Konfigurasi Spark - Amazon EMR

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Konfigurasi Spark

Anda dapat mengonfigurasi Spark di Amazon EMR dengan klasifikasi konfigurasi. Untuk informasi selengkapnya tentang klasifikasi konfigurasi, lihatKonfigurasikan aplikasi.

Klasifikasi konfigurasi untuk Spark di Amazon EMR meliputi yang berikut:

  • spark— Menetapkan maximizeResourceAllocation properti ke benar atau salah. Jika benar, Amazon EMR secara otomatis mengonfigurasi spark-defaults properti berdasarkan konfigurasi perangkat keras klaster. Untuk informasi selengkapnya, lihat Menggunakan maximizeResourceAllocation.

  • spark-defaults— Menetapkan nilai dalam spark-defaults.conf file. Untuk informasi lebih lanjut, lihat Konfigurasi percikan dalam dokumentasi Spark.

  • spark-env— Menetapkan nilai dalam spark-env.sh file. Untuk informasi lebih lanjut, lihat Variabel lingkungan dalam dokumentasi Spark.

  • spark-hive-site— Menetapkan nilai dalam hive-site.xml untuk Spark.

  • spark-log4j— (Amazon EMR merilis 6.7.x dan lebih rendah) Menetapkan nilai dalam file. log4j.properties Untuk informasi lebih lanjut, lihat file log4j.properties.template di Github.

  • spark-log4j2— (Amazon EMR merilis 6.8.0 dan lebih tinggi) Menetapkan nilai dalam file. log4j2.properties Untuk informasi lebih lanjut, lihat file log4j2.properties.template di Github.

  • spark-metrics— Menetapkan nilai dalam metrics.properties file. Untuk pengaturan dan informasi selengkapnya, lihat file metrics.properties.template di Github, dan Metrik dalam dokumentasi Spark.

catatan

Jika Anda memigrasikan beban kerja Spark ke Amazon EMR dari platform lain, kami sarankan Anda menguji beban kerja Anda dengan Default percikan ditetapkan oleh Amazon EMR sebelum menambahkan konfigurasi khusus. Sebagian besar pelanggan melihat peningkatan kinerja dengan pengaturan default kami.

Default percikan ditetapkan oleh Amazon EMR

Tabel berikut menunjukkan bagaimana Amazon EMR menetapkan nilai default spark-defaults yang memengaruhi aplikasi.

Default percikan ditetapkan oleh Amazon EMR
Pengaturan Deskripsi Nilai default
spark.executor.memory

Jumlah memori yang digunakan per proses pelaksana. Misalnya:1g,2g.

Pengaturan ini ditentukan oleh jenis instance inti dan tugas di cluster.

spark.executor.cores

Bilangan teras untuk digunakan pada setiap pelaksana.

Pengaturan ini ditentukan oleh jenis instance inti dan tugas di cluster.

spark.dynamicAllocation.enabled

Jika benar, gunakan alokasi sumber daya dinamis untuk menskalakan jumlah pelaksana yang terdaftar dengan aplikasi naik dan turun berdasarkan beban kerja.

true(dengan Amazon EMR 4.4.0 dan lebih tinggi)

catatan

Layanan shuffle percikan secara otomatis dikonfigurasi oleh Amazon. EMR

spark.sql.hive.advancedPartitionPredicatePushdown.enabled

Ketika benar, predikat partisi lanjutan pushdown ke Hive metastore diaktifkan.

true
spark.sql.hive.stringLikePartitionPredicatePushdown.enabled

Mendorong ke bawahstartsWith,contains, dan endsWith menyaring ke hive metastore.

catatan

Glue tidak mendukung predikat push down untukstartsWith,contains, atauendsWith. Jika Anda menggunakan Glue metastore dan Anda menemukan kesalahan karena predikat pushdown untuk fungsi-fungsi ini, atur konfigurasi ini ke. false

true

Mengkonfigurasi pengumpulan sampah Spark di Amazon 6.1.0 EMR

Menyetel konfigurasi pengumpulan sampah khusus dengan spark.driver.extraJavaOptions dan spark.executor.extraJavaOptions mengakibatkan kegagalan peluncuran driver atau pelaksana dengan Amazon EMR 6.1 karena konfigurasi pengumpulan sampah yang bertentangan dengan Amazon 6.1.0. EMR Untuk Amazon EMR 6.1.0, konfigurasi pengumpulan sampah default diatur melalui spark.driver.defaultJavaOptions danspark.executor.defaultJavaOptions. Konfigurasi ini hanya berlaku untuk Amazon EMR 6.1.0. JVMopsi yang tidak terkait dengan pengumpulan sampah, seperti untuk mengonfigurasi logging (-verbose:class), masih dapat diatur. extraJavaOptions Untuk informasi lebih lanjut, lihat sifat aplikasi Spark.

