Amazon DynamoDB Construct Library
The DynamoDB construct library has two table constructs -
Table
andTableV2
.TableV2
is the preferred construct for all use cases, including creating a single table or a table with multiplereplicas
.
Here is a minimal deployable DynamoDB table using TableV2
:
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING)
)
By default, TableV2
will create a single table in the main deployment region referred to as the primary table. The properties of the primary table are configurable via TableV2
properties. For example, consider the following DynamoDB table created using the TableV2
construct defined in a Stack
being deployed to us-west-2
:
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
contributor_insights=True,
table_class=dynamodb.TableClass.STANDARD_INFREQUENT_ACCESS,
point_in_time_recovery=True
)
The above TableV2
definition will result in the provisioning of a single table in us-west-2
with properties that match the properties set on the TableV2
instance.
Further reading: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
Replicas
The TableV2
construct can be configured with replica tables. This will enable you to work with your table as a global table. To do this, the TableV2
construct must be defined in a Stack
with a defined region. The main deployment region must not be given as a replica because this is created by default with the TableV2
construct. The following is a minimal example of defining TableV2
with replicas
. This TableV2
definition will provision three copies of the table - one in us-west-2
(primary deployment region), one in us-east-1
, and one in us-east-2
.
import aws_cdk as cdk
app = cdk.App()
stack = cdk.Stack(app, "Stack", env=cdk.Environment(region="us-west-2"))
global_table = dynamodb.TableV2(stack, "GlobalTable",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
replicas=[dynamodb.ReplicaTableProps(region="us-east-1"), dynamodb.ReplicaTableProps(region="us-east-2")
]
)
Alternatively, you can add new replicas
to an instance of the TableV2
construct using the addReplica
method:
import aws_cdk as cdk
app = cdk.App()
stack = cdk.Stack(app, "Stack", env=cdk.Environment(region="us-west-2"))
global_table = dynamodb.TableV2(stack, "GlobalTable",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
replicas=[dynamodb.ReplicaTableProps(region="us-east-1")]
)
global_table.add_replica(region="us-east-2", deletion_protection=True)
The following properties are configurable on a per-replica basis, but will be inherited from the TableV2
properties if not specified:
contributorInsights
deletionProtection
pointInTimeRecovery
tableClass
readCapacity (only configurable if the
TableV2
billing mode isPROVISIONED
)globalSecondaryIndexes (only
contributorInsights
andreadCapacity
)
The following example shows how to define properties on a per-replica basis:
import aws_cdk as cdk
app = cdk.App()
stack = cdk.Stack(app, "Stack", env=cdk.Environment(region="us-west-2"))
global_table = dynamodb.TableV2(stack, "GlobalTable",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
contributor_insights=True,
point_in_time_recovery=True,
replicas=[dynamodb.ReplicaTableProps(
region="us-east-1",
table_class=dynamodb.TableClass.STANDARD_INFREQUENT_ACCESS,
point_in_time_recovery=False
), dynamodb.ReplicaTableProps(
region="us-east-2",
contributor_insights=False
)
]
)
To obtain an ITableV2
reference to a specific replica table, call the replica
method on an instance of the TableV2
construct and pass the replica region as an argument:
import aws_cdk as cdk
# user: iam.User
class FooStack(cdk.Stack):
def __init__(self, scope, id, *, description=None, env=None, stackName=None, tags=None, notificationArns=None, synthesizer=None, terminationProtection=None, analyticsReporting=None, crossRegionReferences=None, permissionsBoundary=None, suppressTemplateIndentation=None):
super().__init__(scope, id, description=description, env=env, stackName=stackName, tags=tags, notificationArns=notificationArns, synthesizer=synthesizer, terminationProtection=terminationProtection, analyticsReporting=analyticsReporting, crossRegionReferences=crossRegionReferences, permissionsBoundary=permissionsBoundary, suppressTemplateIndentation=suppressTemplateIndentation)
self.global_table = dynamodb.TableV2(self, "GlobalTable",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
replicas=[dynamodb.ReplicaTableProps(region="us-east-1"), dynamodb.ReplicaTableProps(region="us-east-2")
]
)
class BarStack(cdk.Stack):
def __init__(self, scope, id, *, replicaTable, description=None, env=None, stackName=None, tags=None, notificationArns=None, synthesizer=None, terminationProtection=None, analyticsReporting=None, crossRegionReferences=None, permissionsBoundary=None, suppressTemplateIndentation=None):
super().__init__(scope, id, replicaTable=replicaTable, description=description, env=env, stackName=stackName, tags=tags, notificationArns=notificationArns, synthesizer=synthesizer, terminationProtection=terminationProtection, analyticsReporting=analyticsReporting, crossRegionReferences=crossRegionReferences, permissionsBoundary=permissionsBoundary, suppressTemplateIndentation=suppressTemplateIndentation)
# user is given grantWriteData permissions to replica in us-east-1
replica_table.grant_write_data(user)
app = cdk.App()
foo_stack = FooStack(app, "FooStack", env=cdk.Environment(region="us-west-2"))
bar_stack = BarStack(app, "BarStack",
replica_table=foo_stack.global_table.replica("us-east-1"),
env=cdk.Environment(region="us-east-1")
)
Note: You can create an instance of the TableV2
construct with as many replicas
as needed as long as there is only one replica per region. After table creation you can add or remove replicas
, but you can only add or remove a single replica in each update.
