Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.
Contoh skrip Python ini menyederhanakan pembuatan file manifes dengan menggunakan file Comma Separated Values (CSV) untuk memberi label gambar. Anda membuat CSV file. File manifes cocok untuk klasifikasi gambar multi-label atauKlasifikasi gambar multi-label. Untuk informasi selengkapnya, lihat Temukan objek, adegan, dan konsep.
catatan
Skrip ini tidak membuat file manifes yang cocok untuk menemukan lokasi objek atau untuk menemukan lokasi merek.
File manifes menjelaskan gambar yang digunakan untuk melatih model. Misalnya, lokasi gambar dan label yang ditetapkan untuk gambar. File manifes terdiri dari satu atau lebih JSON baris. Setiap JSON baris menggambarkan satu gambar. Untuk informasi selengkapnya, lihat Mengimpor label tingkat gambar dalam file manifes.
CSVFile mewakili data tabular selama beberapa baris dalam file teks. Bidang pada baris dipisahkan dengan koma. Untuk informasi selengkapnya, lihat nilai yang dipisahkan koma
Misalnya, CSV File berikut menjelaskan gambar dalam proyek Klasifikasi gambar multi-label (Bunga) Memulai.
camellia1.jpg,camellia,with_leaves camellia2.jpg,camellia,with_leaves camellia3.jpg,camellia,without_leaves helleborus1.jpg,helleborus,without_leaves,not_fully_grown helleborus2.jpg,helleborus,with_leaves,fully_grown helleborus3.jpg,helleborus,with_leaves,fully_grown jonquil1.jpg,jonquil,with_leaves jonquil2.jpg,jonquil,with_leaves jonquil3.jpg,jonquil,with_leaves jonquil4.jpg,jonquil,without_leaves mauve_honey_myrtle1.jpg,mauve_honey_myrtle,without_leaves mauve_honey_myrtle2.jpg,mauve_honey_myrtle,with_leaves mauve_honey_myrtle3.jpg,mauve_honey_myrtle,with_leaves mediterranean_spurge1.jpg,mediterranean_spurge,with_leaves mediterranean_spurge2.jpg,mediterranean_spurge,without_leaves
Skrip menghasilkan JSON Garis untuk setiap baris. Sebagai contoh, berikut ini adalah JSON Line untuk baris pertama (camellia1.jpg,camellia,with_leaves
).
{"source-ref": "s3://bucket/flowers/train/camellia1.jpg","camellia": 1,"camellia-metadata":{"confidence": 1,"job-name": "labeling-job/camellia","class-name": "camellia","human-annotated": "yes","creation-date": "2022-01-21T14:21:05","type": "groundtruth/image-classification"},"with_leaves": 1,"with_leaves-metadata":{"confidence": 1,"job-name": "labeling-job/with_leaves","class-name": "with_leaves","human-annotated": "yes","creation-date": "2022-01-21T14:21:05","type": "groundtruth/image-classification"}}
Dalam contohCSV, jalur Amazon S3 ke gambar tidak ada. Jika CSV file Anda tidak menyertakan jalur Amazon S3 untuk gambar, gunakan argumen baris --s3_path
perintah untuk menentukan jalur Amazon S3 ke gambar.
Script merekam entri pertama untuk setiap gambar dalam file gambar deduplikasi. CSV CSVFile gambar yang dideduplikasi berisi satu contoh dari setiap gambar yang ditemukan dalam file inputCSV. Kejadian lebih lanjut dari gambar dalam CSV file input direkam dalam file gambar CSV duplikat. Jika skrip menemukan gambar duplikat, tinjau file gambar duplikat dan perbarui CSV file gambar yang tidak digandakan seperlunya. CSV Jalankan kembali skrip dengan file deduplikat. Jika tidak ada duplikat yang ditemukan dalam CSV file input, skrip menghapus CSV file gambar deduplikat dan gambar duplikatCSVfile, karena mereka kosong.
Dalam prosedur ini, Anda membuat CSV file dan menjalankan skrip Python untuk membuat file manifes.
