选择您的 Cookie 首选项

我们使用必要 Cookie 和类似工具提供我们的网站和服务。我们使用性能 Cookie 收集匿名统计数据,以便我们可以了解客户如何使用我们的网站并进行改进。必要 Cookie 无法停用,但您可以单击“自定义”或“拒绝”来拒绝性能 Cookie。

如果您同意,AWS 和经批准的第三方还将使用 Cookie 提供有用的网站功能、记住您的首选项并显示相关内容,包括相关广告。要接受或拒绝所有非必要 Cookie,请单击“接受”或“拒绝”。要做出更详细的选择,请单击“自定义”。

删除数据集

聚焦模式

本页内容

删除数据集 - Rekognition

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

可以从项目中删除训练和测试数据集。

删除数据集(控制台)

可以使用以下过程删除数据集。删除后,如果项目还有剩余的数据集(训练或测试),则会显示项目详细信息页面。如果项目没有剩余的数据集,则会显示创建数据集页面。

如果删除训练数据集,则必须先为项目创建新的训练数据集,然后才能训练模型。有关更多信息,请参阅 使用图像创建训练和测试数据集

如果删除测试数据集,则无需创建新的测试数据集也能训练模型。在训练期间,将拆分训练数据集来为项目创建新的测试数据集。拆分训练数据集会减少可用于训练的图像数量。为了保持质量,建议在训练模型之前创建一个新的测试数据集。有关更多信息,请参阅 向项目添加数据集

删除数据集
  1. 通过以下网址打开 Amazon Rekognition 控制台:https://console.aws.amazon.com/rekognition/

  2. 在左侧窗格中,选择使用自定义标签。随后将显示 Amazon Rekognition Custom Labels 登录页面。

  3. 在左侧导航窗格中,选择项目。随后将显示“项目”视图。

  4. 选择包含要删除的数据集的项目。

  5. 在左侧导航窗格中,于项目名称下选择数据集

  6. 选择操作

  7. 要删除训练数据集,请选择删除训练数据集

  8. 要删除测试数据集,请选择删除测试数据集

  9. 删除训练或测试数据集对话框中,输入 delete 以确认要删除该数据集。

  10. 选择删除训练或测试数据集,删除该数据集。

删除 Amazon Rekognition Custom Labels 数据集 (SDK)

可通过调用 DeleteDataset 并提供要删除的数据集的 Amazon 资源名称 (ARN) 来删除 Amazon Rekognition Custom Labels 数据集。要获取项目内的训练和测试数据集的 ARN,请调用 DescribeProjects。该响应包含一个 ProjectDescription 对象数组。Datasets 列表中包含数据集 ARN (DatasetArn) 和数据集类型 (DatasetType)。

如果删除训练数据集,则需要先为项目创建新的训练数据集,然后才能训练模型。如果删除测试数据集,则需要先创建新的测试数据集,然后才能训练模型。有关更多信息,请参阅 向项目添加数据集 (SDK)

删除数据集 (SDK)
  1. 安装并配置 AWS CLI 和 AWS SDK(如果尚未如此)。有关更多信息,请参阅 步骤 4:设置 AWS CLI 和 AWS SDKs

  2. 使用以下代码删除数据集。

    AWS CLI

    dataset-arn 的值更改为要删除的数据集的 ARN。

    aws rekognition delete-dataset --dataset-arn dataset-arn \ --profile custom-labels-access
    Python

    使用以下代码。提供以下命令行参数:

