CDK Construct library for higher-level ECS Constructs
This library provides higher-level Amazon ECS constructs which follow common architectural patterns. It contains:
Application Load Balanced Services
Network Load Balanced Services
Queue Processing Services
Scheduled Tasks (cron jobs)
Additional Examples
Application Load Balanced Services
To define an Amazon ECS service that is behind an application load balancer, instantiate one of the following:
ApplicationLoadBalancedEc2Service
# cluster: ecs.Cluster
load_balanced_ecs_service = ecs_patterns.ApplicationLoadBalancedEc2Service(self, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("test"),
environment={
"TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
"TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
},
command=["command"],
entry_point=["entry", "point"]
),
desired_count=2,
min_healthy_percent=100
)
ApplicationLoadBalancedFargateService
# cluster: ecs.Cluster
load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
cpu=512,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
command=["command"],
entry_point=["entry", "point"]
),
min_healthy_percent=100
)
load_balanced_fargate_service.target_group.configure_health_check(
path="/custom-health-path"
)
Instead of providing a cluster you can specify a VPC and CDK will create a new ECS cluster. If you deploy multiple services CDK will only create one cluster per VPC.
You can omit cluster
and vpc
to let CDK create a new VPC with two AZs and create a cluster inside this VPC.
You can customize the health check for your target group; otherwise it defaults to HTTP
over port 80
hitting path /
.
You can customize the health check configuration of the container via the healthCheck
property; otherwise it defaults to the health check configuration from the container.
Fargate services will use the LATEST
platform version by default, but you can override by providing a value for the platformVersion
property in the constructor.
Fargate services use the default VPC Security Group unless one or more are provided using the securityGroups
property in the constructor.
By setting redirectHTTP
to true, CDK will automatically create a listener on port 80 that redirects HTTP traffic to the HTTPS port.
If you specify the option recordType
you can decide if you want the construct to use CNAME or Route53-Aliases as record sets.
If you need to encrypt the traffic between the load balancer and the ECS tasks, you can set the targetProtocol
to HTTPS
.
Additionally, if more than one application target group are needed, instantiate one of the following:
ApplicationMultipleTargetGroupsEc2Service
# One application load balancer with one listener and two target groups.
# cluster: ecs.Cluster
load_balanced_ec2_service = ecs_patterns.ApplicationMultipleTargetGroupsEc2Service(self, "Service",
cluster=cluster,
memory_limit_mi_b=256,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageProps(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
target_groups=[ecsPatterns.ApplicationTargetProps(
container_port=80
), ecsPatterns.ApplicationTargetProps(
container_port=90,
path_pattern="a/b/c",
priority=10
)
]
)
ApplicationMultipleTargetGroupsFargateService
# One application load balancer with one listener and two target groups.
# cluster: ecs.Cluster
load_balanced_fargate_service = ecs_patterns.ApplicationMultipleTargetGroupsFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
cpu=512,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageProps(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
target_groups=[ecsPatterns.ApplicationTargetProps(
container_port=80
), ecsPatterns.ApplicationTargetProps(
container_port=90,
path_pattern="a/b/c",
priority=10
)
]
)
Network Load Balanced Services
To define an Amazon ECS service that is behind a network load balancer, instantiate one of the following:
NetworkLoadBalancedEc2Service
# cluster: ecs.Cluster
load_balanced_ecs_service = ecs_patterns.NetworkLoadBalancedEc2Service(self, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
task_image_options=ecsPatterns.NetworkLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("test"),
environment={
"TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
"TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
}
),
desired_count=2,
min_healthy_percent=100
)
NetworkLoadBalancedFargateService
# cluster: ecs.Cluster
load_balanced_fargate_service = ecs_patterns.NetworkLoadBalancedFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
cpu=512,
task_image_options=ecsPatterns.NetworkLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100
)
The CDK will create a new Amazon ECS cluster if you specify a VPC and omit cluster
. If you deploy multiple services the CDK will only create one cluster per VPC.
If cluster
and vpc
are omitted, the CDK creates a new VPC with subnets in two Availability Zones and a cluster within this VPC.