Menggunakan maximizeResourceAllocation

Untuk mengkonfigurasi pelaksana Anda untuk menggunakan sumber daya maksimum yang mungkin pada setiap node dalam sebuah cluster, mengatur maximizeResourceAllocation ke true di spark klasifikasi konfigurasi. maximizeResourceAllocationIni khusus untuk AmazonEMR. Saat Anda mengaktifkanmaximizeResourceAllocation, Amazon EMR menghitung sumber daya komputasi dan memori maksimum yang tersedia untuk eksekutor pada instance dalam grup instans inti. Ini kemudian menetapkan sesuai spark-defaults tetapan berdasarkan nilai maksimum yang dikira.

Amazon EMR menghitung sumber daya komputasi dan memori maksimum yang tersedia untuk eksekutor berdasarkan jenis instans dari armada instans inti. Karena setiap armada instans dapat memiliki tipe dan ukuran instans yang berbeda dalam armada, konfigurasi pelaksana yang EMR digunakan Amazon mungkin bukan yang terbaik untuk klaster Anda, jadi kami tidak menyarankan menggunakan pengaturan default saat menggunakan alokasi sumber daya maksimum. Konfigurasikan pengaturan khusus untuk cluster armada instans Anda.

catatan

Anda tidak boleh menggunakan maximizeResourceAllocation opsi pada cluster dengan aplikasi terdistribusi lainnya sepertiHBase. Amazon EMR menggunakan YARN konfigurasi khusus untuk aplikasi terdistribusi, yang dapat bertentangan dengan maximizeResourceAllocation dan menyebabkan aplikasi Spark gagal.

Berikut ini adalah contoh klasifikasi konfigurasi Spark dengan maximizeResourceAllocation set ketrue.

[ { "Classification": "spark", "Properties": { "maximizeResourceAllocation": "true" } } ]
Pengaturan dikonfigurasi dalam spark-defaults Saat maximizeResourceAllocation diaktifkan
Pengaturan Deskripsi Nilai
spark.default.paralelisme Jumlah partisi default yang RDDs dikembalikan oleh transformasi seperti bergabung, reduceByKey, dan paralel saat tidak disetel oleh pengguna.

2X jumlah CPU core yang tersedia untuk YARN kontainer.

spark.driver.memory Jumlah memori yang digunakan untuk proses driver, yaitu di mana SparkContext diinisialisasi. (misalnya, 1g, 2g).

Pengaturan dikonfigurasi berdasarkan jenis contoh dalam gugus. Namun, karena aplikasi driver Spark dapat berjalan pada instance utama atau salah satu instance inti (misalnya, dalam mode YARN klien dan cluster, masing-masing), ini diatur berdasarkan tipe instance yang lebih kecil dalam dua grup instance ini.

spark.executor.memory Jumlah memori untuk digunakan per proses pelaksana. (misalnya, 1g, 2g)

Pengaturan dikonfigurasi berdasarkan inti dan tugas jenis contoh di cluster.

spark.executor.cores Bilangan teras untuk digunakan pada setiap pelaksana. Pengaturan dikonfigurasi berdasarkan inti dan tugas jenis contoh di cluster.
spark.executor.instances Jumlah pelaksana.

Pengaturan dikonfigurasi berdasarkan inti dan tugas jenis contoh di cluster. Set kecuali spark.dynamicAllocation.enabled Secara eksplisit diatur ke true pada saat yang sama.

Mengkonfigurasi perilaku dekomisioning node

Dengan Amazon EMR merilis 5.9.0 dan yang lebih tinggi, Spark di Amazon EMR menyertakan serangkaian fitur untuk membantu memastikan bahwa Spark menangani penghentian node dengan anggun karena pengubahan ukuran manual atau permintaan kebijakan penskalaan otomatis. Amazon EMR menerapkan mekanisme daftar penolakan di Spark yang dibangun di atas mekanisme YARN penonaktifan. Mekanisme ini membantu memastikan bahwa tidak ada tugas baru dijadwalkan pada node yang menonaktifkan, sementara pada saat yang sama memungkinkan tugas-tugas yang sudah berjalan untuk menyelesaikan. Selain itu, ada fitur untuk membantu memulihkan pekerjaan Spark lebih cepat jika blok shuffle hilang ketika node berakhir. Proses recomputation dipicu cepat dan dioptimalkan untuk recompute lebih cepat dengan lebih sedikit tahap retries, dan pekerjaan dapat dicegah dari gagal karena mengambil kegagalan yang disebabkan oleh hilang mengoyak blok.

