選取您的 Cookie 偏好設定

我們使用提供自身網站和服務所需的基本 Cookie 和類似工具。我們使用效能 Cookie 收集匿名統計資料,以便了解客戶如何使用我們的網站並進行改進。基本 Cookie 無法停用,但可以按一下「自訂」或「拒絕」以拒絕效能 Cookie。

如果您同意,AWS 與經核准的第三方也會使用 Cookie 提供實用的網站功能、記住您的偏好設定,並顯示相關內容,包括相關廣告。若要接受或拒絕所有非必要 Cookie,請按一下「接受」或「拒絕」。若要進行更詳細的選擇,請按一下「自訂」。

分析存放在 Amazon S3 儲存貯體中的映像

焦點模式
分析存放在 Amazon S3 儲存貯體中的映像 - Amazon Rekognition

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

Amazon Rekognition Image 可以分析存放在 Amazon S3 儲存貯體中的映像,或做為映像位元組提供的映像。

在本主題中,您會使用 DetectLabels API 操作,來偵測存放在 Amazon S3 儲存貯體之映像 (JPEG 或 PNG) 中的物件、概念與場景。您可以使用映像輸入參數,將映像傳遞至 Amazon Rekognition Image API 操作。在 Image 內,您指定 S3Object 物件屬性以參考存放在 S3 儲存貯體中的映像。存放在 Amazon S3 儲存貯體中的映像位元組,不需要 Base64 編碼。如需詳細資訊,請參閱 映像規格

範例請求

在此範例中,JSON 要求 DetectLabels,而來源映像 (input.jpg) 是從名為 amzn-s3-demo-bucket 的 Amazon S3 儲存貯體載入。含有 S3 物件的 S3 儲存貯體區域必須符合您用於 Amazon Rekognition Image 操作的區域。

{ "Image": { "S3Object": { "Bucket": "amzn-s3-demo-bucket", "Name": "input.jpg" } }, "MaxLabels": 10, "MinConfidence": 75 }

下列範例使用各種 AWS SDKs和 AWS CLI 來呼叫 DetectLabels。如需有關 DetectLabels 操作回應的資訊,請參閱 DetectLabels 回應

偵測映像中的標籤
  1. 如果您尚未執行:

    1. 建立或更新具有 AmazonRekognitionFullAccessAmazonS3ReadOnlyAccess 許可的使用者。如需詳細資訊,請參閱步驟 1:設定 AWS 帳戶並建立使用者

    2. 安裝和設定 AWS CLI 和 AWS SDKs。如需詳細資訊,請參閱步驟 2:設定 AWS CLI 和 SDK AWS SDKs。請確定您已為呼叫 API 操作的使用者授予程式設計存取的適當權限,請參閱 授與程式設計存取權 以取得如何執行此操作的指示。

  2. 將包含一個或多個物件的映像 (例如樹、房子和船) 上傳至您的 S3 儲存貯體。映像的格式必須是 .jpg.png 格式。

    如需指示說明,請參閱《Amazon Simple Storage Service 使用者指南》中的上傳物件至 Amazon S3

  3. 使用下列範例來呼叫 DetectLabels 操作。

    Java

    此範例顯示一份在輸入映像中偵測到的標籤清單。將 bucketphoto 的數值取代為您在步驟 2 中所使用的 Amazon S3 儲存貯體名稱與映像名稱。

    //Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) package com.amazonaws.samples; import com.amazonaws.services.rekognition.AmazonRekognition; import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder; import com.amazonaws.services.rekognition.model.AmazonRekognitionException; import com.amazonaws.services.rekognition.model.DetectLabelsRequest; import com.amazonaws.services.rekognition.model.DetectLabelsResult; import com.amazonaws.services.rekognition.model.Image; import com.amazonaws.services.rekognition.model.Label; import com.amazonaws.services.rekognition.model.S3Object; import java.util.List; public class DetectLabels { public static void main(String[] args) throws Exception { String photo = "input.jpg"; String bucket = "bucket"; AmazonRekognition rekognitionClient = AmazonRekognitionClientBuilder.defaultClient(); DetectLabelsRequest request = new DetectLabelsRequest() .withImage(new Image() .withS3Object(new S3Object() .withName(photo).withBucket(bucket))) .withMaxLabels(10) .withMinConfidence(75F); try { DetectLabelsResult result = rekognitionClient.detectLabels(request); List <Label> labels = result.getLabels(); System.out.println("Detected labels for " + photo); for (Label label: labels) { System.out.println(label.getName() + ": " + label.getConfidence().toString()); } } catch(AmazonRekognitionException e) { e.printStackTrace(); } } }
    AWS CLI

