Selecione suas preferências de cookies

Usamos cookies essenciais e ferramentas semelhantes que são necessárias para fornecer nosso site e serviços. Usamos cookies de desempenho para coletar estatísticas anônimas, para que possamos entender como os clientes usam nosso site e fazer as devidas melhorias. Cookies essenciais não podem ser desativados, mas você pode clicar em “Personalizar” ou “Recusar” para recusar cookies de desempenho.

Se você concordar, a AWS e terceiros aprovados também usarão cookies para fornecer recursos úteis do site, lembrar suas preferências e exibir conteúdo relevante, incluindo publicidade relevante. Para aceitar ou recusar todos os cookies não essenciais, clique em “Aceitar” ou “Recusar”. Para fazer escolhas mais detalhadas, clique em “Personalizar”.

Criar uma aplicação que analise o feedback dos clientes e sintetize o áudio

Modo de foco
Criar uma aplicação que analise o feedback dos clientes e sintetize o áudio - AWS Lambda

Os exemplos de código a seguir mostram como criar uma aplicação que analisa os cartões de comentários dos clientes, os traduz do idioma original, determina seus sentimentos e gera um arquivo de áudio do texto traduzido.

.NET
SDK for .NET

Esta aplicação de exemplo analisa e armazena cartões de feedback de clientes. Especificamente, ela atende à necessidade de um hotel fictício na cidade de Nova York. O hotel recebe feedback dos hóspedes em vários idiomas na forma de cartões de comentários físicos. Esse feedback é enviado para a aplicação por meio de um cliente web. Depois de fazer upload da imagem de um cartão de comentário, ocorrem as seguintes etapas:

  • O texto é extraído da imagem usando o Amazon Textract.

  • O Amazon Comprehend determina o sentimento do texto extraído e o idioma.

  • O texto extraído é traduzido para o inglês com o Amazon Translate.

  • O Amazon Polly sintetiza um arquivo de áudio do texto extraído.

A aplicação completa pode ser implantada com o AWS CDK. Para obter o código-fonte e as instruções de implantação, consulte o projeto em GitHub.

Serviços utilizados neste exemplo
  • Amazon Comprehend

  • Lambda

  • Amazon Polly

  • Amazon Textract

  • Amazon Translate

Java
SDK para Java 2.x

Esta aplicação de exemplo analisa e armazena cartões de feedback de clientes. Especificamente, ela atende à necessidade de um hotel fictício na cidade de Nova York. O hotel recebe feedback dos hóspedes em vários idiomas na forma de cartões de comentários físicos. Esse feedback é enviado para a aplicação por meio de um cliente web. Depois de fazer upload da imagem de um cartão de comentário, ocorrem as seguintes etapas:

  • O texto é extraído da imagem usando o Amazon Textract.

  • O Amazon Comprehend determina o sentimento do texto extraído e o idioma.

  • O texto extraído é traduzido para o inglês com o Amazon Translate.

  • O Amazon Polly sintetiza um arquivo de áudio do texto extraído.

A aplicação completa pode ser implantada com o AWS CDK. Para obter o código-fonte e as instruções de implantação, consulte o projeto em GitHub.

Serviços utilizados neste exemplo
  • Amazon Comprehend

  • Lambda

  • Amazon Polly

  • Amazon Textract

  • Amazon Translate

JavaScript
SDK para JavaScript (v3)

Esta aplicação de exemplo analisa e armazena cartões de feedback de clientes. Especificamente, ela atende à necessidade de um hotel fictício na cidade de Nova York. O hotel recebe feedback dos hóspedes em vários idiomas na forma de cartões de comentários físicos. Esse feedback é enviado para a aplicação por meio de um cliente web. Depois de fazer upload da imagem de um cartão de comentário, ocorrem as seguintes etapas:

  • O texto é extraído da imagem usando o Amazon Textract.

  • O Amazon Comprehend determina o sentimento do texto extraído e o idioma.

  • O texto extraído é traduzido para o inglês com o Amazon Translate.

  • O Amazon Polly sintetiza um arquivo de áudio do texto extraído.

A aplicação completa pode ser implantada com o AWS CDK. Para obter o código-fonte e as instruções de implantação, consulte o projeto em GitHub. Os trechos a seguir mostram como o AWS SDK para JavaScript é usado nas funções do Lambda.

