Use AMS Self-Service Provisioning (SSP) mode to access Amazon SageMaker AI capabilities directly in your AMS managed account. SageMaker AI provides every developer and data scientist with the ability to build, train, and deploy machine learning models quickly.
Amazon SageMaker AI is a fully-managed service that covers the entire machine learning workflow to label and prepare your data, choose an algorithm, train the model,
tune and optimize it for deployment, make predictions, and take action. Your models get to production faster with much less effort and lower cost.
To learn more, see Amazon SageMaker AI
SageMaker AI in AWS Managed Services FAQs
Common questions and answers:
Q: How do I request access to SageMaker AI in my AMS account?
Request access by submitting a Management | AWS service | Self-provisioned service | Add (ct-1w8z66n899dct) change type. This RFC provisions the
following IAM roles to your account: customer_sagemaker_admin_role
and service role AmazonSageMaker-ExecutionRole-Admin
.
After SageMaker AI is provisioned in your account, you must onboard the customer_sagemaker_admin_role
role in your federation solution.
The service role cannot be accessed by you directly; the SageMaker AI service uses it while doing various actions as described here:
Passing Roles.
Q: What are the restrictions to using SageMaker AI in my AMS account?
The following use cases are not supported by the AMS Amazon SageMaker AI IAM role:
SageMaker AI Studio is not supported at this time.
SageMaker AI Ground Truth to manage private workforces is not supported since this feature requires overly permissive access to Amazon Cognito resources. If managing a private workforce is required, you can request a custom IAM role with combined SageMaker AI and Amazon Cognito permissions. Otherwise, we recommend using public workforce (backed by Amazon Mechanical Turk), or AWS Marketplace service providers, for data labeling.
Creating VPC Endpoints to support API calls to SageMaker AI services (aws.sagemaker.{region}.notebook, com.amazonaws.{region}.sagemaker.api & com.amazonaws.{region}.sagemaker.runtime) is not supported as permissions can’t be scoped down to SageMaker AI related services only. To support this use case, submit a Management | Other | Other RFC to create related VPC endpoints.
SageMaker AI endpoint auto scaling is not supported as SageMaker AI requires
DeleteAlarm
permissions on any ("*") resource. To support endpoint auto scaling, submit a Management | Other | Other RFC to setup auto scaling for a SageMaker AI endpoint.
Q: What are the prerequisites or dependencies to using SageMaker AI in my AMS account?
The following use cases require special configuration prior to use:
If an S3 bucket will be used to store model artifacts and data, then you must request an S3 bucket named with the required keywords ("SageMaker", "Sagemaker", "sagemaker" or "aws-glue") with a Deployment | Advanced stack components | S3 storage | Create RFC.
If Elastic File Store (EFS) will be used, then EFS storage must be configured in the same subnet, and allowed by security groups.
If other resources require direct access to SageMaker AI services (notebooks, API, runtime, and so on), then configuration must be requested by:
Submitting an RFC to create a security group for the endpoint (Deployment | Advanced stack components | Security group | Create (auto)).
Submitting a Management | Other | Other | Create RFC to set up related VPC endpoints.
Q: What are the supported naming conventions for resources that the
customer_sagemaker_admin_role
can access directly?
(The following are for update and delete permissions; if you require
additional supported naming conventions for your resources, reach
out to an AMS Cloud Architect for consultation.)
Resource: Passing
AmazonSageMaker-ExecutionRole-*
rolePermissions: The SageMaker AI self-provisioned service role supports your use of the SageMaker AI service role (
AmazonSageMaker-ExecutionRole-*
) with AWS Glue, AWS RoboMaker, and AWS Step Functions.
Resource: Secrets on AWS Secrets Manager
Permissions: Describe, Create, Get, Update secrets with a
AmazonSageMaker-*
prefix.Permissions: Describe, Get secrets when the
SageMaker
resource tag is set totrue
.
Resource: Repositories on AWS CodeCommit
Permissions: Create/ delete repositories with a
AmazonSageMaker-*
prefix.Permissions: Git Pull/Push on repositories with following prefixes,
*sagemaker*
,*SageMaker*
, and*Sagemaker*
.
Resource: Amazon ECR (Amazon Elastic Container Registry) Repositories
Permissions: Permissions: Set, delete repository policies, and upload container images, when the following resource naming convention is used,
*sagemaker*
.
Resource: Amazon S3 buckets
Permissions: Get, Put, Delete object, abort multipart upload S3 objects when resources have the following prefixes:
*SageMaker*
,*Sagemaker*
,*sagemaker*
andaws-glue
.Permissions: Get S3 objects when the
SageMaker
tag is set totrue
.
Resource: Amazon CloudWatch Log Group
Permissions: Create Log Group or Stream, Put Log Event, List, Update, Create , Delete log delivery with following prefix:
/aws/sagemaker/*
.
Resource: Amazon CloudWatch Metric
Permissions: Put metric data when the following prefixes are used:
AWS/SageMaker
,AWS/SageMaker/
,aws/SageMaker
,aws/SageMaker/
,aws/sagemaker
,aws/sagemaker/
, and/aws/sagemaker/.
.
Resource: Amazon CloudWatch Dashboard
Permissions: Create/Delete dashboards when the following prefixes are used:
customer_*
.
Resource: Amazon SNS (Simple Notification Service) topic
Permissions: Subscribe/Create topic when following prefixes are used:
*sagemaker*
,*SageMaker*
, and*Sagemaker*
.
Q: What’s the difference between AmazonSageMakerFullAccess
and customer_sagemaker_admin_role
?
The customer_sagemaker_admin_role
with the customer_sagemaker_admin_policy
provides almost the same permissions as AmazonSageMakerFullAccess except:
Permission to connect with AWS RoboMaker, Amazon Cognito, and AWS Glue resources.
SageMaker AI endpoint autoscaling. You must submit a Management | Other | Other | Update RFC to elevate to autoscaling permissions temporarily, or permanently, as autoscaling requires permissive access on CloudWatch service.
Q: How do I adopt AWS KMS customer managed key in data encryption at rest?
You must ensure that the key policy has been set up properly on the customer managed keys so that related IAM users or roles can use the keys. For more information, see the AWS KMS Key Policy document.