    此範例顯示 detect-labels CLI 操作的 JSON 輸出。將 bucketphoto 的數值取代為您在步驟 2 中所使用的 Amazon S3 儲存貯體名稱與映像名稱。將建立 Rekognition 工作階段的行中 profile_name 值取代為您開發人員設定檔的名稱。

    aws rekognition detect-labels --image '{ "S3Object": { "Bucket": "bucket-name", "Name": "file-name" } }' \ --features GENERAL_LABELS IMAGE_PROPERTIES \ --settings '{"ImageProperties": {"MaxDominantColors":1}, {"GeneralLabels":{"LabelInclusionFilters":["Cat"]}}}' \ --profile profile-name \ --region us-east-1

    如果您使用的是 Windows,則可能需要逸出引號,如以下範例所示。

    aws rekognition detect-labels --image "{\"S3Object\":{\"Bucket\":\"bucket-name\",\"Name\":\"file-name\"}}" --features GENERAL_LABELS IMAGE_PROPERTIES --settings "{\"GeneralLabels\":{\"LabelInclusionFilters\":[\"Car\"]}}" --profile profile-name --region us-east-1
    Java V2

    此程式碼取自 AWS 文件開發套件範例 GitHub 儲存庫。請參閱此處的完整範例。

    //snippet-start:[rekognition.java2.detect_labels.import] import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.DetectLabelsRequest; import software.amazon.awssdk.services.rekognition.model.DetectLabelsResponse; import software.amazon.awssdk.services.rekognition.model.Label; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.S3Object; import java.util.List; /** * Before running this Java V2 code example, set up your development environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectLabels { public static void main(String[] args) { final String usage = "\n" + "Usage: " + " <bucket> <image>\n\n" + "Where:\n" + " bucket - The name of the Amazon S3 bucket that contains the image (for example, ,ImageBucket)." + " image - The name of the image located in the Amazon S3 bucket (for example, Lake.png). \n\n"; if (args.length != 2) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String image = args[1]; Region region = Region.US_WEST_2; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .credentialsProvider(ProfileCredentialsProvider.create("profile-name")) .build(); getLabelsfromImage(rekClient, bucket, image); rekClient.close(); } // snippet-start:[rekognition.java2.detect_labels_s3.main] public static void getLabelsfromImage(RekognitionClient rekClient, String bucket, String image) { try { S3Object s3Object = S3Object.builder() .bucket(bucket) .name(image) .build() ; Image myImage = Image.builder() .s3Object(s3Object) .build(); DetectLabelsRequest detectLabelsRequest = DetectLabelsRequest.builder() .image(myImage) .maxLabels(10) .build(); DetectLabelsResponse labelsResponse = rekClient.detectLabels(detectLabelsRequest); List<Label> labels = labelsResponse.labels(); System.out.println("Detected labels for the given photo"); for (Label label: labels) { System.out.println(label.name() + ": " + label.confidence().toString()); } } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } // snippet-end:[rekognition.java2.detect_labels.main] }
    Python

    此範例顯示在輸入映像中偵測到的標籤。將 bucketphoto 的數值取代為您在步驟 2 中所使用的 Amazon S3 儲存貯體名稱與映像名稱。將建立 Rekognition 工作階段的行中 profile_name 值取代為您開發人員設定檔的名稱。