penting

spark.decommissioning.timeout.thresholdSetelan ditambahkan di Amazon EMR rilis 5.11.0 untuk meningkatkan ketahanan Spark saat Anda menggunakan instans Spot. Dalam rilis sebelumnya, ketika sebuah node menggunakan instance Spot, dan instance dihentikan karena harga bid, Spark mungkin tidak dapat menangani penghentian dengan anggun. Pekerjaan mungkin gagal, dan shuffle recomputations bisa mengambil sejumlah besar waktu. Untuk alasan ini, sebaiknya gunakan rilis 5.11.0 atau yang lebih baru jika Anda menggunakan instance Spot.

Pengaturan dekomisioning simpul percikan
Pengaturan Deskripsi Nilai default

spark.blacklist.decommissioning.enabled

Saat disetel ketrue, Spark menolak daftar node yang berada dalam decommissioning status diYARN. Spark tidak menjadwalkan tugas baru pada pelaksana berjalan pada node itu. Tugas yang sudah berjalan diperbolehkan untuk diselesaikan.

true

spark.blacklist.decommissioning.timeout

Jumlah waktu node dalam decommissioning status ditolak terdaftar. Secara default, nilai ini diatur ke satu jam, yang juga merupakan default untuk yarn.resourcemanager.decommissioning.timeout. Untuk memastikan bahwa sebuah node ditolak terdaftar untuk seluruh periode penonaktifan, tetapkan nilai ini sama dengan atau lebih besar dari. yarn.resourcemanager.decommissioning.timeout Setelah batas waktu penonaktifan berakhir, node bertransisi ke statusdecommissioned, dan Amazon EMR dapat menghentikan instance node. EC2 Jika ada tugas yang masih berjalan setelah batas waktu berakhir, mereka akan hilang atau dibunuh dan dijadwal ulang pada pelaksana yang berjalan di node lain.

1h

spark.decommissioning.timeout.threshold

Tersedia di Amazon EMR rilis 5.11.0 atau yang lebih baru. Ditentukan dalam detik. Ketika node bertransisi ke status dekomisioning, jika host akan dinonaktifkan dalam periode waktu yang sama dengan atau kurang dari nilai ini, Amazon EMR tidak hanya menolak daftar node, tetapi juga membersihkan status host (seperti yang ditentukan olehspark.resourceManager.cleanupExpiredHost) tanpa menunggu node untuk transisi ke status dinonaktifkan. Hal ini memungkinkan Spark untuk menangani Spot misalnya terminasi lebih baik karena Spot contoh dekommisi dalam timeout 20 detik terlepas dari nilai yarn.resourcemager.decommissioning.timeout, yang mungkin tidak menyediakan node lain cukup waktu untuk membaca file shuffle.

20s

spark.resourceManager.cleanupExpiredHost

Ketika diatur ke true, Spark unregisters semua data cache dan blok shuffle yang disimpan dalam pelaksana pada node yang berada di decommissioned negara bagian. Ini mempercepat proses pemulihan.

true

spark.stage.attempt.ignoreOnDecommissionFetchFailure

Ketika diatur ke true, membantu mencegah Spark dari tahap gagal dan akhirnya gagal pekerjaan karena terlalu banyak gagal menjemput dari node dinonaktifkan. Gagal mengambil dari blok shuffle dari sebuah node di decommissioned tidak akan dihitung ke arah jumlah maksimum dari kegagalan pengambilan berturut-turut.

true

Variabel ThriftServer lingkungan percikan

Spark menetapkan variabel lingkungan Hive Thrift Server Port, HIVE_SERVER2_THRIFT_PORT, untuk 10001.

Mengubah pengaturan default Spark

Anda mengubah default di spark-defaults.conf menggunakan spark-defaults konfigurasi klasifikasi atau maximizeResourceAllocation pengaturan spark klasifikasi konfigurasi.

Prosedur berikut menunjukkan cara mengubah pengaturan menggunakan konsol CLI atau.