If you specify the option recordType
you can decide if you want the construct to use CNAME or Route53-Aliases as record sets.
Additionally, if more than one network target group is needed, instantiate one of the following:
NetworkMultipleTargetGroupsEc2Service
# Two network load balancers, each with their own listener and target group.
# cluster: ecs.Cluster
load_balanced_ec2_service = ecs_patterns.NetworkMultipleTargetGroupsEc2Service(self, "Service",
cluster=cluster,
memory_limit_mi_b=256,
task_image_options=ecsPatterns.NetworkLoadBalancedTaskImageProps(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
load_balancers=[ecsPatterns.NetworkLoadBalancerProps(
name="lb1",
listeners=[ecsPatterns.NetworkListenerProps(
name="listener1"
)
]
), ecsPatterns.NetworkLoadBalancerProps(
name="lb2",
listeners=[ecsPatterns.NetworkListenerProps(
name="listener2"
)
]
)
],
target_groups=[ecsPatterns.NetworkTargetProps(
container_port=80,
listener="listener1"
), ecsPatterns.NetworkTargetProps(
container_port=90,
listener="listener2"
)
]
)
NetworkMultipleTargetGroupsFargateService
# Two network load balancers, each with their own listener and target group.
# cluster: ecs.Cluster
load_balanced_fargate_service = ecs_patterns.NetworkMultipleTargetGroupsFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=512,
task_image_options=ecsPatterns.NetworkLoadBalancedTaskImageProps(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
load_balancers=[ecsPatterns.NetworkLoadBalancerProps(
name="lb1",
listeners=[ecsPatterns.NetworkListenerProps(
name="listener1"
)
]
), ecsPatterns.NetworkLoadBalancerProps(
name="lb2",
listeners=[ecsPatterns.NetworkListenerProps(
name="listener2"
)
]
)
],
target_groups=[ecsPatterns.NetworkTargetProps(
container_port=80,
listener="listener1"
), ecsPatterns.NetworkTargetProps(
container_port=90,
listener="listener2"
)
]
)
Queue Processing Services
To define a service that creates a queue and reads from that queue, instantiate one of the following:
QueueProcessingEc2Service
# cluster: ecs.Cluster
queue_processing_ec2_service = ecs_patterns.QueueProcessingEc2Service(self, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
image=ecs.ContainerImage.from_registry("test"),
command=["-c", "4", "amazon.com"],
enable_logging=False,
desired_task_count=2,
environment={
"TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
"TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
},
max_scaling_capacity=5,
container_name="test",
min_healthy_percent=100
)
QueueProcessingFargateService
# cluster: ecs.Cluster
queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=512,
image=ecs.ContainerImage.from_registry("test"),
command=["-c", "4", "amazon.com"],
enable_logging=False,
desired_task_count=2,
environment={
"TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
"TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
},
max_scaling_capacity=5,
container_name="test",
min_healthy_percent=100
)
when queue not provided by user, CDK will create a primary queue and a dead letter queue with default redrive policy and attach permission to the task to be able to access the primary queue.
NOTE: QueueProcessingFargateService
adds a CPU Based scaling strategy by default. You can turn this off by setting disableCpuBasedScaling: true
.