    • dataset_arn:要删除的数据集的 ARN。

    # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Purpose Shows how to delete an Amazon Rekognition Custom Labels dataset. """ import argparse import logging import time import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) def delete_dataset(rek_client, dataset_arn): """ Deletes an Amazon Rekognition Custom Labels dataset. :param rek_client: The Amazon Rekognition Custom Labels Boto3 client. :param dataset_arn: The ARN of the dataset that you want to delete. """ try: # Delete the dataset, logger.info("Deleting dataset: %s", dataset_arn) rek_client.delete_dataset(DatasetArn=dataset_arn) deleted = False logger.info("waiting for dataset deletion %s", dataset_arn) # Dataset might not be deleted yet, so wait. while deleted is False: try: rek_client.describe_dataset(DatasetArn=dataset_arn) time.sleep(5) except ClientError as err: if err.response['Error']['Code'] == 'ResourceNotFoundException': logger.info("dataset deleted: %s", dataset_arn) deleted = True else: raise logger.info("dataset deleted: %s", dataset_arn) return True except ClientError as err: logger.exception("Couldn't delete dataset - %s: %s", dataset_arn, err.response['Error']['Message']) raise def add_arguments(parser): """ Adds command line arguments to the parser. :param parser: The command line parser. """ parser.add_argument( "dataset_arn", help="The ARN of the dataset that you want to delete." ) def main(): logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") try: # Get command line arguments. parser = argparse.ArgumentParser(usage=argparse.SUPPRESS) add_arguments(parser) args = parser.parse_args() print(f"Deleting dataset: {args.dataset_arn}") # Delete the dataset. session = boto3.Session(profile_name='custom-labels-access') rekognition_client = session.client("rekognition") delete_dataset(rekognition_client, args.dataset_arn) print(f"Finished deleting dataset: {args.dataset_arn}") except ClientError as err: error_message = f"Problem deleting dataset: {err}" logger.exception(error_message) print(error_message) if __name__ == "__main__": main()
    Java V2

    使用以下代码。提供以下命令行参数:

    • dataset_arn:要删除的数据集的 ARN。

    /* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: Apache-2.0 */ package com.example.rekognition; import java.util.logging.Level; import java.util.logging.Logger; import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.DeleteDatasetRequest; import software.amazon.awssdk.services.rekognition.model.DeleteDatasetResponse; import software.amazon.awssdk.services.rekognition.model.DescribeDatasetRequest; import software.amazon.awssdk.services.rekognition.model.RekognitionException; public class DeleteDataset { public static final Logger logger = Logger.getLogger(DeleteDataset.class.getName()); public static void deleteMyDataset(RekognitionClient rekClient, String datasetArn) throws InterruptedException { try { logger.log(Level.INFO, "Deleting dataset: {0}", datasetArn); // Delete the dataset DeleteDatasetRequest deleteDatasetRequest = DeleteDatasetRequest.builder().datasetArn(datasetArn).build(); DeleteDatasetResponse response = rekClient.deleteDataset(deleteDatasetRequest); // Wait until deletion finishes DescribeDatasetRequest describeDatasetRequest = DescribeDatasetRequest.builder().datasetArn(datasetArn) .build(); Boolean deleted = false; do { try { rekClient.describeDataset(describeDatasetRequest); Thread.sleep(5000); } catch (RekognitionException e) { String errorCode = e.awsErrorDetails().errorCode(); if (errorCode.equals("ResourceNotFoundException")) { logger.log(Level.INFO, "Dataset deleted: {0}", datasetArn); deleted = true; } else { logger.log(Level.SEVERE, "Client error occurred: {0}", e.getMessage()); throw e; } } } while (Boolean.FALSE.equals(deleted)); logger.log(Level.INFO, "Dataset deleted: {0} ", datasetArn); } catch ( RekognitionException e) { logger.log(Level.SEVERE, "Client error occurred: {0}", e.getMessage()); throw e; } } public static void main(String args[]) { final String USAGE = "\n" + "Usage: " + "<dataset_arn>\n\n" + "Where:\n" + " dataset_arn - The ARN of the dataset that you want to delete.\n\n"; if (args.length != 1) { System.out.println(USAGE); System.exit(1); } String datasetArn = args[0]; try { // Get the Rekognition client. RekognitionClient rekClient = RekognitionClient.builder() .credentialsProvider(ProfileCredentialsProvider.create("custom-labels-access")) .region(Region.US_WEST_2) .build(); // Delete the dataset deleteMyDataset(rekClient, datasetArn); System.out.println(String.format("Dataset deleted: %s", datasetArn)); rekClient.close(); } catch (RekognitionException rekError) { logger.log(Level.SEVERE, "Rekognition client error: {0}", rekError.getMessage()); System.exit(1); } catch (InterruptedException intError) { logger.log(Level.SEVERE, "Exception while sleeping: {0}", intError.getMessage()); System.exit(1); } } }

    dataset-arn 的值更改为要删除的数据集的 ARN。

    aws rekognition delete-dataset --dataset-arn dataset-arn \ --profile custom-labels-access
隐私网站条款Cookie 首选项
© 2025, Amazon Web Services, Inc. 或其附属公司。保留所有权利。