharingSettings is not specified, notebook sharing isn't allowed.

Members
NotebookOutputOption
Type: string

Whether to include the notebook cell output when sharing the notebook. The default is Disabled.

S3KmsKeyId
Type: string

When NotebookOutputOption is Allowed, the Amazon Web Services Key Management Service (KMS) encryption key ID used to encrypt the notebook cell output in the Amazon S3 bucket.

S3OutputPath
Type: string

When NotebookOutputOption is Allowed, the Amazon S3 bucket used to store the shared notebook snapshots.

ShuffleConfig

Description

A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType, the results of the S3 key prefix matches are shuffled. If you use ManifestFile, the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile, the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

For Pipe input mode, when ShuffleConfig is specified shuffling is done at the start of every epoch. With large datasets, this ensures that the order of the training data is different for each epoch, and it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

Members
Seed
Required: Yes
Type: long (int|float)

Determines the shuffling order in ShuffleConfig value.

SourceAlgorithm

Description

Specifies an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.

Members
AlgorithmName
Required: Yes
Type: string

The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.

ModelDataETag
Type: string

The ETag associated with Model Data URL.

ModelDataSource
Type: ModelDataSource structure

Specifies the location of ML model data to deploy during endpoint creation.

ModelDataUrl
Type: string

The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

The model artifacts must be in an S3 bucket that is in the same Amazon Web Services region as the algorithm.

SourceAlgorithmSpecification

Description

A list of algorithms that were used to create a model package.

Members
SourceAlgorithms
Required: Yes
Type: Array of SourceAlgorithm structures

A list of the algorithms that were used to create a model package.

SourceIpConfig

Description

A list of IP address ranges (CIDRs). Used to create an allow list of IP addresses for a private workforce. Workers will only be able to log in to their worker portal from an IP address within this range. By default, a workforce isn't restricted to specific IP addresses.

Members
Cidrs
Required: Yes
Type: Array of strings

A list of one to ten Classless Inter-Domain Routing (CIDR) values.

Maximum: Ten CIDR values

The following Length Constraints apply to individual CIDR values in the CIDR value list.

SpaceAppLifecycleManagement

Description

Settings that are used to configure and manage the lifecycle of Amazon SageMaker Studio applications in a space.

Members
IdleSettings
Type: SpaceIdleSettings structure

Settings related to idle shutdown of Studio applications.

SpaceCodeEditorAppSettings

Description

The application settings for a Code Editor space.

Members
AppLifecycleManagement
Type: SpaceAppLifecycleManagement structure

Settings that are used to configure and manage the lifecycle of CodeEditor applications in a space.

DefaultResourceSpec
Type: ResourceSpec structure

Specifies the ARN's of a SageMaker AI image and SageMaker AI image version, and the instance type that the version runs on.

SpaceDetails

Description

The space's details.

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time.

DomainId
Type: string

The ID of the associated domain.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last modified time.

OwnershipSettingsSummary
Type: OwnershipSettingsSummary structure

Specifies summary information about the ownership settings.

SpaceDisplayName
Type: string

The name of the space that appears in the Studio UI.

SpaceName
Type: string

The name of the space.

SpaceSettingsSummary
Type: SpaceSettingsSummary structure

Specifies summary information about the space settings.

SpaceSharingSettingsSummary
Type: SpaceSharingSettingsSummary structure

Specifies summary information about the space sharing settings.

Status
Type: string

The status.

SpaceIdleSettings

Description

Settings related to idle shutdown of Studio applications in a space.

Members
IdleTimeoutInMinutes
Type: int

The time that SageMaker waits after the application becomes idle before shutting it down.

SpaceJupyterLabAppSettings

Description

The settings for the JupyterLab application within a space.

Members
AppLifecycleManagement
Type: SpaceAppLifecycleManagement structure

Settings that are used to configure and manage the lifecycle of JupyterLab applications in a space.

CodeRepositories
Type: Array of CodeRepository structures

A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterLab application.

DefaultResourceSpec
Type: ResourceSpec structure

Specifies the ARN's of a SageMaker AI image and SageMaker AI image version, and the instance type that the version runs on.

SpaceSettings

Description

A collection of space settings.

Members
AppType
Type: string

The type of app created within the space.

If using the UpdateSpace API, you can't change the app type of your space by specifying a different value for this field.

CodeEditorAppSettings
Type: SpaceCodeEditorAppSettings structure

The Code Editor application settings.

CustomFileSystems
Type: Array of CustomFileSystem structures

A file system, created by you, that you assign to a space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.

JupyterLabAppSettings
Type: SpaceJupyterLabAppSettings structure

The settings for the JupyterLab application.

JupyterServerAppSettings
Type: JupyterServerAppSettings structure

The JupyterServer app settings.

KernelGatewayAppSettings
Type: KernelGatewayAppSettings structure

The KernelGateway app settings.

SpaceStorageSettings
Type: SpaceStorageSettings structure

The storage settings for a space.

SpaceSettingsSummary

Description

Specifies summary information about the space settings.

Members
AppType
Type: string

The type of app created within the space.

SpaceStorageSettings
Type: SpaceStorageSettings structure

The storage settings for a space.

SpaceSharingSettings

Description

A collection of space sharing settings.

Members
SharingType
Required: Yes
Type: string

Specifies the sharing type of the space.

SpaceSharingSettingsSummary

Description

Specifies summary information about the space sharing settings.

Members
SharingType
Type: string

Specifies the sharing type of the space.

SpaceStorageSettings

Description

The storage settings for a space.

Members
EbsStorageSettings
Type: EbsStorageSettings structure

A collection of EBS storage settings for a space.

Stairs

Description

Defines the stairs traffic pattern for an Inference Recommender load test. This pattern type consists of multiple steps where the number of users increases at each step.

Specify either the stairs or phases traffic pattern.

Members
DurationInSeconds
Type: int

Defines how long each traffic step should be.

NumberOfSteps
Type: int

Specifies how many steps to perform during traffic.

UsersPerStep
Type: int

Specifies how many new users to spawn in each step.

StoppingCondition

Description

Specifies a limit to how long a job can run. When the job reaches the time limit, SageMaker ends the job. Use this API to cap costs.

To stop a training job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.

The training algorithms provided by SageMaker automatically save the intermediate results of a model training job when possible. This attempt to save artifacts is only a best effort case as model might not be in a state from which it can be saved. For example, if training has just started, the model might not be ready to save. When saved, this intermediate data is a valid model artifact. You can use it to create a model with CreateModel.

The Neural Topic Model (NTM) currently does not support saving intermediate model artifacts. When training NTMs, make sure that the maximum runtime is sufficient for the training job to complete.

Members
MaxPendingTimeInSeconds
Type: int

The maximum length of time, in seconds, that a training or compilation job can be pending before it is stopped.

MaxRuntimeInSeconds
Type: int

The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.

For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.

For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.

The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.

MaxWaitTimeInSeconds
Type: int

The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds. If the job does not complete during this time, SageMaker ends the job.

When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.

StudioLifecycleConfigDetails

Description

Details of the Amazon SageMaker AI Studio Lifecycle Configuration.

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time of the Amazon SageMaker AI Studio Lifecycle Configuration.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

This value is equivalent to CreationTime because Amazon SageMaker AI Studio Lifecycle Configurations are immutable.

StudioLifecycleConfigAppType
Type: string

The App type to which the Lifecycle Configuration is attached.

StudioLifecycleConfigArn
Type: string

The Amazon Resource Name (ARN) of the Lifecycle Configuration.

StudioLifecycleConfigName
Type: string

The name of the Amazon SageMaker AI Studio Lifecycle Configuration.

StudioWebPortalSettings

Description

Studio settings. If these settings are applied on a user level, they take priority over the settings applied on a domain level.

Members
HiddenAppTypes
Type: Array of strings

The Applications supported in Studio that are hidden from the Studio left navigation pane.

HiddenInstanceTypes
Type: Array of strings

The instance types you are hiding from the Studio user interface.

HiddenMlTools
Type: Array of strings

The machine learning tools that are hidden from the Studio left navigation pane.

HiddenSageMakerImageVersionAliases
Type: Array of HiddenSageMakerImage structures

The version aliases you are hiding from the Studio user interface.

SubscribedWorkteam

Description

Describes a work team of a vendor that does the labelling job.