    #Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. #PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) import boto3 def detect_labels(photo, bucket): session = boto3.Session(profile_name='profile-name') client = session.client('rekognition') response = client.detect_labels(Image={'S3Object':{'Bucket':bucket,'Name':photo}}, MaxLabels=10, # Uncomment to use image properties and filtration settings #Features=["GENERAL_LABELS", "IMAGE_PROPERTIES"], #Settings={"GeneralLabels": {"LabelInclusionFilters":["Cat"]}, # "ImageProperties": {"MaxDominantColors":10}} ) print('Detected labels for ' + photo) print() for label in response['Labels']: print("Label: " + label['Name']) print("Confidence: " + str(label['Confidence'])) print("Instances:") for instance in label['Instances']: print(" Bounding box") print(" Top: " + str(instance['BoundingBox']['Top'])) print(" Left: " + str(instance['BoundingBox']['Left'])) print(" Width: " + str(instance['BoundingBox']['Width'])) print(" Height: " + str(instance['BoundingBox']['Height'])) print(" Confidence: " + str(instance['Confidence'])) print() print("Parents:") for parent in label['Parents']: print(" " + parent['Name']) print("Aliases:") for alias in label['Aliases']: print(" " + alias['Name']) print("Categories:") for category in label['Categories']: print(" " + category['Name']) print("----------") print() if "ImageProperties" in str(response): print("Background:") print(response["ImageProperties"]["Background"]) print() print("Foreground:") print(response["ImageProperties"]["Foreground"]) print() print("Quality:") print(response["ImageProperties"]["Quality"]) print() return len(response['Labels']) def main(): photo = 'photo-name' bucket = 'amzn-s3-demo-bucket' label_count = detect_labels(photo, bucket) print("Labels detected: " + str(label_count)) if __name__ == "__main__": main()
    Node.Js

    此範例顯示與映像中偵測到的名人有關的資訊。

    photo 的值變更為某個映像檔案的路徑和檔案名稱,而該映像檔案含有一個或多個名人臉孔。將 bucket 的值變更為包含映像檔案的 S3 儲存貯體名稱。將 REGION 的值變更為與您帳戶相關聯的地區名稱。將建立 Rekognition 工作階段的行中 profile_name 值取代為您開發人員設定檔的名稱。

    // Import required AWS SDK clients and commands for Node.js import { DetectLabelsCommand } from "@aws-sdk/client-rekognition"; import { RekognitionClient } from "@aws-sdk/client-rekognition"; import {fromIni} from '@aws-sdk/credential-providers'; // Set the AWS Region. const REGION = "region-name"; //e.g. "us-east-1" // Create SNS service object. const rekogClient = new RekognitionClient({ region: REGION, credentials: fromIni({ profile: 'profile-name', }), }); const bucket = 'bucket-name' const photo = 'photo-name' // Set params const params = {For example, to grant Image: { S3Object: { Bucket: bucket, Name: photo }, }, } const detect_labels = async () => { try { const response = await rekogClient.send(new DetectLabelsCommand(params)); console.log(response.Labels) response.Labels.forEach(label =>{ console.log(`Confidence: ${label.Confidence}`) console.log(`Name: ${label.Name}`) console.log('Instances:') label.Instances.forEach(instance => { console.log(instance) }) console.log('Parents:') label.Parents.forEach(name => { console.log(name) }) console.log("-------") }) return response; // For unit tests. } catch (err) { console.log("Error", err); } }; detect_labels();
    .NET

    此範例顯示一份在輸入映像中偵測到的標籤清單。將 bucketphoto 的數值取代為您在步驟 2 中所使用的 Amazon S3 儲存貯體名稱與映像名稱。

    //Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) using System; using Amazon.Rekognition; using Amazon.Rekognition.Model; public class DetectLabels { public static void Example() { String photo = "input.jpg"; String bucket = "amzn-s3-demo-bucket"; AmazonRekognitionClient rekognitionClient = new AmazonRekognitionClient(); DetectLabelsRequest detectlabelsRequest = new DetectLabelsRequest() { Image = new Image() { S3Object = new S3Object() { Name = photo, Bucket = bucket }, }, MaxLabels = 10, MinConfidence = 75F }; try { DetectLabelsResponse detectLabelsResponse = rekognitionClient.DetectLabels(detectlabelsRequest); Console.WriteLine("Detected labels for " + photo); foreach (Label label in detectLabelsResponse.Labels) Console.WriteLine("{0}: {1}", label.Name, label.Confidence); } catch (Exception e) { Console.WriteLine(e.Message); } } }
    Ruby

