CfnAIGuardrail
- class aws_cdk.aws_wisdom.CfnAIGuardrail(scope, id, *, assistant_id, blocked_input_messaging, blocked_outputs_messaging, content_policy_config=None, contextual_grounding_policy_config=None, description=None, name=None, sensitive_information_policy_config=None, tags=None, topic_policy_config=None, word_policy_config=None)
Bases:
CfnResource
Creates an Amazon Q in Connect AI Guardrail.
- See:
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-wisdom-aiguardrail.html
- CloudformationResource:
AWS::Wisdom::AIGuardrail
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_wisdom as wisdom cfn_aIGuardrail = wisdom.CfnAIGuardrail(self, "MyCfnAIGuardrail", assistant_id="assistantId", blocked_input_messaging="blockedInputMessaging", blocked_outputs_messaging="blockedOutputsMessaging", # the properties below are optional content_policy_config=wisdom.CfnAIGuardrail.AIGuardrailContentPolicyConfigProperty( filters_config=[wisdom.CfnAIGuardrail.GuardrailContentFilterConfigProperty( input_strength="inputStrength", output_strength="outputStrength", type="type" )] ), contextual_grounding_policy_config=wisdom.CfnAIGuardrail.AIGuardrailContextualGroundingPolicyConfigProperty( filters_config=[wisdom.CfnAIGuardrail.GuardrailContextualGroundingFilterConfigProperty( threshold=123, type="type" )] ), description="description", name="name", sensitive_information_policy_config=wisdom.CfnAIGuardrail.AIGuardrailSensitiveInformationPolicyConfigProperty( pii_entities_config=[wisdom.CfnAIGuardrail.GuardrailPiiEntityConfigProperty( action="action", type="type" )], regexes_config=[wisdom.CfnAIGuardrail.GuardrailRegexConfigProperty( action="action", name="name", pattern="pattern", # the properties below are optional description="description" )] ), tags={ "tags_key": "tags" }, topic_policy_config=wisdom.CfnAIGuardrail.AIGuardrailTopicPolicyConfigProperty( topics_config=[wisdom.CfnAIGuardrail.GuardrailTopicConfigProperty( definition="definition", name="name", type="type", # the properties below are optional examples=["examples"] )] ), word_policy_config=wisdom.CfnAIGuardrail.AIGuardrailWordPolicyConfigProperty( managed_word_lists_config=[wisdom.CfnAIGuardrail.GuardrailManagedWordsConfigProperty( type="type" )], words_config=[wisdom.CfnAIGuardrail.GuardrailWordConfigProperty( text="text" )] ) )
- Parameters:
scope (
Construct
) – Scope in which this resource is defined.id (
str
) – Construct identifier for this resource (unique in its scope).assistant_id (
str
) – The identifier of the Amazon Q in Connect assistant. Can be either the ID or the ARN. URLs cannot contain the ARN.blocked_input_messaging (
str
) – The message to return when the AI Guardrail blocks a prompt.blocked_outputs_messaging (
str
) – The message to return when the AI Guardrail blocks a model response.content_policy_config (
Union
[IResolvable
,AIGuardrailContentPolicyConfigProperty
,Dict
[str
,Any
],None
]) – Contains details about how to handle harmful content.contextual_grounding_policy_config (
Union
[IResolvable
,AIGuardrailContextualGroundingPolicyConfigProperty
,Dict
[str
,Any
],None
]) – The policy configuration details for the AI Guardrail’s contextual grounding policy.description (
Optional
[str
]) – A description of the AI Guardrail.name (
Optional
[str
]) – The name of the AI Guardrail.sensitive_information_policy_config (
Union
[IResolvable
,AIGuardrailSensitiveInformationPolicyConfigProperty
,Dict
[str
,Any
],None
]) – Contains details about PII entities and regular expressions to configure for the AI Guardrail.tags (
Optional
[Mapping
[str
,str
]]) – The tags used to organize, track, or control access for this resource.topic_policy_config (
Union
[IResolvable
,AIGuardrailTopicPolicyConfigProperty
,Dict
[str
,Any
],None
]) – Contains details about topics that the AI Guardrail should identify and deny.word_policy_config (
Union
[IResolvable
,AIGuardrailWordPolicyConfigProperty
,Dict
[str
,Any
],None
]) – Contains details about the word policy to configured for the AI Guardrail.
