CfnModelQualityJobDefinitionProps

class aws_cdk.aws_sagemaker.CfnModelQualityJobDefinitionProps(*, job_resources, model_quality_app_specification, model_quality_job_input, model_quality_job_output_config, role_arn, endpoint_name=None, job_definition_name=None, model_quality_baseline_config=None, network_config=None, stopping_condition=None, tags=None)

Bases: object

Properties for defining a CfnModelQualityJobDefinition.

Parameters:
  • job_resources (Union[IResolvable, MonitoringResourcesProperty, Dict[str, Any]]) – Identifies the resources to deploy for a monitoring job.

  • model_quality_app_specification (Union[IResolvable, ModelQualityAppSpecificationProperty, Dict[str, Any]]) – Container image configuration object for the monitoring job.

  • model_quality_job_input (Union[IResolvable, ModelQualityJobInputProperty, Dict[str, Any]]) – A list of the inputs that are monitored. Currently endpoints are supported.

  • model_quality_job_output_config (Union[IResolvable, MonitoringOutputConfigProperty, Dict[str, Any]]) – The output configuration for monitoring jobs.

  • role_arn (str) – The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

  • endpoint_name (Optional[str]) – The name of the endpoint used to run the monitoring job.

  • job_definition_name (Optional[str]) – The name of the monitoring job definition.

  • model_quality_baseline_config (Union[IResolvable, ModelQualityBaselineConfigProperty, Dict[str, Any], None]) – Specifies the constraints and baselines for the monitoring job.

  • network_config (Union[IResolvable, NetworkConfigProperty, Dict[str, Any], None]) – Specifies the network configuration for the monitoring job.

  • stopping_condition (Union[IResolvable, StoppingConditionProperty, Dict[str, Any], None]) – A time limit for how long the monitoring job is allowed to run before stopping.

  • tags (Optional[Sequence[Union[CfnTag, Dict[str, Any]]]]) – An array of key-value pairs to apply to this resource. For more information, see Tag .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelqualityjobdefinition.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

cfn_model_quality_job_definition_props = sagemaker.CfnModelQualityJobDefinitionProps(
    job_resources=sagemaker.CfnModelQualityJobDefinition.MonitoringResourcesProperty(
        cluster_config=sagemaker.CfnModelQualityJobDefinition.ClusterConfigProperty(
            instance_count=123,
            instance_type="instanceType",
            volume_size_in_gb=123,

            # the properties below are optional
            volume_kms_key_id="volumeKmsKeyId"
        )
    ),
    model_quality_app_specification=sagemaker.CfnModelQualityJobDefinition.ModelQualityAppSpecificationProperty(
        image_uri="imageUri",
        problem_type="problemType",

        # the properties below are optional
        container_arguments=["containerArguments"],
        container_entrypoint=["containerEntrypoint"],
        environment={
            "environment_key": "environment"
        },
        post_analytics_processor_source_uri="postAnalyticsProcessorSourceUri",
        record_preprocessor_source_uri="recordPreprocessorSourceUri"
    ),
    model_quality_job_input=sagemaker.CfnModelQualityJobDefinition.ModelQualityJobInputProperty(
        ground_truth_s3_input=sagemaker.CfnModelQualityJobDefinition.MonitoringGroundTruthS3InputProperty(
            s3_uri="s3Uri"
        ),

        # the properties below are optional
        batch_transform_input=sagemaker.CfnModelQualityJobDefinition.BatchTransformInputProperty(
            data_captured_destination_s3_uri="dataCapturedDestinationS3Uri",
            dataset_format=sagemaker.CfnModelQualityJobDefinition.DatasetFormatProperty(
                csv=sagemaker.CfnModelQualityJobDefinition.CsvProperty(
                    header=False
                ),
                json=sagemaker.CfnModelQualityJobDefinition.JsonProperty(
                    line=False
                ),
                parquet=False
            ),
            local_path="localPath",