Members
ListingId
Type: string

Marketplace product listing ID.

MarketplaceDescription
Type: string

The description of the vendor from the Amazon Marketplace.

MarketplaceTitle
Type: string

The title of the service provided by the vendor in the Amazon Marketplace.

SellerName
Type: string

The name of the vendor in the Amazon Marketplace.

WorkteamArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the vendor that you have subscribed.

SuggestionQuery

Description

Specified in the GetSearchSuggestions request. Limits the property names that are included in the response.

Members
PropertyNameQuery
Type: PropertyNameQuery structure

Defines a property name hint. Only property names that begin with the specified hint are included in the response.

TabularJobConfig

Description

The collection of settings used by an AutoML job V2 for the tabular problem type.

Members
CandidateGenerationConfig
Type: CandidateGenerationConfig structure

The configuration information of how model candidates are generated.

CompletionCriteria
Type: AutoMLJobCompletionCriteria structure

How long a job is allowed to run, or how many candidates a job is allowed to generate.

FeatureSpecificationS3Uri
Type: string

A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job V2. You can input FeatureAttributeNames (optional) in JSON format as shown below:

{ "FeatureAttributeNames":["col1", "col2", ...] }.

You can also specify the data type of the feature (optional) in the format shown below:

{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }

These column keys may not include the target column.

In ensembling mode, Autopilot only supports the following data types: numeric, categorical, text, and datetime. In HPO mode, Autopilot can support numeric, categorical, text, datetime, and sequence.

If only FeatureDataTypes is provided, the column keys (col1, col2,..) should be a subset of the column names in the input data.

If both FeatureDataTypes and FeatureAttributeNames are provided, then the column keys should be a subset of the column names provided in FeatureAttributeNames.

The key name FeatureAttributeNames is fixed. The values listed in ["col1", "col2", ...] are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column.

GenerateCandidateDefinitionsOnly
Type: boolean

Generates possible candidates without training the models. A model candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.

Mode
Type: string

The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting AUTO. In AUTO mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for larger ones.

The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode.

The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING mode.

ProblemType
Type: string

The type of supervised learning problem available for the model candidates of the AutoML job V2. For more information, see SageMaker Autopilot problem types.

You must either specify the type of supervised learning problem in ProblemType and provide the AutoMLJobObjective metric, or none at all.

SampleWeightAttributeName
Type: string

If specified, this column name indicates which column of the dataset should be treated as sample weights for use by the objective metric during the training, evaluation, and the selection of the best model. This column is not considered as a predictive feature. For more information on Autopilot metrics, see Metrics and validation.

Sample weights should be numeric, non-negative, with larger values indicating which rows are more important than others. Data points that have invalid or no weight value are excluded.

Support for sample weights is available in Ensembling mode only.

TargetAttributeName
Required: Yes
Type: string

The name of the target variable in supervised learning, usually represented by 'y'.

TabularResolvedAttributes

Description

The resolved attributes specific to the tabular problem type.

Members
ProblemType
Type: string

The type of supervised learning problem available for the model candidates of the AutoML job V2 (Binary Classification, Multiclass Classification, Regression). For more information, see SageMaker Autopilot problem types.

Tag

Description

A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

Members
Key
Required: Yes
Type: string

The tag key. Tag keys must be unique per resource.

Value
Required: Yes
Type: string

The tag value.

TargetPlatform

Description

Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice.

Members
Accelerator
Type: string

Specifies a target platform accelerator (optional).

  • NVIDIA: Nvidia graphics processing unit. It also requires gpu-code, trt-ver, cuda-ver compiler options

  • MALI: ARM Mali graphics processor

  • INTEL_GRAPHICS: Integrated Intel graphics

Arch
Required: Yes
Type: string

Specifies a target platform architecture.

  • X86_64: 64-bit version of the x86 instruction set.

  • X86: 32-bit version of the x86 instruction set.

  • ARM64: ARMv8 64-bit CPU.

  • ARM_EABIHF: ARMv7 32-bit, Hard Float.

  • ARM_EABI: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM platform.

Os
Required: Yes
Type: string

Specifies a target platform OS.

  • LINUX: Linux-based operating systems.

  • ANDROID: Android operating systems. Android API level can be specified using the ANDROID_PLATFORM compiler option. For example, "CompilerOptions": {'ANDROID_PLATFORM': 28}

TargetTrackingScalingPolicyConfiguration

Description

A target tracking scaling policy. Includes support for predefined or customized metrics.

When using the PutScalingPolicy API, this parameter is required when you are creating a policy with the policy type TargetTrackingScaling.

Members
MetricSpecification
Type: MetricSpecification structure

An object containing information about a metric.

TargetValue
Type: double

The recommended target value to specify for the metric when creating a scaling policy.

TensorBoardAppSettings

Description

The TensorBoard app settings.

Members
DefaultResourceSpec
Type: ResourceSpec structure

The default instance type and the Amazon Resource Name (ARN) of the SageMaker AI image created on the instance.

TensorBoardOutputConfig

Description

Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.

Members
LocalPath
Type: string

Path to local storage location for tensorBoard output. Defaults to /opt/ml/output/tensorboard.

S3OutputPath
Required: Yes
Type: string

Path to Amazon S3 storage location for TensorBoard output.

TextClassificationJobConfig

Description

The collection of settings used by an AutoML job V2 for the text classification problem type.

Members
CompletionCriteria
Type: AutoMLJobCompletionCriteria structure

How long a job is allowed to run, or how many candidates a job is allowed to generate.

ContentColumn
Required: Yes
Type: string

The name of the column used to provide the sentences to be classified. It should not be the same as the target column.

TargetLabelColumn
Required: Yes
Type: string

The name of the column used to provide the class labels. It should not be same as the content column.

TextGenerationJobConfig

Description

The collection of settings used by an AutoML job V2 for the text generation problem type.

The text generation models that support fine-tuning in Autopilot are currently accessible exclusively in regions supported by Canvas. Refer to the documentation of Canvas for the full list of its supported Regions.

Members
BaseModelName
Type: string

The name of the base model to fine-tune. Autopilot supports fine-tuning a variety of large language models. For information on the list of supported models, see Text generation models supporting fine-tuning in Autopilot. If no BaseModelName is provided, the default model used is Falcon7BInstruct.

CompletionCriteria
Type: AutoMLJobCompletionCriteria structure

How long a fine-tuning job is allowed to run. For TextGenerationJobConfig problem types, the MaxRuntimePerTrainingJobInSeconds attribute of AutoMLJobCompletionCriteria defaults to 72h (259200s).

ModelAccessConfig
Type: ModelAccessConfig structure

The access configuration file to control access to the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig.

TextGenerationHyperParameters
Type: Associative array of custom strings keys (TextGenerationHyperParameterKey) to strings

The hyperparameters used to configure and optimize the learning process of the base model. You can set any combination of the following hyperparameters for all base models. For more information on each supported hyperparameter, see Optimize the learning process of your text generation models with hyperparameters.

  • "epochCount": The number of times the model goes through the entire training dataset. Its value should be a string containing an integer value within the range of "1" to "10".

  • "batchSize": The number of data samples used in each iteration of training. Its value should be a string containing an integer value within the range of "1" to "64".

  • "learningRate": The step size at which a model's parameters are updated during training. Its value should be a string containing a floating-point value within the range of "0" to "1".

  • "learningRateWarmupSteps": The number of training steps during which the learning rate gradually increases before reaching its target or maximum value. Its value should be a string containing an integer value within the range of "0" to "250".

Here is an example where all four hyperparameters are configured.

{ "epochCount":"5", "learningRate":"0.5", "batchSize": "32", "learningRateWarmupSteps": "10" }

TextGenerationResolvedAttributes

Description

The resolved attributes specific to the text generation problem type.

Members
BaseModelName
Type: string

The name of the base model to fine-tune.

ThroughputConfig

Description

Used to set feature group throughput configuration. There are two modes: ON_DEMAND and PROVISIONED. With on-demand mode, you are charged for data reads and writes that your application performs on your feature group. You do not need to specify read and write throughput because Feature Store accommodates your workloads as they ramp up and down. You can switch a feature group to on-demand only once in a 24 hour period. With provisioned throughput mode, you specify the read and write capacity per second that you expect your application to require, and you are billed based on those limits. Exceeding provisioned throughput will result in your requests being throttled.