Methods
- add_deletion_override(path)
Syntactic sugar for
addOverride(path, undefined)
.- Parameters:
path (
str
) – The path of the value to delete.- Return type:
None
- add_dependency(target)
Indicates that this resource depends on another resource and cannot be provisioned unless the other resource has been successfully provisioned.
This can be used for resources across stacks (or nested stack) boundaries and the dependency will automatically be transferred to the relevant scope.
- Parameters:
target (
CfnResource
) –- Return type:
None
- add_depends_on(target)
(deprecated) Indicates that this resource depends on another resource and cannot be provisioned unless the other resource has been successfully provisioned.
- Parameters:
target (
CfnResource
) –- Deprecated:
use addDependency
- Stability:
deprecated
- Return type:
None
- add_metadata(key, value)
Add a value to the CloudFormation Resource Metadata.
- Parameters:
key (
str
) –value (
Any
) –
- See:
- Return type:
None
Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.
- add_override(path, value)
Adds an override to the synthesized CloudFormation resource.
To add a property override, either use
addPropertyOverride
or prefixpath
with “Properties.” (i.e.Properties.TopicName
).If the override is nested, separate each nested level using a dot (.) in the path parameter. If there is an array as part of the nesting, specify the index in the path.
To include a literal
.
in the property name, prefix with a\
. In most programming languages you will need to write this as"\\."
because the\
itself will need to be escaped.For example:
cfn_resource.add_override("Properties.GlobalSecondaryIndexes.0.Projection.NonKeyAttributes", ["myattribute"]) cfn_resource.add_override("Properties.GlobalSecondaryIndexes.1.ProjectionType", "INCLUDE")
would add the overrides Example:
"Properties": { "GlobalSecondaryIndexes": [ { "Projection": { "NonKeyAttributes": [ "myattribute" ] ... } ... }, { "ProjectionType": "INCLUDE" ... }, ] ... }
The
value
argument toaddOverride
will not be processed or translated in any way. Pass raw JSON values in here with the correct capitalization for CloudFormation. If you pass CDK classes or structs, they will be rendered with lowercased key names, and CloudFormation will reject the template.- Parameters:
path (
str
) –The path of the property, you can use dot notation to override values in complex types. Any intermediate keys will be created as needed.
value (
Any
) –The value. Could be primitive or complex.
- Return type:
None
- add_property_deletion_override(property_path)
Adds an override that deletes the value of a property from the resource definition.
- Parameters:
property_path (
str
) – The path to the property.- Return type:
None
- add_property_override(property_path, value)
Adds an override to a resource property.
Syntactic sugar for
addOverride("Properties.<...>", value)
.- Parameters:
property_path (
str
) – The path of the property.value (
Any
) – The value.
- Return type:
None
- apply_removal_policy(policy=None, *, apply_to_update_replace_policy=None, default=None)
Sets the deletion policy of the resource based on the removal policy specified.
The Removal Policy controls what happens to this resource when it stops being managed by CloudFormation, either because you’ve removed it from the CDK application or because you’ve made a change that requires the resource to be replaced.
The resource can be deleted (
RemovalPolicy.DESTROY
), or left in your AWS account for data recovery and cleanup later (RemovalPolicy.RETAIN
). In some cases, a snapshot can be taken of the resource prior to deletion (RemovalPolicy.SNAPSHOT
). A list of resources that support this policy can be found in the following link:- Parameters:
policy (
Optional
[RemovalPolicy
]) –apply_to_update_replace_policy (
Optional
[bool
]) – Apply the same deletion policy to the resource’s “UpdateReplacePolicy”. Default: truedefault (
Optional
[RemovalPolicy
]) – The default policy to apply in case the removal policy is not defined. Default: - Default value is resource specific. To determine the default value for a resource, please consult that specific resource’s documentation.
- See:
- Return type:
None
- get_att(attribute_name, type_hint=None)
Returns a token for an runtime attribute of this resource.
Ideally, use generated attribute accessors (e.g.
resource.arn
), but this can be used for future compatibility in case there is no generated attribute.- Parameters:
attribute_name (
str
) – The name of the attribute.type_hint (
Optional
[ResolutionTypeHint
]) –
- Return type:
- get_metadata(key)
Retrieve a value value from the CloudFormation Resource Metadata.
- Parameters:
key (
str
) –- See:
- Return type:
Any
Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.
- inspect(inspector)
Examines the CloudFormation resource and discloses attributes.
- Parameters:
inspector (
TreeInspector
) – tree inspector to collect and process attributes.- Return type:
None
- obtain_dependencies()
Retrieves an array of resources this resource depends on.