            # the properties below are optional
            end_time_offset="endTimeOffset",
            inference_attribute="inferenceAttribute",
            probability_attribute="probabilityAttribute",
            probability_threshold_attribute=123,
            s3_data_distribution_type="s3DataDistributionType",
            s3_input_mode="s3InputMode",
            start_time_offset="startTimeOffset"
        ),
        endpoint_input=sagemaker.CfnModelQualityJobDefinition.EndpointInputProperty(
            endpoint_name="endpointName",
            local_path="localPath",

            # the properties below are optional
            end_time_offset="endTimeOffset",
            inference_attribute="inferenceAttribute",
            probability_attribute="probabilityAttribute",
            probability_threshold_attribute=123,
            s3_data_distribution_type="s3DataDistributionType",
            s3_input_mode="s3InputMode",
            start_time_offset="startTimeOffset"
        )
    ),
    model_quality_job_output_config=sagemaker.CfnModelQualityJobDefinition.MonitoringOutputConfigProperty(
        monitoring_outputs=[sagemaker.CfnModelQualityJobDefinition.MonitoringOutputProperty(
            s3_output=sagemaker.CfnModelQualityJobDefinition.S3OutputProperty(
                local_path="localPath",
                s3_uri="s3Uri",

                # the properties below are optional
                s3_upload_mode="s3UploadMode"
            )
        )],

        # the properties below are optional
        kms_key_id="kmsKeyId"
    ),
    role_arn="roleArn",

    # the properties below are optional
    endpoint_name="endpointName",
    job_definition_name="jobDefinitionName",
    model_quality_baseline_config=sagemaker.CfnModelQualityJobDefinition.ModelQualityBaselineConfigProperty(
        baselining_job_name="baseliningJobName",
        constraints_resource=sagemaker.CfnModelQualityJobDefinition.ConstraintsResourceProperty(
            s3_uri="s3Uri"
        )
    ),
    network_config=sagemaker.CfnModelQualityJobDefinition.NetworkConfigProperty(
        enable_inter_container_traffic_encryption=False,
        enable_network_isolation=False,
        vpc_config=sagemaker.CfnModelQualityJobDefinition.VpcConfigProperty(
            security_group_ids=["securityGroupIds"],
            subnets=["subnets"]
        )
    ),
    stopping_condition=sagemaker.CfnModelQualityJobDefinition.StoppingConditionProperty(
        max_runtime_in_seconds=123
    ),
    tags=[CfnTag(
        key="key",
        value="value"
    )]
)

Attributes

endpoint_name

The name of the endpoint used to run the monitoring job.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelqualityjobdefinition.html#cfn-sagemaker-modelqualityjobdefinition-endpointname

job_definition_name

The name of the monitoring job definition.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelqualityjobdefinition.html#cfn-sagemaker-modelqualityjobdefinition-jobdefinitionname

job_resources

Identifies the resources to deploy for a monitoring job.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelqualityjobdefinition.html#cfn-sagemaker-modelqualityjobdefinition-jobresources

model_quality_app_specification

Container image configuration object for the monitoring job.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelqualityjobdefinition.html#cfn-sagemaker-modelqualityjobdefinition-modelqualityappspecification

model_quality_baseline_config

Specifies the constraints and baselines for the monitoring job.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelqualityjobdefinition.html#cfn-sagemaker-modelqualityjobdefinition-modelqualitybaselineconfig

model_quality_job_input

A list of the inputs that are monitored.

Currently endpoints are supported.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelqualityjobdefinition.html#cfn-sagemaker-modelqualityjobdefinition-modelqualityjobinput

model_quality_job_output_config

The output configuration for monitoring jobs.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelqualityjobdefinition.html#cfn-sagemaker-modelqualityjobdefinition-modelqualityjoboutputconfig

network_config

Specifies the network configuration for the monitoring job.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelqualityjobdefinition.html#cfn-sagemaker-modelqualityjobdefinition-networkconfig

role_arn

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelqualityjobdefinition.html#cfn-sagemaker-modelqualityjobdefinition-rolearn

stopping_condition

A time limit for how long the monitoring job is allowed to run before stopping.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelqualityjobdefinition.html#cfn-sagemaker-modelqualityjobdefinition-stoppingcondition

tags

An array of key-value pairs to apply to this resource.

For more information, see Tag .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelqualityjobdefinition.html#cfn-sagemaker-modelqualityjobdefinition-tags