# cluster: ecs.Cluster
queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=512,
image=ecs.ContainerImage.from_registry("test"),
command=["-c", "4", "amazon.com"],
enable_logging=False,
desired_task_count=2,
environment={
"TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
"TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
},
max_scaling_capacity=5,
container_name="test",
min_healthy_percent=100,
disable_cpu_based_scaling=True
)
To specify a custom target CPU utilization percentage for the scaling strategy use the cpuTargetUtilizationPercent
property:
# cluster: ecs.Cluster
queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=512,
image=ecs.ContainerImage.from_registry("test"),
command=["-c", "4", "amazon.com"],
enable_logging=False,
desired_task_count=2,
environment={},
max_scaling_capacity=5,
container_name="test",
min_healthy_percent=100,
cpu_target_utilization_percent=90
)
Scheduled Tasks
To define a task that runs periodically, there are 2 options:
ScheduledEc2Task
# Instantiate an Amazon EC2 Task to run at a scheduled interval
# cluster: ecs.Cluster
ecs_scheduled_task = ecs_patterns.ScheduledEc2Task(self, "ScheduledTask",
cluster=cluster,
scheduled_ec2_task_image_options=ecsPatterns.ScheduledEc2TaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
memory_limit_mi_b=256,
environment={"name": "TRIGGER", "value": "CloudWatch Events"}
),
schedule=appscaling.Schedule.expression("rate(1 minute)"),
enabled=True,
rule_name="sample-scheduled-task-rule"
)
ScheduledFargateTask
# cluster: ecs.Cluster
scheduled_fargate_task = ecs_patterns.ScheduledFargateTask(self, "ScheduledFargateTask",
cluster=cluster,
scheduled_fargate_task_image_options=ecsPatterns.ScheduledFargateTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
memory_limit_mi_b=512
),
schedule=appscaling.Schedule.expression("rate(1 minute)"),
platform_version=ecs.FargatePlatformVersion.LATEST
)
Additional Examples
In addition to using the constructs, users can also add logic to customize these constructs:
Configure HTTPS on an ApplicationLoadBalancedFargateService
from aws_cdk.aws_route53 import HostedZone
from aws_cdk.aws_certificatemanager import Certificate
from aws_cdk.aws_elasticloadbalancingv2 import SslPolicy
# vpc: ec2.Vpc
# cluster: ecs.Cluster
domain_zone = HostedZone.from_lookup(self, "Zone", domain_name="example.com")
certificate = Certificate.from_certificate_arn(self, "Cert", "arn:aws:acm:us-east-1:123456:certificate/abcdefg")
load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service",
vpc=vpc,
cluster=cluster,
min_healthy_percent=100,
certificate=certificate,
ssl_policy=SslPolicy.RECOMMENDED,
domain_name="api.example.com",
domain_zone=domain_zone,
redirect_hTTP=True,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
)
)
Set capacityProviderStrategies for ApplicationLoadBalancedFargateService
# cluster: ecs.Cluster
cluster.enable_fargate_capacity_providers()
load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service",
cluster=cluster,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100,
capacity_provider_strategies=[ecs.CapacityProviderStrategy(
capacity_provider="FARGATE_SPOT",
weight=2,
base=0
), ecs.CapacityProviderStrategy(
capacity_provider="FARGATE",
weight=1,
base=1
)
]
)
Add Schedule-Based Auto-Scaling to an ApplicationLoadBalancedFargateService
# cluster: ecs.Cluster
load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
desired_count=1,
cpu=512,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100
)
scalable_target = load_balanced_fargate_service.service.auto_scale_task_count(
min_capacity=5,
max_capacity=20
)
scalable_target.scale_on_schedule("DaytimeScaleDown",
schedule=appscaling.Schedule.cron(hour="8", minute="0"),
min_capacity=1
)
scalable_target.scale_on_schedule("EveningRushScaleUp",
schedule=appscaling.Schedule.cron(hour="20", minute="0"),
min_capacity=10
)
Add Metric-Based Auto-Scaling to an ApplicationLoadBalancedFargateService
# cluster: ecs.Cluster
load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
desired_count=1,
cpu=512,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100
)
scalable_target = load_balanced_fargate_service.service.auto_scale_task_count(
min_capacity=1,
max_capacity=20
)
scalable_target.scale_on_cpu_utilization("CpuScaling",
target_utilization_percent=50
)
scalable_target.scale_on_memory_utilization("MemoryScaling",
target_utilization_percent=50
)
Change the default Deployment Controller
# cluster: ecs.Cluster
load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
desired_count=1,
cpu=512,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100,
deployment_controller=ecs.DeploymentController(
type=ecs.DeploymentControllerType.CODE_DEPLOY
)
)
Deployment circuit breaker and rollback
Amazon ECS deployment circuit breaker
automatically rolls back unhealthy service deployments without the need for manual intervention. Use circuitBreaker
to enable
deployment circuit breaker and optionally enable rollback
for automatic rollback. See Using the deployment circuit breaker
for more details.