Note: PROVISIONED throughput mode is supported only for feature groups that are offline-only, or use the Standard tier online store.

Members
ProvisionedReadCapacityUnits
Type: int

For provisioned feature groups with online store enabled, this indicates the read throughput you are billed for and can consume without throttling.

This field is not applicable for on-demand feature groups.

ProvisionedWriteCapacityUnits
Type: int

For provisioned feature groups, this indicates the write throughput you are billed for and can consume without throttling.

This field is not applicable for on-demand feature groups.

ThroughputMode
Required: Yes
Type: string

The mode used for your feature group throughput: ON_DEMAND or PROVISIONED.

ThroughputConfigDescription

Description

Active throughput configuration of the feature group. There are two modes: ON_DEMAND and PROVISIONED. With on-demand mode, you are charged for data reads and writes that your application performs on your feature group. You do not need to specify read and write throughput because Feature Store accommodates your workloads as they ramp up and down. You can switch a feature group to on-demand only once in a 24 hour period. With provisioned throughput mode, you specify the read and write capacity per second that you expect your application to require, and you are billed based on those limits. Exceeding provisioned throughput will result in your requests being throttled.

Note: PROVISIONED throughput mode is supported only for feature groups that are offline-only, or use the Standard tier online store.

Members
ProvisionedReadCapacityUnits
Type: int

For provisioned feature groups with online store enabled, this indicates the read throughput you are billed for and can consume without throttling.

This field is not applicable for on-demand feature groups.

ProvisionedWriteCapacityUnits
Type: int

For provisioned feature groups, this indicates the write throughput you are billed for and can consume without throttling.

This field is not applicable for on-demand feature groups.

ThroughputMode
Required: Yes
Type: string

The mode used for your feature group throughput: ON_DEMAND or PROVISIONED.

ThroughputConfigUpdate

Description

The new throughput configuration for the feature group. You can switch between on-demand and provisioned modes or update the read / write capacity of provisioned feature groups. You can switch a feature group to on-demand only once in a 24 hour period.

Members
ProvisionedReadCapacityUnits
Type: int

For provisioned feature groups with online store enabled, this indicates the read throughput you are billed for and can consume without throttling.

ProvisionedWriteCapacityUnits
Type: int

For provisioned feature groups, this indicates the write throughput you are billed for and can consume without throttling.

ThroughputMode
Type: string

Target throughput mode of the feature group. Throughput update is an asynchronous operation, and the outcome should be monitored by polling LastUpdateStatus field in DescribeFeatureGroup response. You cannot update a feature group's throughput while another update is in progress.

TimeSeriesConfig

Description

The collection of components that defines the time-series.

Members
GroupingAttributeNames
Type: Array of strings

A set of columns names that can be grouped with the item identifier column to create a composite key for which a target value is predicted.

ItemIdentifierAttributeName
Required: Yes
Type: string

The name of the column that represents the set of item identifiers for which you want to predict the target value.

TargetAttributeName
Required: Yes
Type: string

The name of the column representing the target variable that you want to predict for each item in your dataset. The data type of the target variable must be numerical.

TimestampAttributeName
Required: Yes
Type: string

The name of the column indicating a point in time at which the target value of a given item is recorded.

TimeSeriesForecastingJobConfig

Description

The collection of settings used by an AutoML job V2 for the time-series forecasting problem type.

Members
CandidateGenerationConfig
Type: CandidateGenerationConfig structure

Stores the configuration information for how model candidates are generated using an AutoML job V2.

CompletionCriteria
Type: AutoMLJobCompletionCriteria structure

How long a job is allowed to run, or how many candidates a job is allowed to generate.

FeatureSpecificationS3Uri
Type: string

A URL to the Amazon S3 data source containing additional selected features that complement the target, itemID, timestamp, and grouped columns set in TimeSeriesConfig. When not provided, the AutoML job V2 includes all the columns from the original dataset that are not already declared in TimeSeriesConfig. If provided, the AutoML job V2 only considers these additional columns as a complement to the ones declared in TimeSeriesConfig.

You can input FeatureAttributeNames (optional) in JSON format as shown below:

{ "FeatureAttributeNames":["col1", "col2", ...] }.

You can also specify the data type of the feature (optional) in the format shown below:

{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }

Autopilot supports the following data types: numeric, categorical, text, and datetime.

These column keys must not include any column set in TimeSeriesConfig.

ForecastFrequency
Required: Yes
Type: string

The frequency of predictions in a forecast.

Valid intervals are an integer followed by Y (Year), M (Month), W (Week), D (Day), H (Hour), and min (Minute). For example, 1D indicates every day and 15min indicates every 15 minutes. The value of a frequency must not overlap with the next larger frequency. For example, you must use a frequency of 1H instead of 60min.

The valid values for each frequency are the following:

  • Minute - 1-59

  • Hour - 1-23

  • Day - 1-6

  • Week - 1-4

  • Month - 1-11

  • Year - 1

ForecastHorizon
Required: Yes
Type: int

The number of time-steps that the model predicts. The forecast horizon is also called the prediction length. The maximum forecast horizon is the lesser of 500 time-steps or 1/4 of the time-steps in the dataset.

ForecastQuantiles
Type: Array of strings

The quantiles used to train the model for forecasts at a specified quantile. You can specify quantiles from 0.01 (p1) to 0.99 (p99), by increments of 0.01 or higher. Up to five forecast quantiles can be specified. When ForecastQuantiles is not provided, the AutoML job uses the quantiles p10, p50, and p90 as default.

HolidayConfig
Type: Array of HolidayConfigAttributes structures

The collection of holiday featurization attributes used to incorporate national holiday information into your forecasting model.

TimeSeriesConfig
Required: Yes
Type: TimeSeriesConfig structure

The collection of components that defines the time-series.

Transformations
Type: TimeSeriesTransformations structure

The transformations modifying specific attributes of the time-series, such as filling strategies for missing values.

TimeSeriesForecastingSettings

Description

Time series forecast settings for the SageMaker Canvas application.

Members
AmazonForecastRoleArn
Type: string

The IAM role that Canvas passes to Amazon Forecast for time series forecasting. By default, Canvas uses the execution role specified in the UserProfile that launches the Canvas application. If an execution role is not specified in the UserProfile, Canvas uses the execution role specified in the Domain that owns the UserProfile. To allow time series forecasting, this IAM role should have the AmazonSageMakerCanvasForecastAccess policy attached and forecast.amazonaws.com added in the trust relationship as a service principal.

Status
Type: string

Describes whether time series forecasting is enabled or disabled in the Canvas application.

TimeSeriesTransformations

Description

Transformations allowed on the dataset. Supported transformations are Filling and Aggregation. Filling specifies how to add values to missing values in the dataset. Aggregation defines how to aggregate data that does not align with forecast frequency.

Members
Aggregation
Type: Associative array of custom strings keys (TransformationAttributeName) to strings

A key value pair defining the aggregation method for a column, where the key is the column name and the value is the aggregation method.

The supported aggregation methods are sum (default), avg, first, min, max.

Aggregation is only supported for the target column.

Filling
Type: Associative array of custom strings keys (TransformationAttributeName) to stringss

A key value pair defining the filling method for a column, where the key is the column name and the value is an object which defines the filling logic. You can specify multiple filling methods for a single column.

The supported filling methods and their corresponding options are:

  • frontfill: none (Supported only for target column)

  • middlefill: zero, value, median, mean, min, max

  • backfill: zero, value, median, mean, min, max

  • futurefill: zero, value, median, mean, min, max

To set a filling method to a specific value, set the fill parameter to the chosen filling method value (for example "backfill" : "value"), and define the filling value in an additional parameter prefixed with "_value". For example, to set backfill to a value of 2, you must include two parameters: "backfill": "value" and "backfill_value":"2".

TrackingServerSummary

Description

The summary of the tracking server to list.

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time of a listed tracking server.

IsActive
Type: string

The activity status of a listed tracking server.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last modified time of a listed tracking server.

MlflowVersion
Type: string

The MLflow version used for a listed tracking server.

TrackingServerArn
Type: string

The ARN of a listed tracking server.

TrackingServerName
Type: string

The name of a listed tracking server.

