範例:偵測已存放影片中的區段 - Amazon Rekognition

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

範例:偵測已存放影片中的區段

下列程序顯示如何偵測存放在 Amazon S3 儲存貯體之影片中的技術提示區段和鏡頭偵測區段。此程序也會示範如何根據 Amazon Rekognition Video 對於偵測準確性的可信度,篩選偵測到的區段。

此範例會展開 使用 Java 或 Python(SDK)分析存儲在 Amazon S3 存儲桶中的視頻 中的程式碼,這會使用 Amazon Simple Queue Service 佇列來取得影片分析要求的完成狀態。

偵測存放在 Amazon S3 儲存貯體 (SDK) 之影片中的區段
  1. 執行 使用 Java 或 Python(SDK)分析存儲在 Amazon S3 存儲桶中的視頻

  2. 將下列專案新增至您在步驟 1 中使用的程式碼。

    Java
    1. 新增以下匯入專案。

      import com.amazonaws.services.rekognition.model.GetSegmentDetectionRequest; import com.amazonaws.services.rekognition.model.GetSegmentDetectionResult; import com.amazonaws.services.rekognition.model.SegmentDetection; import com.amazonaws.services.rekognition.model.SegmentType; import com.amazonaws.services.rekognition.model.SegmentTypeInfo; import com.amazonaws.services.rekognition.model.ShotSegment; import com.amazonaws.services.rekognition.model.StartSegmentDetectionFilters; import com.amazonaws.services.rekognition.model.StartSegmentDetectionRequest; import com.amazonaws.services.rekognition.model.StartSegmentDetectionResult; import com.amazonaws.services.rekognition.model.StartShotDetectionFilter; import com.amazonaws.services.rekognition.model.StartTechnicalCueDetectionFilter; import com.amazonaws.services.rekognition.model.TechnicalCueSegment; import com.amazonaws.services.rekognition.model.AudioMetadata;
    2. 將下列程式碼新增至類別 VideoDetect

      //Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) private static void StartSegmentDetection(String bucket, String video) throws Exception{ NotificationChannel channel= new NotificationChannel() .withSNSTopicArn(snsTopicArn) .withRoleArn(roleArn); float minTechnicalCueConfidence = 80F; float minShotConfidence = 80F; StartSegmentDetectionRequest req = new StartSegmentDetectionRequest() .withVideo(new Video() .withS3Object(new S3Object() .withBucket(bucket) .withName(video))) .withSegmentTypes("TECHNICAL_CUE" , "SHOT") .withFilters(new StartSegmentDetectionFilters() .withTechnicalCueFilter(new StartTechnicalCueDetectionFilter() .withMinSegmentConfidence(minTechnicalCueConfidence)) .withShotFilter(new StartShotDetectionFilter() .withMinSegmentConfidence(minShotConfidence))) .withJobTag("DetectingVideoSegments") .withNotificationChannel(channel); StartSegmentDetectionResult startLabelDetectionResult = rek.startSegmentDetection(req); startJobId=startLabelDetectionResult.getJobId(); } private static void GetSegmentDetectionResults() throws Exception{ int maxResults=10; String paginationToken=null; GetSegmentDetectionResult segmentDetectionResult=null; Boolean firstTime=true; do { if (segmentDetectionResult !=null){ paginationToken = segmentDetectionResult.getNextToken(); } GetSegmentDetectionRequest segmentDetectionRequest= new GetSegmentDetectionRequest() .withJobId(startJobId) .withMaxResults(maxResults) .withNextToken(paginationToken); segmentDetectionResult = rek.getSegmentDetection(segmentDetectionRequest); if(firstTime) { System.out.println("\nStatus\n------"); System.out.println(segmentDetectionResult.getJobStatus()); System.out.println("\nRequested features\n------------------"); for (SegmentTypeInfo requestedFeatures : segmentDetectionResult.getSelectedSegmentTypes()) { System.out.println(requestedFeatures.getType()); } int count=1; List<VideoMetadata> videoMetaDataList = segmentDetectionResult.getVideoMetadata(); System.out.println("\nVideo Streams\n-------------"); for (VideoMetadata videoMetaData: videoMetaDataList) { System.out.println("Stream: " + count++); System.out.println("\tFormat: " + videoMetaData.getFormat()); System.out.println("\tCodec: " + videoMetaData.getCodec()); System.out.println("\tDuration: " + videoMetaData.getDurationMillis()); System.out.println("\tFrameRate: " + videoMetaData.getFrameRate()); } List<AudioMetadata> audioMetaDataList = segmentDetectionResult.getAudioMetadata(); System.out.println("\nAudio streams\n-------------"); count=1; for (AudioMetadata audioMetaData: audioMetaDataList) { System.out.println("Stream: " + count++); System.out.println("\tSample Rate: " + audioMetaData.getSampleRate()); System.out.println("\tCodec: " + audioMetaData.getCodec()); System.out.println("\tDuration: " + audioMetaData.getDurationMillis()); System.out.println("\tNumber of Channels: " + audioMetaData.getNumberOfChannels()); } System.out.println("\nSegments\n--------"); firstTime=false; } //Show segment information List<SegmentDetection> detectedSegments= segmentDetectionResult.getSegments(); for (SegmentDetection detectedSegment: detectedSegments) { if (detectedSegment.getType().contains(SegmentType.TECHNICAL_CUE.toString())) { System.out.println("Technical Cue"); TechnicalCueSegment segmentCue=detectedSegment.getTechnicalCueSegment(); System.out.println("\tType: " + segmentCue.getType()); System.out.println("\tConfidence: " + segmentCue.getConfidence().toString()); } if (detectedSegment.getType().contains(SegmentType.SHOT.toString())) { System.out.println("Shot"); ShotSegment segmentShot=detectedSegment.getShotSegment(); System.out.println("\tIndex " + segmentShot.getIndex()); System.out.println("\tConfidence: " + segmentShot.getConfidence().toString()); } long seconds=detectedSegment.getDurationMillis(); System.out.println("\tDuration : " + Long.toString(seconds) + " milliseconds"); System.out.println("\tStart time code: " + detectedSegment.getStartTimecodeSMPTE()); System.out.println("\tEnd time code: " + detectedSegment.getEndTimecodeSMPTE()); System.out.println("\tDuration time code: " + detectedSegment.getDurationSMPTE()); System.out.println(); } } while (segmentDetectionResult !=null && segmentDetectionResult.getNextToken() != null); }
    3. 在函數 main 中,將下行:

