As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.
Crie e gerencie SageMaker trabalhos na Amazon com Step Functions
Saiba como usar o Step Functions para criar e gerenciar trabalhos no SageMaker. Esta página lista as SageMaker API ações suportadas e fornece exemplos de Task
estados para criar trabalhos de SageMaker transformação, treinamento, rotulagem e processamento.
Para saber mais sobre a integração com AWS serviços em Step Functions, consulte e. Integração de produtos da Passando parâmetros para um serviço API em Step Functions
Principais recursos da SageMaker integração otimizada
-
O padrão de integração Executar um trabalho (.sync) é compatível.
-
Não há otimizações para o padrão de integração Resposta de solicitação.
-
O padrão de integração Aguarde um retorno de chamada com o token de tarefa não é compatível.
Suportado SageMaker APIs
-
-
Parâmetros compatíveis:
-
-
Parâmetros compatíveis:
-
CreateHyperParameterTuningJob
- Suporta o padrão de.sync
integração. -
CreateLabelingJob
- Suporta o padrão de.sync
integração. -
-
Parâmetros compatíveis:
-
CreateProcessingJob
- Suporta o padrão de.sync
integração. -
CreateTrainingJob
- Suporta o padrão de.sync
integração. -
CreateTransformJob
- Suporta o padrão de.sync
integração.nota
AWS Step Functions não criará automaticamente uma política para
CreateTransformJob
. É necessário anexar uma política em linha à função criada. Para obter mais informações, veja este exemplo IAM de política:CreateTrainingJob. -
-
Parâmetros compatíveis:
SageMaker Exemplo de Transform Job
O seguinte inclui um Task
estado que cria uma tarefa de SageMaker transformação da Amazon, especificando a localização DataSource
do Amazon S3 para e. TransformOutput
{
"SageMaker CreateTransformJob": {
"Type": "Task",
"Resource": "arn:aws:states:::sagemaker:createTransformJob.sync",
"Parameters": {
"ModelName": "SageMakerCreateTransformJobModel-9iFBKsYti9vr",
"TransformInput": {
"CompressionType": "None",
"ContentType": "text/csv",
"DataSource": {
"S3DataSource": {
"S3DataType": "S3Prefix",
"S3Uri": "s3://amzn-s3-demo-source-bucket1/TransformJobDataInput.txt"
}
}
},
"TransformOutput": {
"S3OutputPath": "s3://amzn-s3-demo-source-bucket1/TransformJobOutputPath"
},
"TransformResources": {
"InstanceCount": 1,
"InstanceType": "ml.m4.xlarge"
},
"TransformJobName": "sfn-binary-classification-prediction"
},
"Next": "ValidateOutput"
},
SageMaker Exemplo de Job de Treinamento
O seguinte inclui um Task
estado que cria um trabalho de SageMaker treinamento na Amazon.
{
"SageMaker CreateTrainingJob":{
"Type":"Task",
"Resource":"arn:aws:states:::sagemaker:createTrainingJob.sync",
"Parameters":{
"TrainingJobName":"search-model",
"ResourceConfig":{
"InstanceCount":4,
"InstanceType":"ml.c4.8xlarge",
"VolumeSizeInGB":20
},
"HyperParameters":{
"mode":"batch_skipgram",
"epochs":"5",
"min_count":"5",
"sampling_threshold":"0.0001",
"learning_rate":"0.025",
"window_size":"5",
"vector_dim":"300",
"negative_samples":"5",
"batch_size":"11"
},
"AlgorithmSpecification":{
"TrainingImage":"...",
"TrainingInputMode":"File"
},
"OutputDataConfig":{
"S3OutputPath":"s3://amzn-s3-demo-destination-bucket1/doc-search/model"
},
"StoppingCondition":{
"MaxRuntimeInSeconds":100000
},
"RoleArn":"arn:aws:iam::123456789012:role/docsearch-stepfunction-iam-role",
"InputDataConfig":[
{
"ChannelName":"train",
"DataSource":{
"S3DataSource":{
"S3DataType":"S3Prefix",
"S3Uri":"s3://amzn-s3-demo-destination-bucket1/doc-search/interim-data/training-data/",
"S3DataDistributionType":"FullyReplicated"
}
}
}
]
},
"Retry":[
{
"ErrorEquals":[
"SageMaker.AmazonSageMakerException"
],
"IntervalSeconds":1,
"MaxAttempts":100,
"BackoffRate":1.1
},
{
"ErrorEquals":[
"SageMaker.ResourceLimitExceededException"
],
"IntervalSeconds":60,
"MaxAttempts":5000,
"BackoffRate":1
},
{
"ErrorEquals":[
"States.Timeout"
],
"IntervalSeconds":1,
"MaxAttempts":5,
"BackoffRate":1
}
],
"Catch":[
{
"ErrorEquals":[
"States.ALL"
],
"ResultPath":"$.cause",
"Next":"Sagemaker Training Job Error"
}
],
"Next":"Delete Interim Data Job"
}
}
SageMaker Exemplo de Job de Etiquetagem
O seguinte inclui um Task
estado que cria um trabalho de SageMaker etiquetagem na Amazon.