TrackingServerStatus
Type: string

The creation status of a listed tracking server.

TrafficPattern

Description

Defines the traffic pattern of the load test.

Members
Phases
Type: Array of Phase structures

Defines the phases traffic specification.

Stairs
Type: Stairs structure

Defines the stairs traffic pattern.

TrafficType
Type: string

Defines the traffic patterns. Choose either PHASES or STAIRS.

TrafficRoutingConfig

Description

Defines the traffic routing strategy during an endpoint deployment to shift traffic from the old fleet to the new fleet.

Members
CanarySize
Type: CapacitySize structure

Batch size for the first step to turn on traffic on the new endpoint fleet. Value must be less than or equal to 50% of the variant's total instance count.

LinearStepSize
Type: CapacitySize structure

Batch size for each step to turn on traffic on the new endpoint fleet. Value must be 10-50% of the variant's total instance count.

Type
Required: Yes
Type: string

Traffic routing strategy type.

  • ALL_AT_ONCE: Endpoint traffic shifts to the new fleet in a single step.

  • CANARY: Endpoint traffic shifts to the new fleet in two steps. The first step is the canary, which is a small portion of the traffic. The second step is the remainder of the traffic.

  • LINEAR: Endpoint traffic shifts to the new fleet in n steps of a configurable size.

WaitIntervalInSeconds
Required: Yes
Type: int

The waiting time (in seconds) between incremental steps to turn on traffic on the new endpoint fleet.

TrainingImageConfig

Description

The configuration to use an image from a private Docker registry for a training job.

Members
TrainingRepositoryAccessMode
Required: Yes
Type: string

The method that your training job will use to gain access to the images in your private Docker registry. For access to an image in a private Docker registry, set to Vpc.

TrainingRepositoryAuthConfig

An object containing authentication information for a private Docker registry containing your training images.

TrainingJob

Description

Contains information about a training job.

Members
AlgorithmSpecification
Type: AlgorithmSpecification structure

Information about the algorithm used for training, and algorithm metadata.

AutoMLJobArn
Type: string

The Amazon Resource Name (ARN) of the job.

BillableTimeInSeconds
Type: int

The billable time in seconds.

CheckpointConfig
Type: CheckpointConfig structure

Contains information about the output location for managed spot training checkpoint data.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that indicates when the training job was created.

DebugHookConfig
Type: DebugHookConfig structure

Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the DebugHookConfig parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.

DebugRuleConfigurations
Type: Array of DebugRuleConfiguration structures

Information about the debug rule configuration.

DebugRuleEvaluationStatuses
Type: Array of DebugRuleEvaluationStatus structures

Information about the evaluation status of the rules for the training job.

EnableInterContainerTrafficEncryption
Type: boolean

To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.

EnableManagedSpotTraining
Type: boolean

When true, enables managed spot training using Amazon EC2 Spot instances to run training jobs instead of on-demand instances. For more information, see Managed Spot Training.

EnableNetworkIsolation
Type: boolean

If the TrainingJob was created with network isolation, the value is set to true. If network isolation is enabled, nodes can't communicate beyond the VPC they run in.

Environment
Type: Associative array of custom strings keys (TrainingEnvironmentKey) to strings

The environment variables to set in the Docker container.

ExperimentConfig
Type: ExperimentConfig structure

Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

FailureReason
Type: string

If the training job failed, the reason it failed.

FinalMetricDataList
Type: Array of MetricData structures

A list of final metric values that are set when the training job completes. Used only if the training job was configured to use metrics.

HyperParameters
Type: Associative array of custom strings keys (HyperParameterKey) to strings

Algorithm-specific parameters.

InputDataConfig
Type: Array of Channel structures

An array of Channel objects that describes each data input channel.

Your input must be in the same Amazon Web Services region as your training job.

LabelingJobArn
Type: string

The Amazon Resource Name (ARN) of the labeling job.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that indicates when the status of the training job was last modified.

ModelArtifacts
Type: ModelArtifacts structure

Information about the Amazon S3 location that is configured for storing model artifacts.

OutputDataConfig
Type: OutputDataConfig structure

The S3 path where model artifacts that you configured when creating the job are stored. SageMaker creates subfolders for model artifacts.

ProfilerConfig
Type: ProfilerConfig structure

Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.

ResourceConfig
Type: ResourceConfig structure

Resources, including ML compute instances and ML storage volumes, that are configured for model training.

RetryStrategy
Type: RetryStrategy structure

The number of times to retry the job when the job fails due to an InternalServerError.

RoleArn
Type: string

The Amazon Web Services Identity and Access Management (IAM) role configured for the training job.

SecondaryStatus
Type: string

Provides detailed information about the state of the training job. For detailed information about the secondary status of the training job, see StatusMessage under SecondaryStatusTransition.

SageMaker provides primary statuses and secondary statuses that apply to each of them:

InProgress
  • Starting - Starting the training job.

  • Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.

  • Training - Training is in progress.

  • Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.

Completed
  • Completed - The training job has completed.

Failed
  • Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse.

Stopped
  • MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.

  • Stopped - The training job has stopped.

Stopping
  • Stopping - Stopping the training job.

Valid values for SecondaryStatus are subject to change.

We no longer support the following secondary statuses:

  • LaunchingMLInstances

  • PreparingTrainingStack

  • DownloadingTrainingImage

SecondaryStatusTransitions
Type: Array of SecondaryStatusTransition structures

A history of all of the secondary statuses that the training job has transitioned through.

StoppingCondition
Type: StoppingCondition structure

Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.

Tags
Type: Array of Tag structures

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

TensorBoardOutputConfig
Type: TensorBoardOutputConfig structure

Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.

TrainingEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when SageMaker detects a job failure.

TrainingJobArn
Type: string

The Amazon Resource Name (ARN) of the training job.

TrainingJobName
Type: string

The name of the training job.

TrainingJobStatus
Type: string

The status of the training job.

Training job statuses are:

  • InProgress - The training is in progress.

  • Completed - The training job has completed.

  • Failed - The training job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTrainingJobResponse call.

  • Stopping - The training job is stopping.

  • Stopped - The training job has stopped.

For more detailed information, see SecondaryStatus.

TrainingStartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of TrainingEndTime. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.

TrainingTimeInSeconds
Type: int

The training time in seconds.

TuningJobArn
Type: string

The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.

VpcConfig
Type: VpcConfig structure

A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

TrainingJobDefinition

Description

Defines the input needed to run a training job using the algorithm.

Members
HyperParameters
Type: Associative array of custom strings keys (HyperParameterKey) to strings

The hyperparameters used for the training job.

InputDataConfig
Required: Yes
Type: Array of Channel structures

An array of Channel objects, each of which specifies an input source.

OutputDataConfig
Required: Yes
Type: OutputDataConfig structure

the path to the S3 bucket where you want to store model artifacts. SageMaker creates subfolders for the artifacts.

ResourceConfig
Required: Yes
Type: ResourceConfig structure

The resources, including the ML compute instances and ML storage volumes, to use for model training.

StoppingCondition
Required: Yes
Type: StoppingCondition structure

Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.

TrainingInputMode
Required: Yes
Type: string

The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

Pipe mode

If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

File mode

If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

FastFile mode

If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.

TrainingJobStatusCounters

Description

The numbers of training jobs launched by a hyperparameter tuning job, categorized by status.

Members
Completed
Type: int

The number of completed training jobs launched by the hyperparameter tuning job.

InProgress
Type: int

The number of in-progress training jobs launched by a hyperparameter tuning job.

NonRetryableError
Type: int

The number of training jobs that failed and can't be retried. A failed training job can't be retried if it failed because a client error occurred.

RetryableError
Type: int

The number of training jobs that failed, but can be retried. A failed training job can be retried only if it failed because an internal service error occurred.

Stopped
Type: int

The number of training jobs launched by a hyperparameter tuning job that were manually stopped.

TrainingJobStepMetadata

Description

Metadata for a training job step.

Members
Arn
Type: string

The Amazon Resource Name (ARN) of the training job that was run by this step execution.

TrainingJobSummary

Description

Provides summary information about a training job.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the training job was created.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Timestamp when the training job was last modified.

SecondaryStatus
Type: string

The secondary status of the training job.

TrainingEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the training job ended. This field is set only if the training job has one of the terminal statuses (Completed, Failed, or Stopped).

TrainingJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the training job.

TrainingJobName
Required: Yes
Type: string

The name of the training job that you want a summary for.

TrainingJobStatus
Required: Yes
Type: string

The status of the training job.

TrainingPlanArn
Type: string

The Amazon Resource Name (ARN); of the training plan associated with this training job.

For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .

WarmPoolStatus
Type: WarmPoolStatus structure

The status of the warm pool associated with the training job.

TrainingPlanFilter

Description

A filter to apply when listing or searching for training plans.

For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .

Members
Name
Required: Yes
Type: string

The name of the filter field (e.g., Status, InstanceType).

Value
Required: Yes
Type: string

The value to filter by for the specified field.

TrainingPlanOffering

Description

Details about a training plan offering.

For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .

Members
CurrencyCode
Type: string

The currency code for the upfront fee (e.g., USD).

DurationHours
Type: long (int|float)

The number of whole hours in the total duration for this training plan offering.

DurationMinutes
Type: long (int|float)

The additional minutes beyond whole hours in the total duration for this training plan offering.

RequestedEndTimeBefore
Type: timestamp (string|DateTime or anything parsable by strtotime)

The requested end time that the user specified when searching for the training plan offering.

RequestedStartTimeAfter
Type: timestamp (string|DateTime or anything parsable by strtotime)

The requested start time that the user specified when searching for the training plan offering.

ReservedCapacityOfferings
Type: Array of ReservedCapacityOffering structures

A list of reserved capacity offerings associated with this training plan offering.

TargetResources
Required: Yes
Type: Array of strings

The target resources (e.g., SageMaker Training Jobs, SageMaker HyperPod) for this training plan offering.

Training plans are specific to their target resource.

  • A training plan designed for SageMaker training jobs can only be used to schedule and run training jobs.

  • A training plan for HyperPod clusters can be used exclusively to provide compute resources to a cluster's instance group.

TrainingPlanOfferingId
Required: Yes
Type: string

The unique identifier for this training plan offering.

UpfrontFee
Type: string

The upfront fee for this training plan offering.

TrainingPlanSummary

Description

Details of the training plan.

For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .

Members
AvailableInstanceCount
Type: int

The number of instances currently available for use in this training plan.

CurrencyCode
Type: string

The currency code for the upfront fee (e.g., USD).

DurationHours
Type: long (int|float)

The number of whole hours in the total duration for this training plan.

DurationMinutes
Type: long (int|float)

The additional minutes beyond whole hours in the total duration for this training plan.

EndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The end time of the training plan.

InUseInstanceCount
Type: int

The number of instances currently in use from this training plan.

ReservedCapacitySummaries
Type: Array of ReservedCapacitySummary structures

A list of reserved capacities associated with this training plan, including details such as instance types, counts, and availability zones.

StartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The start time of the training plan.

Status
Required: Yes
Type: string

The current status of the training plan (e.g., Pending, Active, Expired). To see the complete list of status values available for a training plan, refer to the Status attribute within the TrainingPlanSummary object.

StatusMessage
Type: string

A message providing additional information about the current status of the training plan.

TargetResources
Type: Array of strings

The target resources (e.g., training jobs, HyperPod clusters) that can use this training plan.

Training plans are specific to their target resource.

  • A training plan designed for SageMaker training jobs can only be used to schedule and run training jobs.

  • A training plan for HyperPod clusters can be used exclusively to provide compute resources to a cluster's instance group.

TotalInstanceCount
Type: int

The total number of instances reserved in this training plan.

TrainingPlanArn
Required: Yes
Type: string

The Amazon Resource Name (ARN); of the training plan.

TrainingPlanName
Required: Yes
Type: string

The name of the training plan.

UpfrontFee
Type: string

The upfront fee for the training plan.

TrainingRepositoryAuthConfig

Description

An object containing authentication information for a private Docker registry.

Members
TrainingRepositoryCredentialsProviderArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function used to give SageMaker access credentials to your private Docker registry.

TrainingSpecification

Description

Defines how the algorithm is used for a training job.

Members
AdditionalS3DataSource
Type: AdditionalS3DataSource structure

The additional data source used during the training job.

MetricDefinitions
Type: Array of MetricDefinition structures

A list of MetricDefinition objects, which are used for parsing metrics generated by the algorithm.

SupportedHyperParameters
Type: Array of HyperParameterSpecification structures

A list of the HyperParameterSpecification objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>

SupportedTrainingInstanceTypes
Required: Yes
Type: Array of strings

A list of the instance types that this algorithm can use for training.

SupportedTuningJobObjectiveMetrics
Type: Array of HyperParameterTuningJobObjective structures

A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.

SupportsDistributedTraining
Type: boolean

Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.

TrainingChannels
Required: Yes
Type: Array of ChannelSpecification structures

A list of ChannelSpecification objects, which specify the input sources to be used by the algorithm.

TrainingImage
Required: Yes
Type: string

The Amazon ECR registry path of the Docker image that contains the training algorithm.

TrainingImageDigest
Type: string

An MD5 hash of the training algorithm that identifies the Docker image used for training.

TransformDataSource

Description

Describes the location of the channel data.

Members
S3DataSource
Required: Yes
Type: TransformS3DataSource structure

The S3 location of the data source that is associated with a channel.

TransformInput

Description

Describes the input source of a transform job and the way the transform job consumes it.

Members
CompressionType
Type: string

If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None.

ContentType
Type: string

The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

DataSource
Required: Yes
Type: TransformDataSource structure

Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

SplitType
Type: string

The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:

  • RecordIO

  • TFRecord

When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord, Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord, Amazon SageMaker sends individual records in each request.

Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord. Padding is not removed if the value of BatchStrategy is set to MultiRecord.

For more information about RecordIO, see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord, see Consuming TFRecord data in the TensorFlow documentation.

TransformJob

Description

A batch transform job. For information about SageMaker batch transform, see Use Batch Transform.

Members
AutoMLJobArn
Type: string

The Amazon Resource Name (ARN) of the AutoML job that created the transform job.

BatchStrategy
Type: string

Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the transform Job was created.

DataCaptureConfig
Type: BatchDataCaptureConfig structure

Configuration to control how SageMaker captures inference data for batch transform jobs.

DataProcessing
Type: DataProcessing structure

The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.

Environment
Type: Associative array of custom strings keys (TransformEnvironmentKey) to strings

The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

ExperimentConfig
Type: ExperimentConfig structure

Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

FailureReason
Type: string

If the transform job failed, the reason it failed.

LabelingJobArn
Type: string

The Amazon Resource Name (ARN) of the labeling job that created the transform job.

MaxConcurrentTransforms
Type: int

The maximum number of parallel requests that can be sent to each instance in a transform job. If MaxConcurrentTransforms is set to 0 or left unset, SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is 1. For built-in algorithms, you don't need to set a value for MaxConcurrentTransforms.

MaxPayloadInMB
Type: int

The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in MaxPayloadInMB must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is 6 MB. For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to 0. This feature works only in supported algorithms. Currently, SageMaker built-in algorithms do not support HTTP chunked encoding.

ModelClientConfig
Type: ModelClientConfig structure

Configures the timeout and maximum number of retries for processing a transform job invocation.

ModelName
Type: string

The name of the model associated with the transform job.

Tags
Type: Array of Tag structures

A list of tags associated with the transform job.

TransformEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of TransformStartTime.

TransformInput
Type: TransformInput structure

Describes the input source of a transform job and the way the transform job consumes it.

TransformJobArn
Type: string

The Amazon Resource Name (ARN) of the transform job.

TransformJobName
Type: string

The name of the transform job.

TransformJobStatus
Type: string

The status of the transform job.

Transform job statuses are:

  • InProgress - The job is in progress.

  • Completed - The job has completed.

  • Failed - The transform job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTransformJob call.

  • Stopping - The transform job is stopping.

  • Stopped - The transform job has stopped.

TransformOutput
Type: TransformOutput structure

Describes the results of a transform job.

TransformResources
Type: TransformResources structure

Describes the resources, including ML instance types and ML instance count, to use for transform job.

TransformStartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of TransformEndTime.

TransformJobDefinition

Description

Defines the input needed to run a transform job using the inference specification specified in the algorithm.