This assembles dependencies on resources across stacks (including nested stacks) automatically.
- Return type:
List
[Union
[Stack
,CfnResource
]]
- obtain_resource_dependencies()
Get a shallow copy of dependencies between this resource and other resources in the same stack.
- Return type:
List
[CfnResource
]
- override_logical_id(new_logical_id)
Overrides the auto-generated logical ID with a specific ID.
- Parameters:
new_logical_id (
str
) – The new logical ID to use for this stack element.- Return type:
None
- remove_dependency(target)
Indicates that this resource no longer depends on another resource.
This can be used for resources across stacks (including nested stacks) and the dependency will automatically be removed from the relevant scope.
- Parameters:
target (
CfnResource
) –- Return type:
None
- replace_dependency(target, new_target)
Replaces one dependency with another.
- Parameters:
target (
CfnResource
) – The dependency to replace.new_target (
CfnResource
) – The new dependency to add.
- Return type:
None
- to_string()
Returns a string representation of this construct.
- Return type:
str
- Returns:
a string representation of this resource
Attributes
- CFN_RESOURCE_TYPE_NAME = 'AWS::Wisdom::AIGuardrail'
- assistant_id
The identifier of the Amazon Q in Connect assistant.
- attr_ai_guardrail_arn
The Amazon Resource Name (ARN) of the AI Guardrail.
- CloudformationAttribute:
AIGuardrailArn
- attr_ai_guardrail_id
The identifier of the Amazon Q in Connect AI Guardrail.
- CloudformationAttribute:
AIGuardrailId
- attr_assistant_arn
The Amazon Resource Name (ARN) of the Amazon Q in Connect assistant.
- CloudformationAttribute:
AssistantArn
- blocked_input_messaging
The message to return when the AI Guardrail blocks a prompt.
- blocked_outputs_messaging
The message to return when the AI Guardrail blocks a model response.
- cdk_tag_manager
Tag Manager which manages the tags for this resource.
- cfn_options
Options for this resource, such as condition, update policy etc.
- cfn_resource_type
AWS resource type.
- content_policy_config
Contains details about how to handle harmful content.
- contextual_grounding_policy_config
The policy configuration details for the AI Guardrail’s contextual grounding policy.
- creation_stack
return:
the stack trace of the point where this Resource was created from, sourced from the +metadata+ entry typed +aws:cdk:logicalId+, and with the bottom-most node +internal+ entries filtered.
- description
A description of the AI Guardrail.
- logical_id
The logical ID for this CloudFormation stack element.
The logical ID of the element is calculated from the path of the resource node in the construct tree.
To override this value, use
overrideLogicalId(newLogicalId)
.- Returns:
the logical ID as a stringified token. This value will only get resolved during synthesis.
- name
The name of the AI Guardrail.
- node
The tree node.
- ref
Return a string that will be resolved to a CloudFormation
{ Ref }
for this element.If, by any chance, the intrinsic reference of a resource is not a string, you could coerce it to an IResolvable through
Lazy.any({ produce: resource.ref })
.
- sensitive_information_policy_config
Contains details about PII entities and regular expressions to configure for the AI Guardrail.
- stack
The stack in which this element is defined.
CfnElements must be defined within a stack scope (directly or indirectly).
- tags
The tags used to organize, track, or control access for this resource.
- topic_policy_config
Contains details about topics that the AI Guardrail should identify and deny.
- word_policy_config
Contains details about the word policy to configured for the AI Guardrail.
Static Methods
- classmethod is_cfn_element(x)
Returns
true
if a construct is a stack element (i.e. part of the synthesized cloudformation template).Uses duck-typing instead of
instanceof
to allow stack elements from different versions of this library to be included in the same stack.- Parameters:
x (
Any
) –- Return type:
bool
- Returns:
The construct as a stack element or undefined if it is not a stack element.
- classmethod is_cfn_resource(x)
Check whether the given object is a CfnResource.
- Parameters:
x (
Any
) –- Return type:
bool
- classmethod is_construct(x)
Checks if
x
is a construct.Use this method instead of
instanceof
to properly detectConstruct
instances, even when the construct library is symlinked.Explanation: in JavaScript, multiple copies of the
constructs
library on disk are seen as independent, completely different libraries. As a consequence, the classConstruct
in each copy of theconstructs
library is seen as a different class, and an instance of one class will not test asinstanceof
the other class.npm install
will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of theconstructs
library can be accidentally installed, andinstanceof
will behave unpredictably. It is safest to avoid usinginstanceof
, and using this type-testing method instead.- Parameters:
x (
Any
) – Any object.- Return type:
bool
- Returns:
true if
x
is an object created from a class which extendsConstruct
.