{
"StartAt": "SageMaker CreateLabelingJob",
"TimeoutSeconds": 3600,
"States": {
"SageMaker CreateLabelingJob": {
"Type": "Task",
"Resource": "arn:aws:states:::sagemaker:createLabelingJob.sync",
"Parameters": {
"HumanTaskConfig": {
"AnnotationConsolidationConfig": {
"AnnotationConsolidationLambdaArn": "arn:aws:lambda:us-west-2:123456789012:function:ACS-TextMultiClass"
},
"NumberOfHumanWorkersPerDataObject": 1,
"PreHumanTaskLambdaArn": "arn:aws:lambda:us-west-2:123456789012:function:PRE-TextMultiClass",
"TaskDescription": "Classify the following text",
"TaskKeywords": [
"tc",
"Labeling"
],
"TaskTimeLimitInSeconds": 300,
"TaskTitle": "Classify short bits of text",
"UiConfig": {
"UiTemplateS3Uri": "s3://amzn-s3-demo-bucket/TextClassification.template"
},
"WorkteamArn": "arn:aws:sagemaker:us-west-2:123456789012:workteam/private-crowd/ExampleTesting"
},
"InputConfig": {
"DataAttributes": {
"ContentClassifiers": [
"FreeOfPersonallyIdentifiableInformation",
"FreeOfAdultContent"
]
},
"DataSource": {
"S3DataSource": {
"ManifestS3Uri": "s3://amzn-s3-demo-bucket/manifest.json"
}
}
},
"LabelAttributeName": "Categories",
"LabelCategoryConfigS3Uri": "s3://amzn-s3-demo-bucket/labelcategories.json",
"LabelingJobName": "example-job-name",
"OutputConfig": {
"S3OutputPath": "s3://amzn-s3-demo-bucket/output"
},
"RoleArn": "arn:aws:iam::123456789012:role/service-role/AmazonSageMaker-ExecutionRole",
"StoppingConditions": {
"MaxHumanLabeledObjectCount": 10000,
"MaxPercentageOfInputDatasetLabeled": 100
}
},
"Next": "ValidateOutput"
},
"ValidateOutput": {
"Type": "Choice",
"Choices": [
{
"Not": {
"Variable": "$.LabelingJobArn",
"StringEquals": ""
},
"Next": "Succeed"
}
],
"Default": "Fail"
},
"Succeed": {
"Type": "Succeed"
},
"Fail": {
"Type": "Fail",
"Error": "InvalidOutput",
"Cause": "Output is not what was expected. This could be due to a service outage or a misconfigured service integration."
}
}
}
SageMaker Exemplo de trabalho de processamento
O seguinte inclui um Task
estado que cria um trabalho de SageMaker processamento da Amazon.
{
"StartAt": "SageMaker CreateProcessingJob Sync",
"TimeoutSeconds": 3600,
"States": {
"SageMaker CreateProcessingJob Sync": {
"Type": "Task",
"Resource": "arn:aws:states:::sagemaker:createProcessingJob.sync",
"Parameters": {
"AppSpecification": {
"ImageUri": "737474898029.dkr.ecr.sa-east-1.amazonaws.com/sagemaker-scikit-learn:0.20.0-cpu-py3"
},
"ProcessingResources": {
"ClusterConfig": {
"InstanceCount": 1,
"InstanceType": "ml.t3.medium",
"VolumeSizeInGB": 10
}
},
"RoleArn": "arn:aws:iam::123456789012:role/SM-003-CreateProcessingJobAPIExecutionRole",
"ProcessingJobName.$": "$.id"
},
"Next": "ValidateOutput"
},
"ValidateOutput": {
"Type": "Choice",
"Choices": [
{
"Not": {
"Variable": "$.ProcessingJobArn",
"StringEquals": ""
},
"Next": "Succeed"
}
],
"Default": "Fail"
},
"Succeed": {
"Type": "Succeed"
},
"Fail": {
"Type": "Fail",
"Error": "InvalidConnectorOutput",
"Cause": "Connector output is not what was expected. This could be due to a service outage or a misconfigured connector."
}
}
}
IAMpolíticas para ligar para a Amazon SageMaker
Os modelos de exemplo a seguir mostram como AWS Step Functions gera IAM políticas com base nos recursos em sua definição de máquina de estado. Para ter mais informações, consulte Como o Step Functions gera IAM políticas para serviços integrados e Descubra padrões de integração de serviços em Step Functions.
nota
Para esses exemplos, consulte
o Amazon Resource Name (ARN) da IAM função SageMaker usada para acessar artefatos de modelo e imagens docker para implantação em instâncias de computação de ML ou para trabalhos de transformação em lote. Para obter mais informações, consulte Amazon SageMaker Roles.[[roleArn]]
CreateTrainingJob
Recursos estáticos
Recursos dinâmicos
CreateTransformJob
nota
AWS Step Functions não criará automaticamente uma política para CreateTransformJob
quando você criar uma máquina de estado que se integre a. SageMaker Você deve anexar uma política embutida à função criada com base em um dos IAM exemplos a seguir.
Recursos estáticos
Recursos dinâmicos