Members
BatchStrategy
Type: string

A string that determines the number of records included in a single mini-batch.

SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.

Environment
Type: Associative array of custom strings keys (TransformEnvironmentKey) to strings

The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

MaxConcurrentTransforms
Type: int

The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.

MaxPayloadInMB
Type: int

The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).

TransformInput
Required: Yes
Type: TransformInput structure

A description of the input source and the way the transform job consumes it.

TransformOutput
Required: Yes
Type: TransformOutput structure

Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

TransformResources
Required: Yes
Type: TransformResources structure

Identifies the ML compute instances for the transform job.

TransformJobStepMetadata

Description

Metadata for a transform job step.

Members
Arn
Type: string

The Amazon Resource Name (ARN) of the transform job that was run by this step execution.

TransformJobSummary

Description

Provides a summary of a transform job. Multiple TransformJobSummary objects are returned as a list after in response to a ListTransformJobs call.

Members
CreationTime
Required: Yes
Type: timestamp (string|DateTime or anything parsable by strtotime)

A timestamp that shows when the transform Job was created.

FailureReason
Type: string

If the transform job failed, the reason it failed.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Indicates when the transform job was last modified.

TransformEndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Indicates when the transform job ends on compute instances. For successful jobs and stopped jobs, this is the exact time recorded after the results are uploaded. For failed jobs, this is when Amazon SageMaker detected that the job failed.

TransformJobArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the transform job.

TransformJobName
Required: Yes
Type: string

The name of the transform job.

TransformJobStatus
Required: Yes
Type: string

The status of the transform job.

TransformOutput

Description

Describes the results of a transform job.

Members
Accept
Type: string

The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

AssembleWith
Type: string

Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None. To add a newline character at the end of every transformed record, specify Line.

KmsKeyId
Type: string

The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

  • Alias name: alias/ExampleAlias

  • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.

S3OutputPath
Required: Yes
Type: string

The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix.

For every S3 object used as input for the transform job, batch transform stores the transformed data with an .out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv, batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out. Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an .out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

TransformResources

Description

Describes the resources, including ML instance types and ML instance count, to use for transform job.

Members
InstanceCount
Required: Yes
Type: int

The number of ML compute instances to use in the transform job. The default value is 1, and the maximum is 100. For distributed transform jobs, specify a value greater than 1.

InstanceType
Required: Yes
Type: string

The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.largeinstance types.

VolumeKmsKeyId
Type: string

The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.

Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

For a list of instance types that support local instance storage, see Instance Store Volumes.

For more information about local instance storage encryption, see SSD Instance Store Volumes.

The VolumeKmsKeyId can be any of the following formats:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

  • Alias name: alias/ExampleAlias

  • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

TransformS3DataSource

Description

Describes the S3 data source.

Members
S3DataType
Required: Yes
Type: string

If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

The following values are compatible: ManifestFile, S3Prefix

The following value is not compatible: AugmentedManifestFile

S3Uri
Required: Yes
Type: string

Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example:

  • A key name prefix might look like this: s3://bucketname/exampleprefix/.

  • A manifest might look like this: s3://bucketname/example.manifest

    The manifest is an S3 object which is a JSON file with the following format:

    [ {"prefix": "s3://customer_bucket/some/prefix/"},

    "relative/path/to/custdata-1",

    "relative/path/custdata-2",

    ...

    "relative/path/custdata-N"

    ]

    The preceding JSON matches the following S3Uris:

    s3://customer_bucket/some/prefix/relative/path/to/custdata-1

    s3://customer_bucket/some/prefix/relative/path/custdata-2

    ...

    s3://customer_bucket/some/prefix/relative/path/custdata-N

    The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

Trial

Description

The properties of a trial as returned by the Search API.

Members
CreatedBy
Type: UserContext structure

Who created the trial.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the trial was created.

DisplayName
Type: string

The name of the trial as displayed. If DisplayName isn't specified, TrialName is displayed.

ExperimentName
Type: string

The name of the experiment the trial is part of.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

Who last modified the trial.

MetadataProperties
Type: MetadataProperties structure

Metadata properties of the tracking entity, trial, or trial component.

Source
Type: TrialSource structure

The source of the trial.

Tags
Type: Array of Tag structures

The list of tags that are associated with the trial. You can use Search API to search on the tags.

TrialArn
Type: string

The Amazon Resource Name (ARN) of the trial.

TrialComponentSummaries
Type: Array of TrialComponentSimpleSummary structures

A list of the components associated with the trial. For each component, a summary of the component's properties is included.

TrialName
Type: string

The name of the trial.

TrialComponent

Description

The properties of a trial component as returned by the Search API.

Members
CreatedBy
Type: UserContext structure

Who created the trial component.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component was created.

DisplayName
Type: string

The name of the component as displayed. If DisplayName isn't specified, TrialComponentName is displayed.

EndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component ended.

InputArtifacts
Type: Associative array of custom strings keys (TrialComponentKey128) to TrialComponentArtifact structures

The input artifacts of the component.

LastModifiedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component was last modified.

LineageGroupArn
Type: string

The Amazon Resource Name (ARN) of the lineage group resource.

MetadataProperties
Type: MetadataProperties structure

Metadata properties of the tracking entity, trial, or trial component.

Metrics
Type: Array of TrialComponentMetricSummary structures

The metrics for the component.

OutputArtifacts
Type: Associative array of custom strings keys (TrialComponentKey128) to TrialComponentArtifact structures

The output artifacts of the component.

Parameters
Type: Associative array of custom strings keys (TrialComponentKey320) to TrialComponentParameterValue structures

The hyperparameters of the component.

Parents
Type: Array of Parent structures

An array of the parents of the component. A parent is a trial the component is associated with and the experiment the trial is part of. A component might not have any parents.

RunName
Type: string

The name of the experiment run.

Source
Type: TrialComponentSource structure

The Amazon Resource Name (ARN) and job type of the source of the component.

SourceDetail
Type: TrialComponentSourceDetail structure

Details of the source of the component.

StartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component started.

Status
Type: TrialComponentStatus structure

The status of the trial component.

Tags
Type: Array of Tag structures

The list of tags that are associated with the component. You can use Search API to search on the tags.

TrialComponentArn
Type: string

The Amazon Resource Name (ARN) of the trial component.

TrialComponentName
Type: string

The name of the trial component.

TrialComponentArtifact

Description

Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent request.

Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.

Members
MediaType
Type: string

The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.

Value
Required: Yes
Type: string

The location of the artifact.

TrialComponentMetricSummary

Description

A summary of the metrics of a trial component.

Members
Avg
Type: double

The average value of the metric.

Count
Type: int

The number of samples used to generate the metric.

Last
Type: double

The most recent value of the metric.

Max
Type: double

The maximum value of the metric.

MetricName
Type: string

The name of the metric.

Min
Type: double

The minimum value of the metric.

SourceArn
Type: string

The Amazon Resource Name (ARN) of the source.

StdDev
Type: double

The standard deviation of the metric.

TimeStamp
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the metric was last updated.

TrialComponentParameterValue

Description

The value of a hyperparameter. Only one of NumberValue or StringValue can be specified.

This object is specified in the CreateTrialComponent request.

Members
NumberValue
Type: double

The numeric value of a numeric hyperparameter. If you specify a value for this parameter, you can't specify the StringValue parameter.

StringValue
Type: string

The string value of a categorical hyperparameter. If you specify a value for this parameter, you can't specify the NumberValue parameter.

TrialComponentSimpleSummary

Description

A short summary of a trial component.

Members
CreatedBy
Type: UserContext structure

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component was created.

TrialComponentArn
Type: string

The Amazon Resource Name (ARN) of the trial component.

TrialComponentName
Type: string

The name of the trial component.

TrialComponentSource
Type: TrialComponentSource structure

The Amazon Resource Name (ARN) and job type of the source of a trial component.

TrialComponentSource

Description

The Amazon Resource Name (ARN) and job type of the source of a trial component.

Members
SourceArn
Required: Yes
Type: string

The source Amazon Resource Name (ARN).

SourceType
Type: string

The source job type.

TrialComponentSourceDetail

Description

Detailed information about the source of a trial component. Either ProcessingJob or TrainingJob is returned.

Members
ProcessingJob
Type: ProcessingJob structure

Information about a processing job that's the source of a trial component.

