Cookie の設定を選択する

当社は、当社のサイトおよびサービスを提供するために必要な必須 Cookie および類似のツールを使用しています。当社は、パフォーマンス Cookie を使用して匿名の統計情報を収集することで、お客様が当社のサイトをどのように利用しているかを把握し、改善に役立てています。必須 Cookie は無効化できませんが、[カスタマイズ] または [拒否] をクリックしてパフォーマンス Cookie を拒否することはできます。

お客様が同意した場合、AWS および承認された第三者は、Cookie を使用して便利なサイト機能を提供したり、お客様の選択を記憶したり、関連する広告を含む関連コンテンツを表示したりします。すべての必須ではない Cookie を受け入れるか拒否するには、[受け入れる] または [拒否] をクリックしてください。より詳細な選択を行うには、[カスタマイズ] をクリックしてください。

Creating a user script

フォーカスモード
Creating a user script - AWS Clean Rooms
このページはお客様の言語に翻訳されていません。 翻訳のリクエスト

The user script must be named user_script.py and must contain an entrypoint function (in other words, a handler).

The following procedure describes how to create a user script to define the core functionality of your PySpark analysis.

Prerequisites

  • PySpark 1.0 (corresponds to Python 3.9 and Spark 3.5.2)

  • Datasets in Amazon S3 can only be read as configured table associations in the Spark session you define.

  • Your code can't directly call Amazon S3 and AWS Glue

  • Your code can’t make network calls

To create a user script
  1. Open a text editor or Integrated Development Environment (IDE) of your choice.

    You can use any text editor or IDE (such as Visual Studio Code, PyCharm, or Notepad++) that supports Python files.

  2. Create a new file named user_script.py.

  3. Define an entrypoint function that accepts a context object parameter.

    def entrypoint(context)

    The context object parameter is a dictionary that provides access to essential Spark components and referenced tables. It contains Spark session access for running Spark operations and the referenced tables:

    Spark session access is available via context['sparkSession']

    Referenced tables are available via context['referencedTables']

  4. Define the results of the entrypoint function:

    return results

    The results must return an object containing a results dictionary of filenames to an output DataFrame.

    Note

    AWS Clean Rooms automatically writes the DataFrame objects to the S3 bucket of the result receiver.

  5. You are now ready to:

    1. Store this user script in S3. For more information, see Storing a user script and virtual environment in S3.

    2. Create the optional virtual environment to support any additional libraries required by your user script. For more information, see Creating a virtual environment (optional).

Example 1
The following example demonstrates a generic user script for a PySpark analysis template.
# File name: user_script.py def entrypoint(context): try: # Access Spark session spark = context['sparkSession'] # Access input tables input_table1 = context['referencedTables']['table1_name'] input_table2 = context['referencedTables']['table2_name'] # Example data processing operations output_df1 = input_table1.select("column1", "column2") output_df2 = input_table2.join(input_table1, "join_key") output_df3 = input_table1.groupBy("category").count() # Return results - each key creates a separate output folder return { "results": { "output1": output_df1, # Creates output1/ folder "output2": output_df2, # Creates output2/ folder "analysis_summary": output_df3 # Creates analysis_summary/ folder } } except Exception as e: print(f"Error in main function: {str(e)}") raise e

The folder structure of this example is as follows:

analysis_results/ │ ├── output1/ # Basic selected columns │ ├── part-00000.parquet │ └── _SUCCESS │ ├── output2/ # Joined data │ ├── part-00000.parquet │ └── _SUCCESS │ └── analysis_summary/ # Aggregated results ├── part-00000.parquet └── _SUCCESS
Example 2
The following example demonstrates a more complex user script for a PySpark analysis template.
def entrypoint(context): try: # Get DataFrames from context emp_df = context['referencedTables']['employees'] dept_df = context['referencedTables']['departments'] # Apply Transformations emp_dept_df = emp_df.join( dept_df, on="dept_id", how="left" ).select( "emp_id", "name", "salary", "dept_name" ) # Return Dataframes return { "results": { "outputTable": emp_dept_df } } except Exception as e: print(f"Error in entrypoint function: {str(e)}") raise e
プライバシーサイト規約Cookie の設定
© 2025, Amazon Web Services, Inc. or its affiliates.All rights reserved.