选择您的 Cookie 首选项

我们使用必要 Cookie 和类似工具提供我们的网站和服务。我们使用性能 Cookie 收集匿名统计数据,以便我们可以了解客户如何使用我们的网站并进行改进。必要 Cookie 无法停用,但您可以单击“自定义”或“拒绝”来拒绝性能 Cookie。

如果您同意,AWS 和经批准的第三方还将使用 Cookie 提供有用的网站功能、记住您的首选项并显示相关内容,包括相关广告。要接受或拒绝所有非必要 Cookie,请单击“接受”或“拒绝”。要做出更详细的选择,请单击“自定义”。

Neptune ML 阶段的实例选择

聚焦模式
Neptune ML 阶段的实例选择 - Amazon Neptune

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

Neptune 机器学习处理的不同阶段使用不同的 SageMaker AI 实例。在这里,我们将讨论如何为每个阶段选择合适的实例类型。您可以在 A mazon Pricing 上找到有关 A SageMaker I 实例类型和 SageMaker 定价的信息。

选择进行数据处理的实例

SageMaker AI 数据处理步骤需要一个具有足够内存和磁盘存储空间的处理实例,用于存放输入、中间和输出数据。所需的具体内存和磁盘存储量取决于 Neptune ML 图形的特性及其导出的特征。

默认情况下,Neptune ML 会选择内存比磁盘上导出的图形数据大小大十倍的最小 ml.r5 实例。

为模型训练和模型转换选择实例

模型训练模型转换选择正确的实例类型取决于任务类型、图形大小和周转要求。GPU 实例可提供最佳性能。我们通常建议使用 p3g4dn 串行实例。您也可以使用 p2p4d 实例。

默认情况下,Neptune ML 选择其内存超过模型训练和模型转换所需内存的最小 GPU 实例。您可以在 Amazon S3 数据处理输出位置的 train_instance_recommendation.json 文件中找到该选择的内容。下面是 train_instance_recommendation.json 文件的内容示例:

{ "instance": "(the recommended instance type for model training and transform)", "cpu_instance": "(the recommended instance type for base processing instance)", "disk_size": "(the estimated disk space required)", "mem_size": "(the estimated memory required)" }

为推理端点选择实例

推理端点选择正确的实例类型取决于任务类型、图形大小和预算。默认情况下,Neptune ML 选择推理端点所需内存较多的最小 ml.m5d 实例。

注意

如果需要超过 384GB 的内存,Neptune ML 将使用 ml.r5d.24xlarge 实例。

您可以在位于您用于模型训练的 Amazon S3 位置的 infer_instance_recommendation.json 文件中查看 Neptune ML 推荐的实例类型。下面是该文件内容的示例:

{ "instance" : "(the recommended instance type for an inference endpoint)", "disk_size" : "(the estimated disk space required)", "mem_size" : "(the estimated memory required)" }

本页内容

隐私网站条款Cookie 首选项
© 2025, Amazon Web Services, Inc. 或其附属公司。保留所有权利。