Untuk membuat cluster dengan spark.executor.memory diatur ke 2g menggunakan CLI
  • Buat kluster dengan Spark yang terinstal dan tetapkan spark.executor.memory ke 2g, menggunakan perintah berikut, yang merujuk suatu file,myConfig.json disimpan di Amazon S3.

    aws emr create-cluster --release-label emr-7.3.0 --applications Name=Spark \ --instance-type m5.xlarge --instance-count 2 --service-role EMR_DefaultRole_V2 --ec2-attributes InstanceProfile=EMR_EC2_DefaultRole --configurations https://s3.amazonaws.com/amzn-s3-demo-bucket/myfolder/myConfig.json
    catatan

    Karakter kelanjutan baris Linux (\) disertakan untuk memudahkan pembacaan. Karakter ini bisa dihapus atau digunakan dalam perintah Linux. Untuk Windows, hapus atau ganti dengan tanda sisipan (^).

    myConfig.json:

    [ { "Classification": "spark-defaults", "Properties": { "spark.executor.memory": "2G" } } ]
Untuk membuat cluster dengan spark.executor.memory diatur ke 2g menggunakan konsol
  1. Arahkan ke EMR konsol Amazon baru dan pilih Beralih ke konsol lama dari navigasi samping. Untuk informasi selengkapnya tentang apa yang diharapkan saat beralih ke konsol lama, lihat Menggunakan konsol lama.

  2. Pilih Buat Kluster, Buka opsi tingkat lanjut.

  3. Pilih Spark.

  4. Di bawah Mengedit setelan perangkat lunak, meninggalkan Masukkan konfigurasi dipilih dan masukkan konfigurasi berikut:

    classification=spark-defaults,properties=[spark.executor.memory=2G]
  5. Pilih opsi lain, pilih lalu pilih Buat gugus.

Untuk mengatur maximizeResourceAllocation
  • Buat cluster dengan Spark diinstal dan maximizeResourceAllocation atur ke true menggunakan AWS CLI, referensi filemyConfig.json, disimpan di Amazon S3.

    aws emr create-cluster --release-label emr-7.3.0 --applications Name=Spark \ --instance-type m5.xlarge --instance-count 2 --service-role EMR_DefaultRole_V2 --ec2-attributes InstanceProfile=EMR_EC2_DefaultRole --configurations https://s3.amazonaws.com/amzn-s3-demo-bucket/myfolder/myConfig.json
    catatan

    Karakter lanjutan baris Linux (\) disertakan agar mudah dibaca Karakter ini bisa dihapus atau digunakan dalam perintah Linux. Untuk Windows, hapus atau ganti dengan tanda sisipan (^).

    myConfig.json:

    [ { "Classification": "spark", "Properties": { "maximizeResourceAllocation": "true" } } ]
catatan

Dengan Amazon EMR versi 5.21.0 dan yang lebih baru, Anda dapat mengganti konfigurasi klaster dan menentukan klasifikasi konfigurasi tambahan untuk setiap grup instans dalam klaster yang sedang berjalan. Anda melakukan ini dengan menggunakan EMR konsol Amazon, AWS Command Line Interface (AWS CLI), atau AWS SDK. Untuk informasi selengkapnya, lihat Menyediakan Konfigurasi untuk Grup Instans dalam Klaster Berjalan.

Migrasi dari Apache Log4j 1.x ke Log4j 2.x

Apache Spark merilis 3.2.x dan sebelumnya menggunakan Apache Log4j 1.x lama dan file untuk mengkonfigurasi Log4j dalam proses Spark. log4j.properties Apache Spark merilis 3.3.0 dan kemudian menggunakan Apache Log4j 2.x dan log4j2.properties file untuk mengkonfigurasi Log4j dalam proses Spark.

Jika Anda telah mengonfigurasi Apache Spark Log4j menggunakan EMR rilis Amazon yang lebih rendah dari 6.8.0, Anda harus menghapus klasifikasi spark-log4j konfigurasi lama dan bermigrasi ke klasifikasi konfigurasi dan format kunci sebelum dapat meningkatkan ke Amazon 6.8.0 atau yang lebih baru. spark-log4j2 EMR spark-log4jKlasifikasi lama menyebabkan pembuatan klaster gagal dengan ValidationException kesalahan di Amazon EMR merilis 6.8.0 dan yang lebih baru. Anda tidak akan dikenakan biaya atas kegagalan yang terkait dengan ketidakcocokan Log4j, tetapi Anda harus menghapus klasifikasi konfigurasi yang tidak berfungsi spark-log4j untuk melanjutkan.

Untuk informasi selengkapnya tentang migrasi dari Apache Log4j 1.x ke Log4j 2.x, lihat Panduan Migrasi Apache Log4j dan Template Spark Log4j 2 di Github.

catatan

Dengan AmazonEMR, Apache Spark menggunakan log4j2.properties file daripada file.xml.xl yang dijelaskan dalam Panduan Migrasi Apache Log4j. Selain itu, kami tidak menyarankan menggunakan metode jembatan Log4j 1.x untuk mengonversi ke Log4j 2.x.