Wählen Sie Ihre Cookie-Einstellungen aus

Wir verwenden essentielle Cookies und ähnliche Tools, die für die Bereitstellung unserer Website und Services erforderlich sind. Wir verwenden Performance-Cookies, um anonyme Statistiken zu sammeln, damit wir verstehen können, wie Kunden unsere Website nutzen, und Verbesserungen vornehmen können. Essentielle Cookies können nicht deaktiviert werden, aber Sie können auf „Anpassen“ oder „Ablehnen“ klicken, um Performance-Cookies abzulehnen.

Wenn Sie damit einverstanden sind, verwenden AWS und zugelassene Drittanbieter auch Cookies, um nützliche Features der Website bereitzustellen, Ihre Präferenzen zu speichern und relevante Inhalte, einschließlich relevanter Werbung, anzuzeigen. Um alle nicht notwendigen Cookies zu akzeptieren oder abzulehnen, klicken Sie auf „Akzeptieren“ oder „Ablehnen“. Um detailliertere Entscheidungen zu treffen, klicken Sie auf „Anpassen“.

Use AMS SSP to provision Amazon SageMaker AI in your AMS account

Fokusmodus
Use AMS SSP to provision Amazon SageMaker AI in your AMS account - AMS Advanced User Guide
Diese Seite wurde nicht in Ihre Sprache übersetzt. Übersetzung anfragen

Use AMS Self-Service Provisioning (SSP) mode to access Amazon SageMaker AI capabilities directly in your AMS managed account. SageMaker AI provides every developer and data scientist with the ability to build, train, and deploy machine learning models quickly. Amazon SageMaker AI is a fully-managed service that covers the entire machine learning workflow to label and prepare your data, choose an algorithm, train the model, tune and optimize it for deployment, make predictions, and take action. Your models get to production faster with much less effort and lower cost. To learn more, see Amazon SageMaker AI.

SageMaker AI in AWS Managed Services FAQs

Common questions and answers:

Q: How do I request access to SageMaker AI in my AMS account?

Request access by submitting a Management | AWS service | Self-provisioned service | Add (ct-1w8z66n899dct) change type. This RFC provisions the following IAM roles to your account: customer_sagemaker_admin_role and service role AmazonSageMaker-ExecutionRole-Admin. After SageMaker AI is provisioned in your account, you must onboard the customer_sagemaker_admin_role role in your federation solution. The service role cannot be accessed by you directly; the SageMaker AI service uses it while doing various actions as described here: Passing Roles.

Q: What are the restrictions to using SageMaker AI in my AMS account?

  • The following use cases are not supported by the AMS Amazon SageMaker AI IAM role:

    • SageMaker AI Studio is not supported at this time.

    • SageMaker AI Ground Truth to manage private workforces is not supported since this feature requires overly permissive access to Amazon Cognito resources. If managing a private workforce is required, you can request a custom IAM role with combined SageMaker AI and Amazon Cognito permissions. Otherwise, we recommend using public workforce (backed by Amazon Mechanical Turk), or AWS Marketplace service providers, for data labeling.

  • Creating VPC Endpoints to support API calls to SageMaker AI services (aws.sagemaker.{region}.notebook, com.amazonaws.{region}.sagemaker.api & com.amazonaws.{region}.sagemaker.runtime) is not supported as permissions can’t be scoped down to SageMaker AI related services only. To support this use case, submit a Management | Other | Other RFC to create related VPC endpoints.

  • SageMaker AI endpoint auto scaling is not supported as SageMaker AI requires DeleteAlarm permissions on any ("*") resource. To support endpoint auto scaling, submit a Management | Other | Other RFC to setup auto scaling for a SageMaker AI endpoint.

Q: What are the prerequisites or dependencies to using SageMaker AI in my AMS account?

  • The following use cases require special configuration prior to use:

    • If an S3 bucket will be used to store model artifacts and data, then you must request an S3 bucket named with the required keywords ("SageMaker", "Sagemaker", "sagemaker" or "aws-glue") with a Deployment | Advanced stack components | S3 storage | Create RFC.

