CfnPromptVersion
- class aws_cdk.aws_bedrock.CfnPromptVersion(scope, id, *, prompt_arn, description=None, tags=None)
Bases:
CfnResource
Creates a static snapshot of your prompt that can be deployed to production.
For more information, see Deploy prompts using Prompt management by creating versions in the Amazon Bedrock User Guide.
- See:
- CloudformationResource:
AWS::Bedrock::PromptVersion
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_bedrock as bedrock cfn_prompt_version = bedrock.CfnPromptVersion(self, "MyCfnPromptVersion", prompt_arn="promptArn", # the properties below are optional description="description", tags={ "tags_key": "tags" } )
- Parameters:
scope (
Construct
) – Scope in which this resource is defined.id (
str
) – Construct identifier for this resource (unique in its scope).prompt_arn (
str
) – The Amazon Resource Name (ARN) of the version of the prompt.description (
Optional
[str
]) – The description of the prompt version.tags (
Optional
[Mapping
[str
,str
]]) – A map of tag keys and values.
Methods
- add_deletion_override(path)
Syntactic sugar for
addOverride(path, undefined)
.- Parameters:
path (
str
) – The path of the value to delete.- Return type:
None
- add_dependency(target)
Indicates that this resource depends on another resource and cannot be provisioned unless the other resource has been successfully provisioned.
This can be used for resources across stacks (or nested stack) boundaries and the dependency will automatically be transferred to the relevant scope.
- Parameters:
target (
CfnResource
) –- Return type:
None
- add_depends_on(target)
(deprecated) Indicates that this resource depends on another resource and cannot be provisioned unless the other resource has been successfully provisioned.
- Parameters:
target (
CfnResource
) –- Deprecated:
use addDependency
- Stability:
deprecated
- Return type:
None
- add_metadata(key, value)
Add a value to the CloudFormation Resource Metadata.
- Parameters:
key (
str
) –value (
Any
) –
- See:
- Return type:
None
Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.
- add_override(path, value)
Adds an override to the synthesized CloudFormation resource.
To add a property override, either use
addPropertyOverride
or prefixpath
with “Properties.” (i.e.Properties.TopicName
).If the override is nested, separate each nested level using a dot (.) in the path parameter. If there is an array as part of the nesting, specify the index in the path.
To include a literal
.
in the property name, prefix with a\
. In most programming languages you will need to write this as"\\."
because the\
itself will need to be escaped.For example:
cfn_resource.add_override("Properties.GlobalSecondaryIndexes.0.Projection.NonKeyAttributes", ["myattribute"]) cfn_resource.add_override("Properties.GlobalSecondaryIndexes.1.ProjectionType", "INCLUDE")
would add the overrides Example:
"Properties": { "GlobalSecondaryIndexes": [ { "Projection": { "NonKeyAttributes": [ "myattribute" ] ... } ... }, { "ProjectionType": "INCLUDE" ... }, ] ... }
The
value
argument toaddOverride
will not be processed or translated in any way. Pass raw JSON values in here with the correct capitalization for CloudFormation. If you pass CDK classes or structs, they will be rendered with lowercased key names, and CloudFormation will reject the template.- Parameters:
path (
str
) –The path of the property, you can use dot notation to override values in complex types. Any intermediate keys will be created as needed.
value (
Any
) –The value. Could be primitive or complex.
- Return type:
None
- add_property_deletion_override(property_path)
Adds an override that deletes the value of a property from the resource definition.
- Parameters:
property_path (
str
) – The path to the property.- Return type:
None
- add_property_override(property_path, value)
Adds an override to a resource property.
Syntactic sugar for
addOverride("Properties.<...>", value)
.- Parameters:
property_path (
str
) – The path of the property.value (
Any
) – The value.
- Return type:
None
- apply_removal_policy(policy=None, *, apply_to_update_replace_policy=None, default=None)
Sets the deletion policy of the resource based on the removal policy specified.
The Removal Policy controls what happens to this resource when it stops being managed by CloudFormation, either because you’ve removed it from the CDK application or because you’ve made a change that requires the resource to be replaced.