Untuk membuat file manifes dari CSV file
-
Buat CSV file dengan bidang berikut di setiap baris (satu baris per gambar). Jangan menambahkan baris header ke CSV file.
Bidang 1 Bidang 2 Bidang n Nama gambar atau jalur Amazon S3 pada gambar. Misalnya,
s3://my-bucket/flowers/train/camellia1.jpg
. Anda tidak dapat memiliki campuran gambar dengan jalur Amazon S3 dan gambar tanpa.Label tingkat gambar pertama untuk gambar.
Satu atau lebih label tingkat gambar tambahan dipisahkan dengan koma. Tambahkan hanya jika Anda ingin membuat file manifes yang mendukung klasifikasi gambar Multi-label.
Misalnya
camellia1.jpg,camellia,with_leaves
ataus3://my-bucket/flowers/train/camellia1.jpg,camellia,with_leaves
-
Simpan file CSV.
-
Jalankan skrip Python berikut. Berikan argumen berikut:
-
csv_file
— CSV File yang Anda buat di langkah 1. -
manifest_file
— Nama file manifes yang ingin Anda buat. -
(Opsional)
--s3_path
- Jalur Amazon S3 untuk ditambahkan ke nama file gambar (bidang 1). Gunakans3://path_to_folder/
--s3_path
jika gambar di bidang 1 belum berisi jalur S3.
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 from datetime import datetime, timezone import argparse import logging import csv import os import json """ Purpose Amazon Rekognition Custom Labels model example used in the service documentation. Shows how to create an image-level (classification) manifest file from a CSV file. You can specify multiple image level labels per image. CSV file format is image,label,label,.. If necessary, use the bucket argument to specify the S3 bucket folder for the images. https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-gt-cl-transform.html """ logger = logging.getLogger(__name__) def check_duplicates(csv_file, deduplicated_file, duplicates_file): """ Checks for duplicate images in a CSV file. If duplicate images are found, deduplicated_file is the deduplicated CSV file - only the first occurence of a duplicate is recorded. Other duplicates are recorded in duplicates_file. :param csv_file: The source CSV file. :param deduplicated_file: The deduplicated CSV file to create. If no duplicates are found this file is removed. :param duplicates_file: The duplicate images CSV file to create. If no duplicates are found this file is removed. :return: True if duplicates are found, otherwise false. """ logger.info("Deduplicating %s", csv_file) duplicates_found = False # Find duplicates. with open(csv_file, 'r', newline='', encoding="UTF-8") as f,\ open(deduplicated_file, 'w', encoding="UTF-8") as dedup,\ open(duplicates_file, 'w', encoding="UTF-8") as duplicates: reader = csv.reader(f, delimiter=',') dedup_writer = csv.writer(dedup) duplicates_writer = csv.writer(duplicates) entries = set() for row in reader: # Skip empty lines. if not ''.join(row).strip(): continue key = row[0] if key not in entries: dedup_writer.writerow(row) entries.add(key) else: duplicates_writer.writerow(row) duplicates_found = True if duplicates_found: logger.info("Duplicates found check %s", duplicates_file) else: os.remove(duplicates_file) os.remove(deduplicated_file) return duplicates_found def create_manifest_file(csv_file, manifest_file, s3_path): """ Reads a CSV file and creates a Custom Labels classification manifest file. :param csv_file: The source CSV file. :param manifest_file: The name of the manifest file to create. :param s3_path: The S3 path to the folder that contains the images. """ logger.info("Processing CSV file %s", csv_file) image_count = 0 label_count = 0 with open(csv_file, newline='', encoding="UTF-8") as csvfile,\ open(manifest_file, "w", encoding="UTF-8") as output_file: image_classifications = csv.reader( csvfile, delimiter=',', quotechar='|') # Process each row (image) in CSV file. for row in image_classifications: source_ref = str(s3_path)+row[0] image_count += 1 # Create JSON for image source ref. json_line = {} json_line['source-ref'] = source_ref # Process each image level label. for index in range(1, len(row)): image_level_label = row[index] # Skip empty columns. if image_level_label == '': continue label_count += 1 # Create the JSON line metadata. json_line[image_level_label] = 1 metadata = {} metadata['confidence'] = 1 metadata['job-name'] = 'labeling-job/' + image_level_label metadata['class-name'] = image_level_label metadata['human-annotated'] = "yes" metadata['creation-date'] = \ datetime.now(timezone.utc).strftime('%Y-%m-%dT%H:%M:%S.