# cluster: ecs.Cluster
service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
desired_count=1,
cpu=512,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100,
circuit_breaker=ecs.DeploymentCircuitBreaker(rollback=True)
)
Set deployment configuration on QueueProcessingService
# cluster: ecs.Cluster
queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=512,
image=ecs.ContainerImage.from_registry("test"),
command=["-c", "4", "amazon.com"],
enable_logging=False,
desired_task_count=2,
environment={},
max_scaling_capacity=5,
max_healthy_percent=200,
min_healthy_percent=66
)
Set taskSubnets and securityGroups for QueueProcessingFargateService
# vpc: ec2.Vpc
# security_group: ec2.SecurityGroup
queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service",
vpc=vpc,
memory_limit_mi_b=512,
image=ecs.ContainerImage.from_registry("test"),
min_healthy_percent=100,
security_groups=[security_group],
task_subnets=ec2.SubnetSelection(subnet_type=ec2.SubnetType.PRIVATE_ISOLATED)
)
Define tasks with public IPs for QueueProcessingFargateService
# vpc: ec2.Vpc
queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service",
vpc=vpc,
memory_limit_mi_b=512,
image=ecs.ContainerImage.from_registry("test"),
min_healthy_percent=100,
assign_public_ip=True
)
Define tasks with custom queue parameters for QueueProcessingFargateService
# vpc: ec2.Vpc
queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service",
vpc=vpc,
memory_limit_mi_b=512,
image=ecs.ContainerImage.from_registry("test"),
min_healthy_percent=100,
max_receive_count=42,
retention_period=Duration.days(7),
visibility_timeout=Duration.minutes(5)
)
Set cooldown for QueueProcessingFargateService
The cooldown period is the amount of time to wait for a previous scaling activity to take effect.
To specify something other than the default cooldown period of 300 seconds, use the cooldown
parameter:
# vpc: ec2.Vpc
queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service",
vpc=vpc,
memory_limit_mi_b=512,
image=ecs.ContainerImage.from_registry("test"),
min_healthy_percent=100,
assign_public_ip=True,
cooldown=Duration.seconds(500)
)
Set capacityProviderStrategies for QueueProcessingFargateService
# cluster: ecs.Cluster
cluster.enable_fargate_capacity_providers()
queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=512,
image=ecs.ContainerImage.from_registry("test"),
min_healthy_percent=100,
capacity_provider_strategies=[ecs.CapacityProviderStrategy(
capacity_provider="FARGATE_SPOT",
weight=2
), ecs.CapacityProviderStrategy(
capacity_provider="FARGATE",
weight=1
)
]
)
Set a custom container-level Healthcheck for QueueProcessingFargateService
# vpc: ec2.Vpc
# security_group: ec2.SecurityGroup
queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service",
vpc=vpc,
memory_limit_mi_b=512,
image=ecs.ContainerImage.from_registry("test"),
min_healthy_percent=100,
health_check=ecs.HealthCheck(
command=["CMD-SHELL", "curl -f http://localhost/ || exit 1"],
# the properties below are optional
interval=Duration.minutes(30),
retries=123,
start_period=Duration.minutes(30),
timeout=Duration.minutes(30)
)
)
Set capacityProviderStrategies for QueueProcessingEc2Service
import aws_cdk.aws_autoscaling as autoscaling
vpc = ec2.Vpc(self, "Vpc", max_azs=1)
cluster = ecs.Cluster(self, "EcsCluster", vpc=vpc)
auto_scaling_group = autoscaling.AutoScalingGroup(self, "asg",
vpc=vpc,
instance_type=ec2.InstanceType.of(ec2.InstanceClass.BURSTABLE2, ec2.InstanceSize.MICRO),
machine_image=ecs.EcsOptimizedImage.amazon_linux2()
)
capacity_provider = ecs.AsgCapacityProvider(self, "provider",
auto_scaling_group=auto_scaling_group
)
cluster.add_asg_capacity_provider(capacity_provider)
queue_processing_ec2_service = ecs_patterns.QueueProcessingEc2Service(self, "Service",