The resource can be deleted (
RemovalPolicy.DESTROY
), or left in your AWS account for data recovery and cleanup later (RemovalPolicy.RETAIN
). In some cases, a snapshot can be taken of the resource prior to deletion (RemovalPolicy.SNAPSHOT
). A list of resources that support this policy can be found in the following link:- Parameters:
policy (
Optional
[RemovalPolicy
]) –apply_to_update_replace_policy (
Optional
[bool
]) – Apply the same deletion policy to the resource’s “UpdateReplacePolicy”. Default: truedefault (
Optional
[RemovalPolicy
]) – The default policy to apply in case the removal policy is not defined. Default: - Default value is resource specific. To determine the default value for a resource, please consult that specific resource’s documentation.
- See:
- Return type:
None
- get_att(attribute_name, type_hint=None)
Returns a token for an runtime attribute of this resource.
Ideally, use generated attribute accessors (e.g.
resource.arn
), but this can be used for future compatibility in case there is no generated attribute.- Parameters:
attribute_name (
str
) – The name of the attribute.type_hint (
Optional
[ResolutionTypeHint
]) –
- Return type:
- get_metadata(key)
Retrieve a value value from the CloudFormation Resource Metadata.
- Parameters:
key (
str
) –- See:
- Return type:
Any
Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.
- inspect(inspector)
Examines the CloudFormation resource and discloses attributes.
- Parameters:
inspector (
TreeInspector
) – tree inspector to collect and process attributes.- Return type:
None
- obtain_dependencies()
Retrieves an array of resources this resource depends on.
This assembles dependencies on resources across stacks (including nested stacks) automatically.
- Return type:
List
[Union
[Stack
,CfnResource
]]
- obtain_resource_dependencies()
Get a shallow copy of dependencies between this resource and other resources in the same stack.
- Return type:
List
[CfnResource
]
- override_logical_id(new_logical_id)
Overrides the auto-generated logical ID with a specific ID.
- Parameters:
new_logical_id (
str
) – The new logical ID to use for this stack element.- Return type:
None
- remove_dependency(target)
Indicates that this resource no longer depends on another resource.
This can be used for resources across stacks (including nested stacks) and the dependency will automatically be removed from the relevant scope.
- Parameters:
target (
CfnResource
) –- Return type:
None
- replace_dependency(target, new_target)
Replaces one dependency with another.
- Parameters:
target (
CfnResource
) – The dependency to replace.new_target (
CfnResource
) – The new dependency to add.
- Return type:
None
- to_string()
Returns a string representation of this construct.
- Return type:
str
- Returns:
a string representation of this resource
Attributes
- CFN_RESOURCE_TYPE_NAME = 'AWS::Bedrock::PromptVersion'
- attr_arn
The Amazon Resource Name (ARN) of the prompt or the prompt version (if you specified a version in the request).
- CloudformationAttribute:
Arn
- attr_created_at
The time at which the prompt was created.
- CloudformationAttribute:
CreatedAt
- attr_customer_encryption_key_arn
A KMS key ARN.
- CloudformationAttribute:
CustomerEncryptionKeyArn
- attr_default_variant
The name of the default variant for the prompt.
This value must match the
name
field in the relevant PromptVariant object.- CloudformationAttribute:
DefaultVariant
- attr_name
The name of the prompt.
- CloudformationAttribute:
Name
- attr_prompt_id
The unique identifier of the prompt.
- CloudformationAttribute:
PromptId
- attr_updated_at
The time at which the prompt was last updated.
- CloudformationAttribute:
UpdatedAt
- attr_variants
A list of objects, each containing details about a variant of the prompt.
- CloudformationAttribute:
Variants
- attr_version
The version of the prompt that this summary applies to.
- CloudformationAttribute:
Version
- cdk_tag_manager
Tag Manager which manages the tags for this resource.
- cfn_options
Options for this resource, such as condition, update policy etc.
- cfn_resource_type
AWS resource type.
- creation_stack
return:
the stack trace of the point where this Resource was created from, sourced from the +metadata+ entry typed +aws:cdk:logicalId+, and with the bottom-most node +internal+ entries filtered.
- description
The description of the prompt version.