    此範例顯示一份在輸入映像中偵測到的標籤清單。將 bucketphoto 的數值取代為您在步驟 2 中所使用的 Amazon S3 儲存貯體名稱與映像名稱。

    # Add to your Gemfile # gem 'aws-sdk-rekognition' require 'aws-sdk-rekognition' credentials = Aws::Credentials.new( ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY'] ) bucket = 'bucket' # the bucket name without s3:// photo = 'photo' # the name of file client = Aws::Rekognition::Client.new credentials: credentials attrs = { image: { s3_object: { bucket: bucket, name: photo }, }, max_labels: 10 } response = client.detect_labels attrs puts "Detected labels for: #{photo}" response.labels.each do |label| puts "Label: #{label.name}" puts "Confidence: #{label.confidence}" puts "Instances:" label['instances'].each do |instance| box = instance['bounding_box'] puts " Bounding box:" puts " Top: #{box.top}" puts " Left: #{box.left}" puts " Width: #{box.width}" puts " Height: #{box.height}" puts " Confidence: #{instance.confidence}" end puts "Parents:" label.parents.each do |parent| puts " #{parent.name}" end puts "------------" puts "" end

    此範例顯示一份在輸入映像中偵測到的標籤清單。將 bucketphoto 的數值取代為您在步驟 2 中所使用的 Amazon S3 儲存貯體名稱與映像名稱。

    //Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) package com.amazonaws.samples; import com.amazonaws.services.rekognition.AmazonRekognition; import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder; import com.amazonaws.services.rekognition.model.AmazonRekognitionException; import com.amazonaws.services.rekognition.model.DetectLabelsRequest; import com.amazonaws.services.rekognition.model.DetectLabelsResult; import com.amazonaws.services.rekognition.model.Image; import com.amazonaws.services.rekognition.model.Label; import com.amazonaws.services.rekognition.model.S3Object; import java.util.List; public class DetectLabels { public static void main(String[] args) throws Exception { String photo = "input.jpg"; String bucket = "bucket"; AmazonRekognition rekognitionClient = AmazonRekognitionClientBuilder.defaultClient(); DetectLabelsRequest request = new DetectLabelsRequest() .withImage(new Image() .withS3Object(new S3Object() .withName(photo).withBucket(bucket))) .withMaxLabels(10) .withMinConfidence(75F); try { DetectLabelsResult result = rekognitionClient.detectLabels(request); List <Label> labels = result.getLabels(); System.out.println("Detected labels for " + photo); for (Label label: labels) { System.out.println(label.getName() + ": " + label.getConfidence().toString()); } } catch(AmazonRekognitionException e) { e.printStackTrace(); } } }

回應範例

DetectLabels 的回應是映像中偵測到的一系列標籤,以及偵測所依據的可信度層級。

當您對映像執行 DetectLabels 作業時,Amazon Rekognition 會傳回類似下列範例回應的輸出。

回應顯示操作偵測到多個標籤,包括人員、車輛和汽車。每個標籤都有一個相關的可信度等級。例如,偵測演算法對於映像中包含人員的可信度為 98.991432%。

回應也包含 Parents 陣列中標籤的上階標籤。例如 Automobile (汽車) 標籤有兩個名為 Vehicle (車輛) 和 Transportation (運輸) 的 父標籤。