SourceArn
Type: string

The Amazon Resource Name (ARN) of the source.

TrainingJob
Type: TrainingJob structure

Information about a training job that's the source of a trial component.

TransformJob
Type: TransformJob structure

Information about a transform job that's the source of a trial component.

TrialComponentStatus

Description

The status of the trial component.

Members
Message
Type: string

If the component failed, a message describing why.

PrimaryStatus
Type: string

The status of the trial component.

TrialComponentSummary

Description

A summary of the properties of a trial component. To get all the properties, call the DescribeTrialComponent API and provide the TrialComponentName.

Members
CreatedBy
Type: UserContext structure

Who created the trial component.

CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component was created.

DisplayName
Type: string

The name of the component as displayed. If DisplayName isn't specified, TrialComponentName is displayed.

EndTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component ended.

LastModifiedBy
Type: UserContext structure

Who last modified the component.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component was last modified.

StartTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the component started.

Status
Type: TrialComponentStatus structure

The status of the component. States include:

  • InProgress

  • Completed

  • Failed

TrialComponentArn
Type: string

The Amazon Resource Name (ARN) of the trial component.

TrialComponentName
Type: string

The name of the trial component.

TrialComponentSource
Type: TrialComponentSource structure

The Amazon Resource Name (ARN) and job type of the source of a trial component.

TrialSource

Description

The source of the trial.

Members
SourceArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the source.

SourceType
Type: string

The source job type.

TrialSummary

Description

A summary of the properties of a trial. To get the complete set of properties, call the DescribeTrial API and provide the TrialName.

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the trial was created.

DisplayName
Type: string

The name of the trial as displayed. If DisplayName isn't specified, TrialName is displayed.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

When the trial was last modified.

TrialArn
Type: string

The Amazon Resource Name (ARN) of the trial.

TrialName
Type: string

The name of the trial.

TrialSource
Type: TrialSource structure

The source of the trial.

TtlDuration

Description

Time to live duration, where the record is hard deleted after the expiration time is reached; ExpiresAt = EventTime + TtlDuration. For information on HardDelete, see the DeleteRecord API in the Amazon SageMaker API Reference guide.

Members
Unit
Type: string

TtlDuration time unit.

Value
Type: int

TtlDuration time value.

TuningJobCompletionCriteria

Description

The job completion criteria.

Members
BestObjectiveNotImproving
Type: BestObjectiveNotImproving structure

A flag to stop your hyperparameter tuning job if model performance fails to improve as evaluated against an objective function.

ConvergenceDetected
Type: ConvergenceDetected structure

A flag to top your hyperparameter tuning job if automatic model tuning (AMT) has detected that your model has converged as evaluated against your objective function.

TargetObjectiveMetricValue
Type: float

The value of the objective metric.

TuningJobStepMetaData

Description

Metadata for a tuning step.

Members
Arn
Type: string

The Amazon Resource Name (ARN) of the tuning job that was run by this step execution.

USD

Description

Represents an amount of money in United States dollars.

Members
Cents
Type: int

The fractional portion, in cents, of the amount.

Dollars
Type: int

The whole number of dollars in the amount.

TenthFractionsOfACent
Type: int

Fractions of a cent, in tenths.

UiConfig

Description

Provided configuration information for the worker UI for a labeling job. Provide either HumanTaskUiArn or UiTemplateS3Uri.

For named entity recognition, 3D point cloud and video frame labeling jobs, use HumanTaskUiArn.

For all other Ground Truth built-in task types and custom task types, use UiTemplateS3Uri to specify the location of a worker task template in Amazon S3.

Members
HumanTaskUiArn
Type: string

The ARN of the worker task template used to render the worker UI and tools for labeling job tasks.

Use this parameter when you are creating a labeling job for named entity recognition, 3D point cloud and video frame labeling jobs. Use your labeling job task type to select one of the following ARNs and use it with this parameter when you create a labeling job. Replace aws-region with the Amazon Web Services Region you are creating your labeling job in. For example, replace aws-region with us-west-1 if you create a labeling job in US West (N. California).

Named Entity Recognition

Use the following HumanTaskUiArn for named entity recognition labeling jobs:

arn:aws:sagemaker:aws-region:394669845002:human-task-ui/NamedEntityRecognition

3D Point Cloud HumanTaskUiArns

Use this HumanTaskUiArn for 3D point cloud object detection and 3D point cloud object detection adjustment labeling jobs.

  • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectDetection

Use this HumanTaskUiArn for 3D point cloud object tracking and 3D point cloud object tracking adjustment labeling jobs.

  • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectTracking

Use this HumanTaskUiArn for 3D point cloud semantic segmentation and 3D point cloud semantic segmentation adjustment labeling jobs.

  • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation

Video Frame HumanTaskUiArns

Use this HumanTaskUiArn for video frame object detection and video frame object detection adjustment labeling jobs.

  • arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection

Use this HumanTaskUiArn for video frame object tracking and video frame object tracking adjustment labeling jobs.

  • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking

UiTemplateS3Uri
Type: string

The Amazon S3 bucket location of the UI template, or worker task template. This is the template used to render the worker UI and tools for labeling job tasks. For more information about the contents of a UI template, see Creating Your Custom Labeling Task Template.

UiTemplate

Description

The Liquid template for the worker user interface.

Members
Content
Required: Yes
Type: string

The content of the Liquid template for the worker user interface.

UiTemplateInfo

Description

Container for user interface template information.

Members
ContentSha256
Type: string

The SHA-256 digest of the contents of the template.

Url
Type: string

The URL for the user interface template.

UserContext

Description

Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

Members
DomainId
Type: string

The domain associated with the user.

IamIdentity
Type: IamIdentity structure

The IAM Identity details associated with the user. These details are associated with model package groups, model packages, and project entities only.

UserProfileArn
Type: string

The Amazon Resource Name (ARN) of the user's profile.

UserProfileName
Type: string

The name of the user's profile.

UserProfileDetails

Description

The user profile details.

Members
CreationTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The creation time.

DomainId
Type: string

The domain ID.

LastModifiedTime
Type: timestamp (string|DateTime or anything parsable by strtotime)

The last modified time.

Status
Type: string

The status.

UserProfileName
Type: string

The user profile name.

UserSettings

Description

A collection of settings that apply to users in a domain. These settings are specified when the CreateUserProfile API is called, and as DefaultUserSettings when the CreateDomain API is called.

SecurityGroups is aggregated when specified in both calls. For all other settings in UserSettings, the values specified in CreateUserProfile take precedence over those specified in CreateDomain.

Members
AutoMountHomeEFS
Type: string

Indicates whether auto-mounting of an EFS volume is supported for the user profile. The DefaultAsDomain value is only supported for user profiles. Do not use the DefaultAsDomain value when setting this parameter for a domain.

SageMaker applies this setting only to private spaces that the user creates in the domain. SageMaker doesn't apply this setting to shared spaces.

CanvasAppSettings
Type: CanvasAppSettings structure

The Canvas app settings.

SageMaker applies these settings only to private spaces that SageMaker creates for the Canvas app.

CodeEditorAppSettings
Type: CodeEditorAppSettings structure

The Code Editor application settings.

SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.

CustomFileSystemConfigs
Type: Array of CustomFileSystemConfig structures

The settings for assigning a custom file system to a user profile. Permitted users can access this file system in Amazon SageMaker AI Studio.

SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.

CustomPosixUserConfig
Type: CustomPosixUserConfig structure

Details about the POSIX identity that is used for file system operations.

SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.

DefaultLandingUri
Type: string

The default experience that the user is directed to when accessing the domain. The supported values are:

  • studio::: Indicates that Studio is the default experience. This value can only be passed if StudioWebPortal is set to ENABLED.

  • app:JupyterServer:: Indicates that Studio Classic is the default experience.

ExecutionRole
Type: string

The execution role for the user.

SageMaker applies this setting only to private spaces that the user creates in the domain. SageMaker doesn't apply this setting to shared spaces.

JupyterLabAppSettings
Type: JupyterLabAppSettings structure

The settings for the JupyterLab application.

SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.

JupyterServerAppSettings
Type: JupyterServerAppSettings structure

The Jupyter server's app settings.

KernelGatewayAppSettings
Type: KernelGatewayAppSettings structure

The kernel gateway app settings.

