Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.
El siguiente programa es un ejemplo de uso Amazon Kendra en un programa de Python. En el programa se realizan las siguientes tareas:
-
Crea un índice nuevo mediante la CreateIndexoperación.
-
Espera a que se complete la creación del índice. Utiliza la DescribeIndexoperación para supervisar el estado del índice.
-
Una vez que el índice está activo, crea una fuente de datos mediante la CreateDataSourceoperación.
-
Espera a que se complete la creación del origen de datos. Utiliza la DescribeDataSourceoperación para supervisar el estado de la fuente de datos.
-
Cuando la fuente de datos está activa, sincroniza el índice con el contenido de la fuente de datos mediante la StartDataSourceSyncJoboperación.
import boto3
from botocore.exceptions import ClientError
import pprint
import time
kendra = boto3.client("kendra")
print("Create an index.")
# Provide a name for the index
index_name = "python-getting-started-index"
# Provide an optional decription for the index
description = "Getting started index"
# Provide the IAM role ARN required for indexes
index_role_arn = "arn:aws:iam::${accountId}:role/KendraRoleForGettingStartedIndex"
try:
index_response = kendra.create_index(
Description = description,
Name = index_name,
RoleArn = index_role_arn
)
pprint.pprint(index_response)
index_id = index_response["Id"]
print("Wait for Amazon Kendra to create the index.")
while True:
# Get the details of the index, such as the status
index_description = kendra.describe_index(
Id = index_id
)
# When status is not CREATING quit.
status = index_description["Status"]
print(" Creating index. Status: "+status)
time.sleep(60)
if status != "CREATING":
break
print("Create an S3 data source.")
# Provide a name for the data source
data_source_name = "python-getting-started-data-source"
# Provide an optional description for the data source
data_source_description = "Getting started data source."
# Provide the IAM role ARN required for data sources
data_source_role_arn = "arn:aws:iam::${accountId}:role/KendraRoleForGettingStartedDataSource"
# Provide the data source connection information
S3_bucket_name = "S3-bucket-name"
data_source_type = "S3"
# Configure the data source
configuration = {"S3Configuration":
{
"BucketName": S3_bucket_name
}
}
"""
If you connect to your data source using a template schema,
configure the template schema
configuration = {"TemplateConfiguration":
{
"Template": {JSON schema}
}
}
"""
data_source_response = kendra.create_data_source(
Name = data_source_name,
Description = data_source_name,
RoleArn = data_source_role_arn,
Type = data_source_type,
Configuration = configuration,
IndexId = index_id
)
pprint.pprint(data_source_response)
data_source_id = data_source_response["Id"]
print("Wait for Amazon Kendra to create the data source.")
while True:
# Get the details of the data source, such as the status
data_source_description = kendra.describe_data_source(
Id = data_source_id,
IndexId = index_id
)
# If status is not CREATING, then quit
status = data_source_description["Status"]
print(" Creating data source. Status: "+status)
time.sleep(60)
if status != "CREATING":
break
print("Synchronize the data source.")
sync_response = kendra.start_data_source_sync_job(
Id = data_source_id,
IndexId = index_id
)
pprint.pprint(sync_response)
print("Wait for the data source to sync with the index.")
while True:
jobs = kendra.list_data_source_sync_jobs(
Id = data_source_id,
IndexId = index_id
)
# For this example, there should be one job
status = jobs["History"][0]["Status"]
print(" Syncing data source. Status: "+status)
if status != "SYNCING":
break
time.sleep(60)
except ClientError as e:
print("%s" % e)
print("Program ends.")