cluster=cluster,
memory_limit_mi_b=512,
image=ecs.ContainerImage.from_registry("test"),
min_healthy_percent=100,
capacity_provider_strategies=[ecs.CapacityProviderStrategy(
capacity_provider=capacity_provider.capacity_provider_name
)
]
)
Select specific vpc subnets for ApplicationLoadBalancedFargateService
# cluster: ecs.Cluster
load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
desired_count=1,
cpu=512,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100,
task_subnets=ec2.SubnetSelection(
subnets=[ec2.Subnet.from_subnet_id(self, "subnet", "VpcISOLATEDSubnet1Subnet80F07FA0")]
)
)
Select idleTimeout for ApplicationLoadBalancedFargateService
# cluster: ecs.Cluster
load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
desired_count=1,
cpu=512,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100,
idle_timeout=Duration.seconds(120)
)
Select idleTimeout for ApplicationMultipleTargetGroupsFargateService
from aws_cdk.aws_certificatemanager import Certificate
from aws_cdk.aws_ec2 import InstanceType
from aws_cdk.aws_ecs import Cluster, ContainerImage
from aws_cdk.aws_elasticloadbalancingv2 import ApplicationProtocol, SslPolicy
from aws_cdk.aws_route53 import PublicHostedZone
vpc = ec2.Vpc(self, "Vpc", max_azs=1)
load_balanced_fargate_service = ecs_patterns.ApplicationMultipleTargetGroupsFargateService(self, "myService",
cluster=ecs.Cluster(self, "EcsCluster", vpc=vpc),
memory_limit_mi_b=256,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageProps(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
enable_execute_command=True,
load_balancers=[ecsPatterns.ApplicationLoadBalancerProps(
name="lb",
idle_timeout=Duration.seconds(400),
domain_name="api.example.com",
domain_zone=PublicHostedZone(self, "HostedZone", zone_name="example.com"),
listeners=[ecsPatterns.ApplicationListenerProps(
name="listener",
protocol=ApplicationProtocol.HTTPS,
certificate=Certificate.from_certificate_arn(self, "Cert", "helloworld"),
ssl_policy=SslPolicy.TLS12_EXT
)
]
), ecsPatterns.ApplicationLoadBalancerProps(
name="lb2",
idle_timeout=Duration.seconds(120),
domain_name="frontend.com",
domain_zone=PublicHostedZone(self, "HostedZone", zone_name="frontend.com"),
listeners=[ecsPatterns.ApplicationListenerProps(
name="listener2",
protocol=ApplicationProtocol.HTTPS,
certificate=Certificate.from_certificate_arn(self, "Cert2", "helloworld"),
ssl_policy=SslPolicy.TLS12_EXT
)
]
)
],
target_groups=[ecsPatterns.ApplicationTargetProps(
container_port=80,
listener="listener"
), ecsPatterns.ApplicationTargetProps(
container_port=90,
path_pattern="a/b/c",
priority=10,
listener="listener"
), ecsPatterns.ApplicationTargetProps(
container_port=443,
listener="listener2"
), ecsPatterns.ApplicationTargetProps(
container_port=80,
path_pattern="a/b/c",
priority=10,
listener="listener2"
)
]
)
Set health checks for ApplicationMultipleTargetGroupsFargateService
from aws_cdk.aws_certificatemanager import Certificate
from aws_cdk.aws_ec2 import InstanceType
from aws_cdk.aws_ecs import Cluster, ContainerImage
from aws_cdk.aws_elasticloadbalancingv2 import ApplicationProtocol, Protocol, SslPolicy
from aws_cdk.aws_route53 import PublicHostedZone
vpc = ec2.Vpc(self, "Vpc", max_azs=1)
load_balanced_fargate_service = ecs_patterns.ApplicationMultipleTargetGroupsFargateService(self, "myService",
cluster=ecs.Cluster(self, "EcsCluster", vpc=vpc),
memory_limit_mi_b=256,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageProps(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
enable_execute_command=True,
load_balancers=[ecsPatterns.ApplicationLoadBalancerProps(
name="lb",
idle_timeout=Duration.seconds(400),
domain_name="api.example.com",
domain_zone=PublicHostedZone(self, "HostedZone", zone_name="example.com"),