RSessionAppSettings
Type: RSessionAppSettings structure

A collection of settings that configure the RSessionGateway app.

RStudioServerProAppSettings
Type: RStudioServerProAppSettings structure

A collection of settings that configure user interaction with the RStudioServerPro app.

SecurityGroups
Type: Array of strings

The security groups for the Amazon Virtual Private Cloud (VPC) that the domain uses for communication.

Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly.

Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly, unless specified as part of the DefaultUserSettings for the domain.

Amazon SageMaker AI adds a security group to allow NFS traffic from Amazon SageMaker AI Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.

SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.

SharingSettings
Type: SharingSettings structure

Specifies options for sharing Amazon SageMaker AI Studio notebooks.

SpaceStorageSettings
Type: DefaultSpaceStorageSettings structure

The storage settings for a space.

SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.

StudioWebPortal
Type: string

Whether the user can access Studio. If this value is set to DISABLED, the user cannot access Studio, even if that is the default experience for the domain.

StudioWebPortalSettings
Type: StudioWebPortalSettings structure

Studio settings. If these settings are applied on a user level, they take priority over the settings applied on a domain level.

TensorBoardAppSettings
Type: TensorBoardAppSettings structure

The TensorBoard app settings.

VariantProperty

Description

Specifies a production variant property type for an Endpoint.

If you are updating an endpoint with the RetainAllVariantProperties option of UpdateEndpointInput set to true, the VariantProperty objects listed in the ExcludeRetainedVariantProperties parameter of UpdateEndpointInput override the existing variant properties of the endpoint.

Members
VariantPropertyType
Required: Yes
Type: string

The type of variant property. The supported values are:

  • DesiredInstanceCount: Overrides the existing variant instance counts using the InitialInstanceCount values in the ProductionVariants of CreateEndpointConfig.

  • DesiredWeight: Overrides the existing variant weights using the InitialVariantWeight values in the ProductionVariants of CreateEndpointConfig.

  • DataCaptureConfig: (Not currently supported.)

VectorConfig

Description

Configuration for your vector collection type.

Members
Dimension
Required: Yes
Type: int

The number of elements in your vector.

Vertex

Description

A lineage entity connected to the starting entity(ies).

Members
Arn
Type: string

The Amazon Resource Name (ARN) of the lineage entity resource.

LineageType
Type: string

The type of resource of the lineage entity.

Type
Type: string

The type of the lineage entity resource. For example: DataSet, Model, Endpoint, etc...

VisibilityConditions

Description

The list of key-value pairs used to filter your search results. If a search result contains a key from your list, it is included in the final search response if the value associated with the key in the result matches the value you specified. If the value doesn't match, the result is excluded from the search response. Any resources that don't have a key from the list that you've provided will also be included in the search response.

Members
Key
Type: string

The key that specifies the tag that you're using to filter the search results. It must be in the following format: Tags.<key>.

Value
Type: string

The value for the tag that you're using to filter the search results.

VpcConfig

Description

Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC.

Members
SecurityGroupIds
Required: Yes
Type: Array of strings

The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

Subnets
Required: Yes
Type: Array of strings

The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

WarmPoolStatus

Description

Status and billing information about the warm pool.

Members
ResourceRetainedBillableTimeInSeconds
Type: int

The billable time in seconds used by the warm pool. Billable time refers to the absolute wall-clock time.

Multiply ResourceRetainedBillableTimeInSeconds by the number of instances (InstanceCount) in your training cluster to get the total compute time SageMaker bills you if you run warm pool training. The formula is as follows: ResourceRetainedBillableTimeInSeconds * InstanceCount.

ReusedByJob
Type: string

The name of the matching training job that reused the warm pool.

Status
Required: Yes
Type: string

The status of the warm pool.

  • InUse: The warm pool is in use for the training job.

  • Available: The warm pool is available to reuse for a matching training job.

  • Reused: The warm pool moved to a matching training job for reuse.

  • Terminated: The warm pool is no longer available. Warm pools are unavailable if they are terminated by a user, terminated for a patch update, or terminated for exceeding the specified KeepAlivePeriodInSeconds.

WorkerAccessConfiguration

Description

Use this optional parameter to constrain access to an Amazon S3 resource based on the IP address using supported IAM global condition keys. The Amazon S3 resource is accessed in the worker portal using a Amazon S3 presigned URL.

Members
S3Presign
Type: S3Presign structure

Defines any Amazon S3 resource constraints.

Workforce

Description

A single private workforce, which is automatically created when you create your first private work team. You can create one private work force in each Amazon Web Services Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce.

Members
CognitoConfig
Type: CognitoConfig structure

The configuration of an Amazon Cognito workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool.

CreateDate
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date that the workforce is created.

FailureReason
Type: string

The reason your workforce failed.

LastUpdatedDate
Type: timestamp (string|DateTime or anything parsable by strtotime)

The most recent date that UpdateWorkforce was used to successfully add one or more IP address ranges (CIDRs) to a private workforce's allow list.

OidcConfig
Type: OidcConfigForResponse structure

The configuration of an OIDC Identity Provider (IdP) private workforce.

SourceIpConfig
Type: SourceIpConfig structure

A list of one to ten IP address ranges (CIDRs) to be added to the workforce allow list. By default, a workforce isn't restricted to specific IP addresses.

Status
Type: string

The status of your workforce.

SubDomain
Type: string

The subdomain for your OIDC Identity Provider.

WorkforceArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) of the private workforce.

WorkforceName
Required: Yes
Type: string

The name of the private workforce.

WorkforceVpcConfig
Type: WorkforceVpcConfigResponse structure

The configuration of a VPC workforce.

WorkforceVpcConfigRequest

Description

The VPC object you use to create or update a workforce.

Members
SecurityGroupIds
Type: Array of strings

The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.

Subnets
Type: Array of strings

The ID of the subnets in the VPC that you want to connect.

VpcId
Type: string

The ID of the VPC that the workforce uses for communication.

WorkforceVpcConfigResponse

Description

A VpcConfig object that specifies the VPC that you want your workforce to connect to.

Members
SecurityGroupIds
Required: Yes
Type: Array of strings

The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.

Subnets
Required: Yes
Type: Array of strings

The ID of the subnets in the VPC that you want to connect.

VpcEndpointId
Type: string

The IDs for the VPC service endpoints of your VPC workforce when it is created and updated.

VpcId
Required: Yes
Type: string

The ID of the VPC that the workforce uses for communication.

WorkspaceSettings

Description

The workspace settings for the SageMaker Canvas application.

Members
S3ArtifactPath
Type: string

The Amazon S3 bucket used to store artifacts generated by Canvas. Updating the Amazon S3 location impacts existing configuration settings, and Canvas users no longer have access to their artifacts. Canvas users must log out and log back in to apply the new location.

S3KmsKeyId
Type: string

The Amazon Web Services Key Management Service (KMS) encryption key ID that is used to encrypt artifacts generated by Canvas in the Amazon S3 bucket.

Workteam

Description

Provides details about a labeling work team.

Members
CreateDate
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the work team was created (timestamp).

Description
Required: Yes
Type: string

A description of the work team.

LastUpdatedDate
Type: timestamp (string|DateTime or anything parsable by strtotime)

The date and time that the work team was last updated (timestamp).

MemberDefinitions
Required: Yes
Type: Array of MemberDefinition structures

A list of MemberDefinition objects that contains objects that identify the workers that make up the work team.

Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use CognitoMemberDefinition. For workforces created using your own OIDC identity provider (IdP) use OidcMemberDefinition.

NotificationConfiguration
Type: NotificationConfiguration structure

Configures SNS notifications of available or expiring work items for work teams.

ProductListingIds
Type: Array of strings

The Amazon Marketplace identifier for a vendor's work team.

SubDomain
Type: string

The URI of the labeling job's user interface. Workers open this URI to start labeling your data objects.

WorkerAccessConfiguration
Type: WorkerAccessConfiguration structure

Describes any access constraints that have been defined for Amazon S3 resources.

WorkforceArn
Type: string

The Amazon Resource Name (ARN) of the workforce.

WorkteamArn
Required: Yes
Type: string

The Amazon Resource Name (ARN) that identifies the work team.

WorkteamName
Required: Yes
Type: string

The name of the work team.