- logical_id
The logical ID for this CloudFormation stack element.
The logical ID of the element is calculated from the path of the resource node in the construct tree.
To override this value, use
overrideLogicalId(newLogicalId)
.- Returns:
the logical ID as a stringified token. This value will only get resolved during synthesis.
- node
The tree node.
- prompt_arn
The Amazon Resource Name (ARN) of the version of the prompt.
- ref
Return a string that will be resolved to a CloudFormation
{ Ref }
for this element.If, by any chance, the intrinsic reference of a resource is not a string, you could coerce it to an IResolvable through
Lazy.any({ produce: resource.ref })
.
- stack
The stack in which this element is defined.
CfnElements must be defined within a stack scope (directly or indirectly).
- tags
A map of tag keys and values.
Static Methods
- classmethod is_cfn_element(x)
Returns
true
if a construct is a stack element (i.e. part of the synthesized cloudformation template).Uses duck-typing instead of
instanceof
to allow stack elements from different versions of this library to be included in the same stack.- Parameters:
x (
Any
) –- Return type:
bool
- Returns:
The construct as a stack element or undefined if it is not a stack element.
- classmethod is_cfn_resource(x)
Check whether the given object is a CfnResource.
- Parameters:
x (
Any
) –- Return type:
bool
- classmethod is_construct(x)
Checks if
x
is a construct.Use this method instead of
instanceof
to properly detectConstruct
instances, even when the construct library is symlinked.Explanation: in JavaScript, multiple copies of the
constructs
library on disk are seen as independent, completely different libraries. As a consequence, the classConstruct
in each copy of theconstructs
library is seen as a different class, and an instance of one class will not test asinstanceof
the other class.npm install
will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of theconstructs
library can be accidentally installed, andinstanceof
will behave unpredictably. It is safest to avoid usinginstanceof
, and using this type-testing method instead.- Parameters:
x (
Any
) – Any object.- Return type:
bool
- Returns:
true if
x
is an object created from a class which extendsConstruct
.
PromptInferenceConfigurationProperty
- class CfnPromptVersion.PromptInferenceConfigurationProperty(*, text)
Bases:
object
Contains inference configurations for the prompt.
- Parameters:
text (
Union
[IResolvable
,PromptModelInferenceConfigurationProperty
,Dict
[str
,Any
]]) – Contains inference configurations for a text prompt.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_bedrock as bedrock prompt_inference_configuration_property = bedrock.CfnPromptVersion.PromptInferenceConfigurationProperty( text=bedrock.CfnPromptVersion.PromptModelInferenceConfigurationProperty( max_tokens=123, stop_sequences=["stopSequences"], temperature=123, top_k=123, top_p=123 ) )
Attributes
- text
Contains inference configurations for a text prompt.
PromptInputVariableProperty
- class CfnPromptVersion.PromptInputVariableProperty(*, name=None)
Bases:
object
Contains information about a variable in the prompt.
- Parameters:
name (
Optional
[str
]) – The name of the variable.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_bedrock as bedrock prompt_input_variable_property = bedrock.CfnPromptVersion.PromptInputVariableProperty( name="name" )
Attributes
PromptModelInferenceConfigurationProperty
- class CfnPromptVersion.PromptModelInferenceConfigurationProperty(*, max_tokens=None, stop_sequences=None, temperature=None, top_k=None, top_p=None)
Bases:
object
Contains inference configurations related to model inference for a prompt.
For more information, see Inference parameters .
- Parameters:
max_tokens (
Union
[int
,float
,None
]) – The maximum number of tokens to return in the response.stop_sequences (
Optional
[Sequence
[str
]]) – A list of strings that define sequences after which the model will stop generating.temperature (
Union
[int
,float
,None
]) – Controls the randomness of the response. Choose a lower value for more predictable outputs and a higher value for more surprising outputs.top_k (
Union
[int
,float
,None
]) – Sample from the k most likely next tokens.top_p (
Union
[int
,float
,None
]) – The percentage of most-likely candidates that the model considers for the next token.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_bedrock as bedrock prompt_model_inference_configuration_property = bedrock.CfnPromptVersion.PromptModelInferenceConfigurationProperty( max_tokens=123, stop_sequences=["stopSequences"], temperature=123, top_k=123, top_p=123 )
Attributes
- max_tokens
The maximum number of tokens to return in the response.