listeners=[ecsPatterns.ApplicationListenerProps(
name="listener",
protocol=ApplicationProtocol.HTTPS,
certificate=Certificate.from_certificate_arn(self, "Cert", "helloworld"),
ssl_policy=SslPolicy.TLS12_EXT
)
]
), ecsPatterns.ApplicationLoadBalancerProps(
name="lb2",
idle_timeout=Duration.seconds(120),
domain_name="frontend.com",
domain_zone=PublicHostedZone(self, "HostedZone", zone_name="frontend.com"),
listeners=[ecsPatterns.ApplicationListenerProps(
name="listener2",
protocol=ApplicationProtocol.HTTPS,
certificate=Certificate.from_certificate_arn(self, "Cert2", "helloworld"),
ssl_policy=SslPolicy.TLS12_EXT
)
]
)
],
target_groups=[ecsPatterns.ApplicationTargetProps(
container_port=80,
listener="listener"
), ecsPatterns.ApplicationTargetProps(
container_port=90,
path_pattern="a/b/c",
priority=10,
listener="listener"
), ecsPatterns.ApplicationTargetProps(
container_port=443,
listener="listener2"
), ecsPatterns.ApplicationTargetProps(
container_port=80,
path_pattern="a/b/c",
priority=10,
listener="listener2"
)
]
)
load_balanced_fargate_service.target_groups[0].configure_health_check(
port="8050",
protocol=Protocol.HTTP,
healthy_threshold_count=2,
unhealthy_threshold_count=2,
timeout=Duration.seconds(10),
interval=Duration.seconds(30),
healthy_http_codes="200"
)
load_balanced_fargate_service.target_groups[1].configure_health_check(
port="8050",
protocol=Protocol.HTTP,
healthy_threshold_count=2,
unhealthy_threshold_count=2,
timeout=Duration.seconds(10),
interval=Duration.seconds(30),
healthy_http_codes="200"
)
Set runtimePlatform for ApplicationLoadBalancedFargateService
# cluster: ecs.Cluster
application_load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=512,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100,
runtime_platform=ecs.RuntimePlatform(
cpu_architecture=ecs.CpuArchitecture.ARM64,
operating_system_family=ecs.OperatingSystemFamily.LINUX
)
)
Customize Container Name for ScheduledFargateTask
# cluster: ecs.Cluster
scheduled_fargate_task = ecs_patterns.ScheduledFargateTask(self, "ScheduledFargateTask",
cluster=cluster,
scheduled_fargate_task_image_options=ecsPatterns.ScheduledFargateTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
container_name="customContainerName",
memory_limit_mi_b=512
),
schedule=appscaling.Schedule.expression("rate(1 minute)"),
platform_version=ecs.FargatePlatformVersion.LATEST
)
Customize Container Name for ScheduledEc2Task
# cluster: ecs.Cluster
ecs_scheduled_task = ecs_patterns.ScheduledEc2Task(self, "ScheduledTask",
cluster=cluster,
scheduled_ec2_task_image_options=ecsPatterns.ScheduledEc2TaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
container_name="customContainerName",
memory_limit_mi_b=256,
environment={"name": "TRIGGER", "value": "CloudWatch Events"}
),
schedule=appscaling.Schedule.expression("rate(1 minute)"),
enabled=True,
rule_name="sample-scheduled-task-rule"
)
Set PlatformVersion for ScheduledFargateTask
# cluster: ecs.Cluster
scheduled_fargate_task = ecs_patterns.ScheduledFargateTask(self, "ScheduledFargateTask",
cluster=cluster,
scheduled_fargate_task_image_options=ecsPatterns.ScheduledFargateTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
memory_limit_mi_b=512
),
schedule=appscaling.Schedule.expression("rate(1 minute)"),
platform_version=ecs.FargatePlatformVersion.VERSION1_4
)
Set SecurityGroups for ScheduledFargateTask
vpc = ec2.Vpc(self, "Vpc", max_azs=1)
cluster = ecs.Cluster(self, "EcsCluster", vpc=vpc)
security_group = ec2.SecurityGroup(self, "SG", vpc=vpc)
scheduled_fargate_task = ecs_patterns.ScheduledFargateTask(self, "ScheduledFargateTask",
cluster=cluster,
scheduled_fargate_task_image_options=ecsPatterns.ScheduledFargateTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
memory_limit_mi_b=512
),