    • If Elastic File Store (EFS) will be used, then EFS storage must be configured in the same subnet, and allowed by security groups.

    • If other resources require direct access to SageMaker AI services (notebooks, API, runtime, and so on), then configuration must be requested by:

      • Submitting an RFC to create a security group for the endpoint (Deployment | Advanced stack components | Security group | Create (auto)).

      • Submitting a Management | Other | Other | Create RFC to set up related VPC endpoints.

Q: What are the supported naming conventions for resources that the customer_sagemaker_admin_role can access directly? (The following are for update and delete permissions; if you require additional supported naming conventions for your resources, reach out to an AMS Cloud Architect for consultation.)

  • Resource: Passing AmazonSageMaker-ExecutionRole-* role

    • Permissions: The SageMaker AI self-provisioned service role supports your use of the SageMaker AI service role (AmazonSageMaker-ExecutionRole-*) with AWS Glue, AWS RoboMaker, and AWS Step Functions.

  • Resource: Secrets on AWS Secrets Manager

    • Permissions: Describe, Create, Get, Update secrets with a AmazonSageMaker-* prefix.

    • Permissions: Describe, Get secrets when the SageMaker resource tag is set to true.

  • Resource: Repositories on AWS CodeCommit

    • Permissions: Create/ delete repositories with a AmazonSageMaker-* prefix.

    • Permissions: Git Pull/Push on repositories with following prefixes, *sagemaker*, *SageMaker*, and *Sagemaker*.

  • Resource: Amazon ECR (Amazon Elastic Container Registry) Repositories

    • Permissions: Permissions: Set, delete repository policies, and upload container images, when the following resource naming convention is used, *sagemaker*.

  • Resource: Amazon S3 buckets

    • Permissions: Get, Put, Delete object, abort multipart upload S3 objects when resources have the following prefixes: *SageMaker*, *Sagemaker*, *sagemaker* and aws-glue.

    • Permissions: Get S3 objects when the SageMaker tag is set to true.

  • Resource: Amazon CloudWatch Log Group

    • Permissions: Create Log Group or Stream, Put Log Event, List, Update, Create , Delete log delivery with following prefix: /aws/sagemaker/*.

  • Resource: Amazon CloudWatch Metric

    • Permissions: Put metric data when the following prefixes are used: AWS/SageMaker, AWS/SageMaker/, aws/SageMaker, aws/SageMaker/, aws/sagemaker, aws/sagemaker/, and /aws/sagemaker/..

  • Resource: Amazon CloudWatch Dashboard

    • Permissions: Create/Delete dashboards when the following prefixes are used: customer_*.

  • Resource: Amazon SNS (Simple Notification Service) topic

    • Permissions: Subscribe/Create topic when following prefixes are used: *sagemaker*, *SageMaker*, and *Sagemaker*.

Q: What’s the difference between AmazonSageMakerFullAccess and customer_sagemaker_admin_role?

The customer_sagemaker_admin_role with the customer_sagemaker_admin_policy provides almost the same permissions as AmazonSageMakerFullAccess except:

  • Permission to connect with AWS RoboMaker, Amazon Cognito, and AWS Glue resources.

  • SageMaker AI endpoint autoscaling. You must submit a Management | Other | Other | Update RFC to elevate to autoscaling permissions temporarily, or permanently, as autoscaling requires permissive access on CloudWatch service.

Q: How do I adopt AWS KMS customer managed key in data encryption at rest?

You must ensure that the key policy has been set up properly on the customer managed keys so that related IAM users or roles can use the keys. For more information, see the AWS KMS Key Policy document.

Auf dieser Seite

DatenschutzNutzungsbedingungen für die WebsiteCookie-Einstellungen
© 2025, Amazon Web Services, Inc. oder Tochtergesellschaften. Alle Rechte vorbehalten.