- stop_sequences
A list of strings that define sequences after which the model will stop generating.
- temperature
Controls the randomness of the response.
Choose a lower value for more predictable outputs and a higher value for more surprising outputs.
- top_k
Sample from the k most likely next tokens.
- top_p
The percentage of most-likely candidates that the model considers for the next token.
PromptTemplateConfigurationProperty
- class CfnPromptVersion.PromptTemplateConfigurationProperty(*, text)
Bases:
object
Contains the message for a prompt.
For more information, see Prompt management in Amazon Bedrock .
- Parameters:
text (
Union
[IResolvable
,TextPromptTemplateConfigurationProperty
,Dict
[str
,Any
]]) – Contains configurations for the text in a message for a prompt.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_bedrock as bedrock prompt_template_configuration_property = bedrock.CfnPromptVersion.PromptTemplateConfigurationProperty( text=bedrock.CfnPromptVersion.TextPromptTemplateConfigurationProperty( text="text", # the properties below are optional input_variables=[bedrock.CfnPromptVersion.PromptInputVariableProperty( name="name" )] ) )
Attributes
- text
Contains configurations for the text in a message for a prompt.
PromptVariantProperty
- class CfnPromptVersion.PromptVariantProperty(*, name, template_type, inference_configuration=None, model_id=None, template_configuration=None)
Bases:
object
Contains details about a variant of the prompt.
- Parameters:
name (
str
) – The name of the prompt variant.template_type (
str
) – The type of prompt template to use.inference_configuration (
Union
[IResolvable
,PromptInferenceConfigurationProperty
,Dict
[str
,Any
],None
]) – Contains inference configurations for the prompt variant.model_id (
Optional
[str
]) – The unique identifier of the model or inference profile with which to run inference on the prompt.template_configuration (
Union
[IResolvable
,PromptTemplateConfigurationProperty
,Dict
[str
,Any
],None
]) – Contains configurations for the prompt template.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_bedrock as bedrock prompt_variant_property = bedrock.CfnPromptVersion.PromptVariantProperty( name="name", template_type="templateType", # the properties below are optional inference_configuration=bedrock.CfnPromptVersion.PromptInferenceConfigurationProperty( text=bedrock.CfnPromptVersion.PromptModelInferenceConfigurationProperty( max_tokens=123, stop_sequences=["stopSequences"], temperature=123, top_k=123, top_p=123 ) ), model_id="modelId", template_configuration=bedrock.CfnPromptVersion.PromptTemplateConfigurationProperty( text=bedrock.CfnPromptVersion.TextPromptTemplateConfigurationProperty( text="text", # the properties below are optional input_variables=[bedrock.CfnPromptVersion.PromptInputVariableProperty( name="name" )] ) ) )
Attributes
- inference_configuration
Contains inference configurations for the prompt variant.
- model_id
//docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference.html>`_ with which to run inference on the prompt.
- See:
- Type:
The unique identifier of the model or `inference profile <https
- name
The name of the prompt variant.
- template_configuration
Contains configurations for the prompt template.
- template_type
The type of prompt template to use.
TextPromptTemplateConfigurationProperty
- class CfnPromptVersion.TextPromptTemplateConfigurationProperty(*, text, input_variables=None)
Bases:
object
Contains configurations for a text prompt template.
To include a variable, enclose a word in double curly braces as in
{{variable}}
.- Parameters:
text (
str
) – The message for the prompt.input_variables (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,PromptInputVariableProperty
,Dict
[str
,Any
]]],None
]) – An array of the variables in the prompt template.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_bedrock as bedrock text_prompt_template_configuration_property = bedrock.CfnPromptVersion.TextPromptTemplateConfigurationProperty( text="text", # the properties below are optional input_variables=[bedrock.CfnPromptVersion.PromptInputVariableProperty( name="name" )] )
Attributes
- input_variables
An array of the variables in the prompt template.