schedule=appscaling.Schedule.expression("rate(1 minute)"),
security_groups=[security_group]
)
Deploy application and metrics sidecar
The following is an example of deploying an application along with a metrics sidecar container that utilizes dockerLabels
for discovery:
# cluster: ecs.Cluster
# vpc: ec2.Vpc
service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service",
cluster=cluster,
vpc=vpc,
desired_count=1,
min_healthy_percent=100,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
docker_labels={
"application.label.one": "first_label",
"application.label.two": "second_label"
}
)
)
service.task_definition.add_container("Sidecar",
image=ecs.ContainerImage.from_registry("example/metrics-sidecar")
)
Select specific load balancer name ApplicationLoadBalancedFargateService
# cluster: ecs.Cluster
load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
desired_count=1,
cpu=512,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100,
task_subnets=ec2.SubnetSelection(
subnets=[ec2.Subnet.from_subnet_id(self, "subnet", "VpcISOLATEDSubnet1Subnet80F07FA0")]
),
load_balancer_name="application-lb-name"
)
ECS Exec
You can use ECS Exec to run commands in or get a shell to a container running on an Amazon EC2 instance or on
AWS Fargate. Enable ECS Exec, by setting enableExecuteCommand
to true
.
ECS Exec is supported by all Services i.e. ApplicationLoadBalanced(Fargate|Ec2)Service
, ApplicationMultipleTargetGroups(Fargate|Ec2)Service
, NetworkLoadBalanced(Fargate|Ec2)Service
, NetworkMultipleTargetGroups(Fargate|Ec2)Service
, QueueProcessing(Fargate|Ec2)Service
. It is not supported for ScheduledTask
s.
Read more about ECS Exec in the ECS Developer Guide.
Example:
# cluster: ecs.Cluster
load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
desired_count=1,
cpu=512,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100,
enable_execute_command=True
)
Please note, ECS Exec leverages AWS Systems Manager (SSM). So as a prerequisite for the exec command to work, you need to have the SSM plugin for the AWS CLI installed locally. For more information, see Install Session Manager plugin for AWS CLI.
Use custom ephemeral storage for ECS Fargate tasks
You can pass a custom ephemeral storage (21GiB - 200GiB) to ECS Fargate tasks on Fargate Platform Version 1.4.0 or later.
vpc = ec2.Vpc(self, "Vpc", max_azs=2, restrict_default_security_group=False)
cluster = ecs.Cluster(self, "FargateCluster", vpc=vpc)
application_load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "ALBFargateServiceWithCustomEphemeralStorage",
cluster=cluster,
memory_limit_mi_b=1024,
cpu=512,
ephemeral_storage_gi_b=21,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100
)
network_load_balanced_fargate_service = ecs_patterns.NetworkLoadBalancedFargateService(self, "NLBFargateServiceWithCustomEphemeralStorage",
cluster=cluster,
memory_limit_mi_b=1024,
cpu=512,
ephemeral_storage_gi_b=200,
task_image_options=ecsPatterns.NetworkLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100
)
Set securityGroups for NetworkLoadBalancedFargateService
# vpc: ec2.Vpc
# security_group: ec2.SecurityGroup
queue_processing_fargate_service = ecs_patterns.NetworkLoadBalancedFargateService(self, "Service",
vpc=vpc,
memory_limit_mi_b=512,
task_image_options=ecsPatterns.NetworkLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100,
security_groups=[security_group]
)
Set TLS for NetworkLoadBalancedFargateService / NetworkLoadBalancedEc2Service
To set up TLS listener in Network Load Balancer, you need to pass extactly one ACM certificate into the option listenerCertificate
. The listener port and the target group port will also become 443 by default. You can override the listener’s port with listenerPort
and the target group’s port with taskImageOptions.containerPort
.