%f') metadata['type'] = "groundtruth/image-classification" json_line[f'{image_level_label}-metadata'] = metadata # Write the image JSON Line. output_file.write(json.dumps(json_line)) output_file.write('\n') output_file.close() logger.info("Finished creating manifest file %s\nImages: %s\nLabels: %s", manifest_file, image_count, label_count) return image_count, label_count def add_arguments(parser): """ Adds command line arguments to the parser. :param parser: The command line parser. """ parser.add_argument( "csv_file", help="The CSV file that you want to process." ) parser.add_argument( "--s3_path", help="The S3 bucket and folder path for the images." " If not supplied, column 1 is assumed to include the S3 path.", required=False ) def main(): logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") try: # Get command line arguments parser = argparse.ArgumentParser(usage=argparse.SUPPRESS) add_arguments(parser) args = parser.parse_args() s3_path = args.s3_path if s3_path is None: s3_path = '' # Create file names. csv_file = args.csv_file file_name = os.path.splitext(csv_file)[0] manifest_file = f'{file_name}.manifest' duplicates_file = f'{file_name}-duplicates.csv' deduplicated_file = f'{file_name}-deduplicated.csv' # Create manifest file, if there are no duplicate images. if check_duplicates(csv_file, deduplicated_file, duplicates_file): print(f"Duplicates found. Use {duplicates_file} to view duplicates " f"and then update {deduplicated_file}. ") print(f"{deduplicated_file} contains the first occurence of a duplicate. " "Update as necessary with the correct label information.") print(f"Re-run the script with {deduplicated_file}") else: print("No duplicates found. Creating manifest file.") image_count, label_count = create_manifest_file(csv_file, manifest_file, s3_path) print(f"Finished creating manifest file: {manifest_file} \n" f"Images: {image_count}\nLabels: {label_count}") except FileNotFoundError as err: logger.exception("File not found: %s", err) print(f"File not found: {err}. Check your input CSV file.") if __name__ == "__main__": main()
-
-
Jika Anda berencana menggunakan kumpulan data pengujian, ulangi langkah 1-3 untuk membuat file manifes untuk kumpulan data pengujian Anda.
-
Jika perlu, salin gambar ke jalur bucket Amazon S3 yang Anda tentukan di kolom 1 CSV file (atau ditentukan dalam baris
--s3_path
perintah). Anda dapat menggunakan perintah AWS S3 berikut.aws s3 cp --recursive
your-local-folder
s3://your-target-S3-location
-
Unggah file manifes Anda ke bucket Amazon S3 yang ingin Anda gunakan untuk menyimpan file manifes.
catatan
Pastikan Label Kustom Amazon Rekognition memiliki akses ke bucket Amazon S3 yang direferensikan di bidang baris file manifes
source-ref
. JSON Untuk informasi selengkapnya, lihat Mengakses Bucket Amazon S3 eksternal. Jika lowongan Ground Truth menyimpan gambar di Bucket Konsol Label Kustom Amazon Rekognition, Anda tidak perlu menambahkan izin. -
Ikuti petunjuk di Membuat kumpulan data dengan file manifes SageMaker AI Ground Truth (Console) untuk membuat kumpulan data dengan file manifes yang diunggah. Untuk langkah 8, di lokasi file.manifest, masukkan Amazon URL S3 untuk lokasi file manifes. Jika Anda menggunakan AWS SDK, lakukanMembuat kumpulan data dengan file manifes SageMaker AI Ground Truth () SDK.