AIGuardrailContentPolicyConfigProperty
- class CfnAIGuardrail.AIGuardrailContentPolicyConfigProperty(*, filters_config)
Bases:
object
Content policy config for a guardrail.
- Parameters:
filters_config (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,GuardrailContentFilterConfigProperty
,Dict
[str
,Any
]]]]) – List of content filter configurations in a content policy.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_wisdom as wisdom a_iGuardrail_content_policy_config_property = wisdom.CfnAIGuardrail.AIGuardrailContentPolicyConfigProperty( filters_config=[wisdom.CfnAIGuardrail.GuardrailContentFilterConfigProperty( input_strength="inputStrength", output_strength="outputStrength", type="type" )] )
Attributes
- filters_config
List of content filter configurations in a content policy.
AIGuardrailContextualGroundingPolicyConfigProperty
- class CfnAIGuardrail.AIGuardrailContextualGroundingPolicyConfigProperty(*, filters_config)
Bases:
object
Contextual grounding policy config for a guardrail.
- Parameters:
filters_config (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,GuardrailContextualGroundingFilterConfigProperty
,Dict
[str
,Any
]]]]) – List of contextual grounding filter configs.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_wisdom as wisdom a_iGuardrail_contextual_grounding_policy_config_property = wisdom.CfnAIGuardrail.AIGuardrailContextualGroundingPolicyConfigProperty( filters_config=[wisdom.CfnAIGuardrail.GuardrailContextualGroundingFilterConfigProperty( threshold=123, type="type" )] )
Attributes
- filters_config
List of contextual grounding filter configs.
AIGuardrailSensitiveInformationPolicyConfigProperty
- class CfnAIGuardrail.AIGuardrailSensitiveInformationPolicyConfigProperty(*, pii_entities_config=None, regexes_config=None)
Bases:
object
Sensitive information policy configuration for a guardrail.
- Parameters:
pii_entities_config (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,GuardrailPiiEntityConfigProperty
,Dict
[str
,Any
]]],None
]) – List of entities.regexes_config (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,GuardrailRegexConfigProperty
,Dict
[str
,Any
]]],None
]) – List of regex.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_wisdom as wisdom a_iGuardrail_sensitive_information_policy_config_property = wisdom.CfnAIGuardrail.AIGuardrailSensitiveInformationPolicyConfigProperty( pii_entities_config=[wisdom.CfnAIGuardrail.GuardrailPiiEntityConfigProperty( action="action", type="type" )], regexes_config=[wisdom.CfnAIGuardrail.GuardrailRegexConfigProperty( action="action", name="name", pattern="pattern", # the properties below are optional description="description" )] )
Attributes
- pii_entities_config
List of entities.
AIGuardrailTopicPolicyConfigProperty
- class CfnAIGuardrail.AIGuardrailTopicPolicyConfigProperty(*, topics_config)
Bases:
object
Topic policy configuration for a guardrail.
- Parameters:
topics_config (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,GuardrailTopicConfigProperty
,Dict
[str
,Any
]]]]) – List of topic configs in topic policy.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_wisdom as wisdom a_iGuardrail_topic_policy_config_property = wisdom.CfnAIGuardrail.AIGuardrailTopicPolicyConfigProperty( topics_config=[wisdom.CfnAIGuardrail.GuardrailTopicConfigProperty( definition="definition", name="name", type="type", # the properties below are optional examples=["examples"] )] )
Attributes
- topics_config
List of topic configs in topic policy.
AIGuardrailWordPolicyConfigProperty
- class CfnAIGuardrail.AIGuardrailWordPolicyConfigProperty(*, managed_word_lists_config=None, words_config=None)
Bases:
object
Word policy config for a guardrail.
- Parameters:
managed_word_lists_config (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,GuardrailManagedWordsConfigProperty
,Dict
[str
,Any
]]],None
]) – A config for the list of managed words.words_config (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,GuardrailWordConfigProperty
,Dict
[str
,Any
]]],None
]) – List of custom word configurations.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_wisdom as wisdom a_iGuardrail_word_policy_config_property = wisdom.CfnAIGuardrail.AIGuardrailWordPolicyConfigProperty( managed_word_lists_config=[wisdom.CfnAIGuardrail.GuardrailManagedWordsConfigProperty( type="type" )], words_config=[wisdom.CfnAIGuardrail.GuardrailWordConfigProperty( text="text" )] )
Attributes
- managed_word_lists_config
A config for the list of managed words.