from aws_cdk.aws_certificatemanager import Certificate
certificate = Certificate.from_certificate_arn(self, "Cert", "arn:aws:acm:us-east-1:123456:certificate/abcdefg")
load_balanced_fargate_service = ecs_patterns.NetworkLoadBalancedFargateService(self, "Service",
# The default value of listenerPort is 443 if you pass in listenerCertificate
# It is configured to port 4443 here
listener_port=4443,
listener_certificate=certificate,
task_image_options=ecsPatterns.NetworkLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
# The default value of containerPort is 443 if you pass in listenerCertificate
# It is configured to port 8443 here
container_port=8443
)
)
from aws_cdk.aws_certificatemanager import Certificate
# cluster: ecs.Cluster
certificate = Certificate.from_certificate_arn(self, "Cert", "arn:aws:acm:us-east-1:123456:certificate/abcdefg")
load_balanced_ecs_service = ecs_patterns.NetworkLoadBalancedEc2Service(self, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
# The default value of listenerPort is 443 if you pass in listenerCertificate
# It is configured to port 4443 here
listener_port=4443,
listener_certificate=certificate,
task_image_options=ecsPatterns.NetworkLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("test"),
# The default value of containerPort is 443 if you pass in listenerCertificate
# It is configured to port 8443 here
container_port=8443,
environment={
"TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
"TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
}
),
desired_count=2
)
Use dualstack Load Balancer
You can use dualstack IP address type for Application Load Balancer and Network Load Balancer.
To use dualstack IP address type, you must have associated IPv6 CIDR blocks with the VPC and subnets and set the ipAddressType
to IpAddressType.DUAL_STACK
when creating the load balancer.
Application Load Balancer
You can use dualstack Application Load Balancer for Fargate and EC2 services.
import aws_cdk.aws_elasticloadbalancingv2 as elbv2
# The VPC and subnet must have associated IPv6 CIDR blocks.
vpc = ec2.Vpc(self, "Vpc",
ip_protocol=ec2.IpProtocol.DUAL_STACK
)
cluster = ecs.Cluster(self, "EcsCluster", vpc=vpc)
service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "myService",
cluster=cluster,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100,
ip_address_type=elbv2.IpAddressType.DUAL_STACK
)
application_load_balanced_ec2_service = ecs_patterns.ApplicationLoadBalancedEc2Service(self, "myService",
cluster=cluster,
task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100,
ip_address_type=elbv2.IpAddressType.DUAL_STACK
)
Network Load Balancer
You can use dualstack Network Load Balancer for Fargate and EC2 services.
import aws_cdk.aws_elasticloadbalancingv2 as elbv2
# The VPC and subnet must have associated IPv6 CIDR blocks.
vpc = ec2.Vpc(self, "Vpc",
ip_protocol=ec2.IpProtocol.DUAL_STACK
)
cluster = ecs.Cluster(self, "EcsCluster", vpc=vpc)
network_loadbalanced_fargate_service = ecs_patterns.NetworkLoadBalancedFargateService(self, "NlbFargateService",
cluster=cluster,
task_image_options=ecsPatterns.NetworkLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100,
ip_address_type=elbv2.IpAddressType.DUAL_STACK
)
network_loadbalanced_ec2_service = ecs_patterns.NetworkLoadBalancedEc2Service(self, "NlbEc2Service",
cluster=cluster,
task_image_options=ecsPatterns.NetworkLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
),
min_healthy_percent=100,
ip_address_type=elbv2.IpAddressType.DUAL_STACK
)