常見物件標籤的回應包含輸入映像上標籤位置的週框方塊資訊。例如,人員標籤具有一個實例陣列,其中包含兩個週框方塊。這些是在映像中偵測到的兩個人員位置。

欄位 LabelModelVersion 包含 DetectLabels 所使用之偵測模型的版本編號。

如需使用此 DetectLabels 操作的詳細資訊,請參閱 偵測物件和概念

{ { "Labels": [ { "Name": "Vehicle", "Confidence": 99.15271759033203, "Instances": [], "Parents": [ { "Name": "Transportation" } ] }, { "Name": "Transportation", "Confidence": 99.15271759033203, "Instances": [], "Parents": [] }, { "Name": "Automobile", "Confidence": 99.15271759033203, "Instances": [], "Parents": [ { "Name": "Vehicle" }, { "Name": "Transportation" } ] }, { "Name": "Car", "Confidence": 99.15271759033203, "Instances": [ { "BoundingBox": { "Width": 0.10616336017847061, "Height": 0.18528179824352264, "Left": 0.0037978808395564556, "Top": 0.5039216876029968 }, "Confidence": 99.15271759033203 }, { "BoundingBox": { "Width": 0.2429988533258438, "Height": 0.21577216684818268, "Left": 0.7309805154800415, "Top": 0.5251884460449219 }, "Confidence": 99.1286392211914 }, { "BoundingBox": { "Width": 0.14233611524105072, "Height": 0.15528248250484467, "Left": 0.6494812965393066, "Top": 0.5333095788955688 }, "Confidence": 98.48368072509766 }, { "BoundingBox": { "Width": 0.11086395382881165, "Height": 0.10271988064050674, "Left": 0.10355594009160995, "Top": 0.5354844927787781 }, "Confidence": 96.45606231689453 }, { "BoundingBox": { "Width": 0.06254628300666809, "Height": 0.053911514580249786, "Left": 0.46083059906959534, "Top": 0.5573825240135193 }, "Confidence": 93.65448760986328 }, { "BoundingBox": { "Width": 0.10105438530445099, "Height": 0.12226245552301407, "Left": 0.5743985772132874, "Top": 0.534368634223938 }, "Confidence": 93.06217193603516 }, { "BoundingBox": { "Width": 0.056389667093753815, "Height": 0.17163699865341187, "Left": 0.9427769780158997, "Top": 0.5235804319381714 }, "Confidence": 92.6864013671875 }, { "BoundingBox": { "Width": 0.06003860384225845, "Height": 0.06737709045410156, "Left": 0.22409997880458832, "Top": 0.5441341400146484 }, "Confidence": 90.4227066040039 }, { "BoundingBox": { "Width": 0.02848697081208229, "Height": 0.19150497019290924, "Left": 0.0, "Top": 0.5107086896896362 }, "Confidence": 86.65286254882812 }, { "BoundingBox": { "Width": 0.04067881405353546, "Height": 0.03428703173995018, "Left": 0.316415935754776, "Top": 0.5566273927688599 }, "Confidence": 85.36471557617188 }, { "BoundingBox": { "Width": 0.043411049991846085, "Height": 0.0893595889210701, "Left": 0.18293385207653046, "Top": 0.5394920110702515 }, "Confidence": 82.21705627441406 }, { "BoundingBox": { "Width": 0.031183116137981415, "Height": 0.03989990055561066, "Left": 0.2853088080883026, "Top": 0.5579366683959961 }, "Confidence": 81.0157470703125 }, { "BoundingBox": { "Width": 0.031113790348172188, "Height": 0.056484755128622055, "Left": 0.2580395042896271, "Top": 0.5504819750785828 }, "Confidence": 56.13441467285156 }, { "BoundingBox": { "Width": 0.08586374670267105, "Height": 0.08550430089235306, "Left": 0.5128012895584106, "Top": 0.5438792705535889 }, "Confidence": 52.37760925292969 } ], "Parents": [ { "Name": "Vehicle" }, { "Name": "Transportation" } ] }, { "Name": "Human", "Confidence": 98.9914321899414, "Instances": [], "Parents": [] }, { "Name": "Person", "Confidence": 98.9914321899414, "Instances": [ { "BoundingBox": { "Width": 0.19360728561878204, "Height": 0.2742200493812561, "Left": 0.43734854459762573, "Top": 0.35072067379951477 }, "Confidence": 98.9914321899414 }, { "BoundingBox": { "Width": 0.03801717236638069, "Height": 0.06597328186035156, "Left": 0.9155802130699158, "Top": 0.5010883808135986 }, "Confidence": 85.02790832519531 } ], "Parents": [] } ], "LabelModelVersion": "2.0" } }

在本頁面

隱私權網站條款Cookie 偏好設定
© 2025, Amazon Web Services, Inc.或其附屬公司。保留所有權利。