- words_config
List of custom word configurations.
GuardrailContentFilterConfigProperty
- class CfnAIGuardrail.GuardrailContentFilterConfigProperty(*, input_strength, output_strength, type)
Bases:
object
Content filter configuration in content policy.
- Parameters:
input_strength (
str
) – The strength of the input for the guardrail content filter.output_strength (
str
) – The output strength of the guardrail content filter.type (
str
) – The type of the guardrail content filter.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_wisdom as wisdom guardrail_content_filter_config_property = wisdom.CfnAIGuardrail.GuardrailContentFilterConfigProperty( input_strength="inputStrength", output_strength="outputStrength", type="type" )
Attributes
- input_strength
The strength of the input for the guardrail content filter.
- output_strength
The output strength of the guardrail content filter.
- type
The type of the guardrail content filter.
GuardrailContextualGroundingFilterConfigProperty
- class CfnAIGuardrail.GuardrailContextualGroundingFilterConfigProperty(*, threshold, type)
Bases:
object
A configuration for grounding filter.
- Parameters:
threshold (
Union
[int
,float
]) – The threshold for this filter. Default: - 0type (
str
) – The type of this filter.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_wisdom as wisdom guardrail_contextual_grounding_filter_config_property = wisdom.CfnAIGuardrail.GuardrailContextualGroundingFilterConfigProperty( threshold=123, type="type" )
Attributes
- threshold
The threshold for this filter.
GuardrailManagedWordsConfigProperty
- class CfnAIGuardrail.GuardrailManagedWordsConfigProperty(*, type)
Bases:
object
A managed words config.
- Parameters:
type (
str
) – The type of guardrail managed words.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_wisdom as wisdom guardrail_managed_words_config_property = wisdom.CfnAIGuardrail.GuardrailManagedWordsConfigProperty( type="type" )
Attributes
- type
The type of guardrail managed words.
GuardrailPiiEntityConfigProperty
- class CfnAIGuardrail.GuardrailPiiEntityConfigProperty(*, action, type)
Bases:
object
PII entity configuration.
- Parameters:
action (
str
) – The action of guardrail PII entity configuration.type (
str
) – The currently supported PII entities.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_wisdom as wisdom guardrail_pii_entity_config_property = wisdom.CfnAIGuardrail.GuardrailPiiEntityConfigProperty( action="action", type="type" )
Attributes
- action
The action of guardrail PII entity configuration.
- type
The currently supported PII entities.
GuardrailRegexConfigProperty
- class CfnAIGuardrail.GuardrailRegexConfigProperty(*, action, name, pattern, description=None)
Bases:
object
A regex configuration.
- Parameters:
action (
str
) – The action of the guardrail regex configuration.name (
str
) – A regex configuration.pattern (
str
) – The regex pattern.description (
Optional
[str
]) – The regex description.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_wisdom as wisdom guardrail_regex_config_property = wisdom.CfnAIGuardrail.GuardrailRegexConfigProperty( action="action", name="name", pattern="pattern", # the properties below are optional description="description" )
Attributes
- action
The action of the guardrail regex configuration.
- description
The regex description.
- name
A regex configuration.
GuardrailTopicConfigProperty
- class CfnAIGuardrail.GuardrailTopicConfigProperty(*, definition, name, type, examples=None)
Bases:
object
Topic configuration in topic policy.
- Parameters:
definition (
str
) – Definition of topic in topic policy.name (
str
) – Name of topic in topic policy.type (
str
) – Type of topic in a policy.examples (
Optional
[Sequence
[str
]]) – Text example in topic policy.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_wisdom as wisdom guardrail_topic_config_property = wisdom.CfnAIGuardrail.GuardrailTopicConfigProperty( definition="definition", name="name", type="type", # the properties below are optional examples=["examples"] )
Attributes
- definition
Definition of topic in topic policy.
- examples
Text example in topic policy.
- name
Name of topic in topic policy.
GuardrailWordConfigProperty
- class CfnAIGuardrail.GuardrailWordConfigProperty(*, text)
Bases:
object
A custom word config.
- Parameters:
text (
str
) – The custom word text.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_wisdom as wisdom guardrail_word_config_property = wisdom.CfnAIGuardrail.GuardrailWordConfigProperty( text="text" )
Attributes