import { ComprehendClient, DetectDominantLanguageCommand, DetectSentimentCommand, } from "@aws-sdk/client-comprehend"; /** * Determine the language and sentiment of the extracted text. * * @param {{ source_text: string}} extractTextOutput */ export const handler = async (extractTextOutput) => { const comprehendClient = new ComprehendClient({}); const detectDominantLanguageCommand = new DetectDominantLanguageCommand({ Text: extractTextOutput.source_text, }); // The source language is required for sentiment analysis and // translation in the next step. const { Languages } = await comprehendClient.send( detectDominantLanguageCommand, ); const languageCode = Languages[0].LanguageCode; const detectSentimentCommand = new DetectSentimentCommand({ Text: extractTextOutput.source_text, LanguageCode: languageCode, }); const { Sentiment } = await comprehendClient.send(detectSentimentCommand); return { sentiment: Sentiment, language_code: languageCode, }; };
import { DetectDocumentTextCommand, TextractClient, } from "@aws-sdk/client-textract"; /** * Fetch the S3 object from the event and analyze it using Amazon Textract. * * @param {import("@types/aws-lambda").EventBridgeEvent<"Object Created">} eventBridgeS3Event */ export const handler = async (eventBridgeS3Event) => { const textractClient = new TextractClient(); const detectDocumentTextCommand = new DetectDocumentTextCommand({ Document: { S3Object: { Bucket: eventBridgeS3Event.bucket, Name: eventBridgeS3Event.object, }, }, }); // Textract returns a list of blocks. A block can be a line, a page, word, etc. // Each block also contains geometry of the detected text. // For more information on the Block type, see https://docs.aws.amazon.com/textract/latest/dg/API_Block.html. const { Blocks } = await textractClient.send(detectDocumentTextCommand); // For the purpose of this example, we are only interested in words. const extractedWords = Blocks.filter((b) => b.BlockType === "WORD").map( (b) => b.Text, ); return extractedWords.join(" "); };
import { PollyClient, SynthesizeSpeechCommand } from "@aws-sdk/client-polly"; import { S3Client } from "@aws-sdk/client-s3"; import { Upload } from "@aws-sdk/lib-storage"; /** * Synthesize an audio file from text. * * @param {{ bucket: string, translated_text: string, object: string}} sourceDestinationConfig */ export const handler = async (sourceDestinationConfig) => { const pollyClient = new PollyClient({}); const synthesizeSpeechCommand = new SynthesizeSpeechCommand({ Engine: "neural", Text: sourceDestinationConfig.translated_text, VoiceId: "Ruth", OutputFormat: "mp3", }); const { AudioStream } = await pollyClient.send(synthesizeSpeechCommand); const audioKey = `${sourceDestinationConfig.object}.mp3`; // Store the audio file in S3. const s3Client = new S3Client(); const upload = new Upload({ client: s3Client, params: { Bucket: sourceDestinationConfig.bucket, Key: audioKey, Body: AudioStream, ContentType: "audio/mp3", }, }); await upload.done(); return audioKey; };
import { TranslateClient, TranslateTextCommand, } from "@aws-sdk/client-translate"; /** * Translate the extracted text to English. * * @param {{ extracted_text: string, source_language_code: string}} textAndSourceLanguage */ export const handler = async (textAndSourceLanguage) => { const translateClient = new TranslateClient({}); const translateCommand = new TranslateTextCommand({ SourceLanguageCode: textAndSourceLanguage.source_language_code, TargetLanguageCode: "en", Text: textAndSourceLanguage.extracted_text, }); const { TranslatedText } = await translateClient.send(translateCommand); return { translated_text: TranslatedText }; };
Serviços utilizados neste exemplo
  • Amazon Comprehend

  • Lambda

  • Amazon Polly

  • Amazon Textract

  • Amazon Translate

Ruby
SDK para Ruby

Esta aplicação de exemplo analisa e armazena cartões de feedback de clientes. Especificamente, ela atende à necessidade de um hotel fictício na cidade de Nova York. O hotel recebe feedback dos hóspedes em vários idiomas na forma de cartões de comentários físicos. Esse feedback é enviado para a aplicação por meio de um cliente web. Depois de fazer upload da imagem de um cartão de comentário, ocorrem as seguintes etapas:

  • O texto é extraído da imagem usando o Amazon Textract.

  • O Amazon Comprehend determina o sentimento do texto extraído e o idioma.

  • O texto extraído é traduzido para o inglês com o Amazon Translate.

  • O Amazon Polly sintetiza um arquivo de áudio do texto extraído.

A aplicação completa pode ser implantada com o AWS CDK. Para obter o código-fonte e as instruções de implantação, consulte o projeto em GitHub.

Serviços utilizados neste exemplo
  • Amazon Comprehend

  • Lambda

  • Amazon Polly

  • Amazon Textract

  • Amazon Translate

SDK for .NET

Esta aplicação de exemplo analisa e armazena cartões de feedback de clientes. Especificamente, ela atende à necessidade de um hotel fictício na cidade de Nova York. O hotel recebe feedback dos hóspedes em vários idiomas na forma de cartões de comentários físicos. Esse feedback é enviado para a aplicação por meio de um cliente web. Depois de fazer upload da imagem de um cartão de comentário, ocorrem as seguintes etapas:

  • O texto é extraído da imagem usando o Amazon Textract.

  • O Amazon Comprehend determina o sentimento do texto extraído e o idioma.

  • O texto extraído é traduzido para o inglês com o Amazon Translate.

  • O Amazon Polly sintetiza um arquivo de áudio do texto extraído.

A aplicação completa pode ser implantada com o AWS CDK. Para obter o código-fonte e as instruções de implantação, consulte o projeto em GitHub.

Serviços utilizados neste exemplo
  • Amazon Comprehend

  • Lambda

  • Amazon Polly

  • Amazon Textract

  • Amazon Translate

Para obter uma lista completa dos Guias do desenvolvedor do SDK da AWS e exemplos de código, consulte Utilizar o Lambda com um AWS SDK. Este tópico também inclui informações sobre como começar e detalhes sobre versões anteriores do SDK.

PrivacidadeTermos do sitePreferências de cookies
© 2025, Amazon Web Services, Inc. ou suas afiliadas. Todos os direitos reservados.