      StartLabelDetection(bucket, video); if (GetSQSMessageSuccess()==true) GetLabelDetectionResults();

      取代為:

      StartSegmentDetection(bucket, video); if (GetSQSMessageSuccess()==true) GetSegmentDetectionResults();
    Java V2
    //snippet-start:[rekognition.java2.recognize_video_text.import] import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartTextDetectionRequest; import software.amazon.awssdk.services.rekognition.model.StartTextDetectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.GetTextDetectionResponse; import software.amazon.awssdk.services.rekognition.model.GetTextDetectionRequest; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.TextDetectionResult; import java.util.List; //snippet-end:[rekognition.java2.recognize_video_text.import] /** * Before running this Java V2 code example, set up your development environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectVideoSegments { private static String startJobId =""; public static void main(String[] args) { final String usage = "\n" + "Usage: " + " <bucket> <video> <topicArn> <roleArn>\n\n" + "Where:\n" + " bucket - The name of the bucket in which the video is located (for example, (for example, myBucket). \n\n"+ " video - The name of video (for example, people.mp4). \n\n" + " topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic. \n\n" + " roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use. \n\n" ; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_WEST_2; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .credentialsProvider(ProfileCredentialsProvider.create("profile-name")) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startTextLabels(rekClient, channel, bucket, video); GetTextResults(rekClient); System.out.println("This example is done!"); rekClient.close(); } // snippet-start:[rekognition.java2.recognize_video_text.main] public static void startTextLabels(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartTextDetectionRequest labelDetectionRequest = StartTextDetectionRequest.builder() .jobTag("DetectingLabels") .notificationChannel(channel) .video(vidOb) .build(); StartTextDetectionResponse labelDetectionResponse = rekClient.startTextDetection(labelDetectionRequest); startJobId = labelDetectionResponse.jobId(); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } public static void GetTextResults(RekognitionClient rekClient) { try { String paginationToken=null; GetTextDetectionResponse textDetectionResponse=null; boolean finished = false; String status; int yy=0 ; do{ if (textDetectionResponse !=null) paginationToken = textDetectionResponse.nextToken(); GetTextDetectionRequest recognitionRequest = GetTextDetectionRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .maxResults(10) .build(); // Wait until the job succeeds. while (!finished) { textDetectionResponse = rekClient.getTextDetection(recognitionRequest); status = textDetectionResponse.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. VideoMetadata videoMetaData=textDetectionResponse.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); System.out.println("Job"); List<TextDetectionResult> labels= textDetectionResponse.textDetections(); for (TextDetectionResult detectedText: labels) { System.out.println("Confidence: " + detectedText.textDetection().confidence().toString()); System.out.println("Id : " + detectedText.textDetection().id()); System.out.println("Parent Id: " + detectedText.textDetection().parentId()); System.out.println("Type: " + detectedText.textDetection().type()); System.out.println("Text: " + detectedText.textDetection().detectedText()); System.out.println(); } } while (textDetectionResponse !=null && textDetectionResponse.nextToken() != null); } catch(RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } // snippet-end:[rekognition.java2.recognize_video_text.main] }
    Python
    1. 將下列程式碼新增至您在步驟 1 中建立的類別 VideoDetect

      # Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) def StartSegmentDetection(self): min_Technical_Cue_Confidence = 80.0 min_Shot_Confidence = 80.0 max_pixel_threshold = 0.1 min_coverage_percentage = 60 response = self.rek.start_segment_detection( Video={"S3Object": {"Bucket": self.bucket, "Name": self.video}}, NotificationChannel={ "RoleArn": self.roleArn, "SNSTopicArn": self.snsTopicArn, }, SegmentTypes=["TECHNICAL_CUE", "SHOT"], Filters={ "TechnicalCueFilter": { "BlackFrame": { "MaxPixelThreshold": max_pixel_threshold, "MinCoveragePercentage": min_coverage_percentage, }, "MinSegmentConfidence": min_Technical_Cue_Confidence, }, "ShotFilter": {"MinSegmentConfidence": min_Shot_Confidence}, } ) self.startJobId = response["JobId"] print(f"Start Job Id: {self.startJobId}") def GetSegmentDetectionResults(self): maxResults = 10 paginationToken = "" finished = False firstTime = True while finished == False: response = self.rek.get_segment_detection( JobId=self.startJobId, MaxResults=maxResults, NextToken=paginationToken ) if firstTime == True: print(f"Status\n------\n{response['JobStatus']}") print("\nRequested Types\n---------------") for selectedSegmentType in response['SelectedSegmentTypes']: print(f"\tType: {selectedSegmentType['Type']}") print(f"\t\tModel Version: {selectedSegmentType['ModelVersion']}") print() print("\nAudio metadata\n--------------") for audioMetadata in response['AudioMetadata']: print(f"\tCodec: {audioMetadata['Codec']}") print(f"\tDuration: {audioMetadata['DurationMillis']}") print(f"\tNumber of Channels: {audioMetadata['NumberOfChannels']}") print(f"\tSample rate: {audioMetadata['SampleRate']}") print() print("\nVideo metadata\n--------------") for videoMetadata in response["VideoMetadata"]: print(f"\tCodec: {videoMetadata['Codec']}") print(f"\tColor Range: {videoMetadata['ColorRange']}") print(f"\tDuration: {videoMetadata['DurationMillis']}") print(f"\tFormat: {videoMetadata['Format']}") print(f"\tFrame rate: {videoMetadata['FrameRate']}") print("\nSegments\n--------") firstTime = False for segment in response['Segments']: if segment["Type"] == "TECHNICAL_CUE": print("Technical Cue") print(f"\tConfidence: {segment['TechnicalCueSegment']['Confidence']}") print(f"\tType: {segment['TechnicalCueSegment']['Type']}") if segment["Type"] == "SHOT": print("Shot") print(f"\tConfidence: {segment['ShotSegment']['Confidence']}") print(f"\tIndex: " + str(segment["ShotSegment"]["Index"])) print(f"\tDuration (milliseconds): {segment['DurationMillis']}") print(f"\tStart Timestamp (milliseconds): {segment['StartTimestampMillis']}") print(f"\tEnd Timestamp (milliseconds): {segment['EndTimestampMillis']}") print(f"\tStart timecode: {segment['StartTimecodeSMPTE']}") print(f"\tEnd timecode: {segment['EndTimecodeSMPTE']}") print(f"\tDuration timecode: {segment['DurationSMPTE']}") print(f"\tStart frame number {segment['StartFrameNumber']}") print(f"\tEnd frame number: {segment['EndFrameNumber']}") print(f"\tDuration frames: {segment['DurationFrames']}") print() if "NextToken" in response: paginationToken = response["NextToken"] else: finished = True
    2. 在函數 main 中,將下行:

      analyzer.StartLabelDetection() if analyzer.GetSQSMessageSuccess()==True: analyzer.GetLabelDetectionResults()

      取代為:

      analyzer.StartSegmentDetection() if analyzer.GetSQSMessageSuccess()==True: analyzer.GetSegmentDetectionResults()
    注意

    如果您已執行 使用 Java 或 Python(SDK)分析存儲在 Amazon S3 存儲桶中的視頻 以外的影片範例,要取代的程式碼可能會不同。

  3. 執行程式碼。隨即顯示在輸入影片中偵測到的區段相關資訊。