Billing
The TableV2
construct can be configured with on-demand or provisioned billing:
On-demand - The default option. This is a flexible billing option capable of serving requests without capacity planning. The billing mode will be
PAY_PER_REQUEST
.You can optionally specify the
maxReadRequestUnits
ormaxWriteRequestUnits
on individual tables and associated global secondary indexes (GSIs). When you configure maximum throughput for an on-demand table, throughput requests that exceed the maximum amount specified will be throttled.Provisioned - Specify the
readCapacity
andwriteCapacity
that you need for your application. The billing mode will bePROVISIONED
. Capacity can be configured using one of the following modes:Fixed - provisioned throughput capacity is configured with a fixed number of I/O operations per second.
Autoscaled - provisioned throughput capacity is dynamically adjusted on your behalf in response to actual traffic patterns.
Note: writeCapacity
can only be configured using autoscaled capacity.
The following example shows how to configure TableV2
with on-demand billing:
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
billing=dynamodb.Billing.on_demand()
)
The following example shows how to configure TableV2
with on-demand billing with optional maximum throughput configured:
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
billing=dynamodb.Billing.on_demand(
max_read_request_units=100,
max_write_request_units=115
)
)
When using provisioned billing, you must also specify readCapacity
and writeCapacity
. You can choose to configure readCapacity
with fixed capacity or autoscaled capacity, but writeCapacity
can only be configured with autoscaled capacity. The following example shows how to configure TableV2
with provisioned billing:
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
billing=dynamodb.Billing.provisioned(
read_capacity=dynamodb.Capacity.fixed(10),
write_capacity=dynamodb.Capacity.autoscaled(max_capacity=15)
)
)
When using provisioned billing, you can configure the readCapacity
on a per-replica basis:
import aws_cdk as cdk
app = cdk.App()
stack = cdk.Stack(app, "Stack", env=cdk.Environment(region="us-west-2"))
global_table = dynamodb.TableV2(stack, "GlobalTable",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
billing=dynamodb.Billing.provisioned(
read_capacity=dynamodb.Capacity.fixed(10),
write_capacity=dynamodb.Capacity.autoscaled(max_capacity=15)
),
replicas=[dynamodb.ReplicaTableProps(
region="us-east-1"
), dynamodb.ReplicaTableProps(
region="us-east-2",
read_capacity=dynamodb.Capacity.autoscaled(max_capacity=20, target_utilization_percent=50)
)
]
)
When changing the billing for a table from provisioned to on-demand or from on-demand to provisioned, seedCapacity
must be configured for each autoscaled resource:
global_table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
billing=dynamodb.Billing.provisioned(
read_capacity=dynamodb.Capacity.fixed(10),
write_capacity=dynamodb.Capacity.autoscaled(max_capacity=10, seed_capacity=20)
)
)
Further reading: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadWriteCapacityMode.html
Warm Throughput
Warm throughput refers to the number of read and write operations your DynamoDB table can instantaneously support.
This optional configuration allows you to pre-warm your table or index to handle anticipated throughput, ensuring optimal performance under expected load.
The Warm Throughput configuration settings are automatically replicated across all Global Table replicas.
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="id", type=dynamodb.AttributeType.STRING),
warm_throughput=dynamodb.WarmThroughput(
read_units_per_second=15000,
write_units_per_second=20000
)
)
Further reading: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/warm-throughput.html
Encryption
All user data stored in a DynamoDB table is fully encrypted at rest. When creating an instance of the TableV2
construct, you can select the following table encryption options:
AWS owned keys - Default encryption type. The keys are owned by DynamoDB (no additional charge).
AWS managed keys - The keys are stored in your account and are managed by AWS KMS (AWS KMS charges apply).
Customer managed keys - The keys are stored in your account and are created, owned, and managed by you. You have full control over the KMS keys (AWS KMS charges apply).
The following is an example of how to configure TableV2
with encryption using an AWS owned key:
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
encryption=dynamodb.TableEncryptionV2.dynamo_owned_key()
)
The following is an example of how to configure TableV2
with encryption using an AWS managed key:
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
encryption=dynamodb.TableEncryptionV2.aws_managed_key()
)
When configuring TableV2
with encryption using customer managed keys, you must specify the KMS key for the primary table as the tableKey
. A map of replicaKeyArns
must be provided containing each replica region and the associated KMS key ARN:
import aws_cdk as cdk
import aws_cdk.aws_kms as kms
app = cdk.App()
stack = cdk.Stack(app, "Stack", env=cdk.Environment(region="us-west-2"))
table_key = kms.Key(stack, "Key")
replica_key_arns = {
"us-east-1": "arn:aws:kms:us-east-1:123456789012:key/g24efbna-az9b-42ro-m3bp-cq249l94fca6",
"us-east-2": "arn:aws:kms:us-east-2:123456789012:key/h90bkasj-bs1j-92wp-s2ka-bh857d60bkj8"
}
global_table = dynamodb.TableV2(stack, "GlobalTable",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
encryption=dynamodb.TableEncryptionV2.customer_managed_key(table_key, replica_key_arns),
replicas=[dynamodb.ReplicaTableProps(region="us-east-1"), dynamodb.ReplicaTableProps(region="us-east-2")
]
)
Note: When encryption is configured with customer managed keys, you must have a key already created in each replica region.
Further reading: https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-mgmt
Secondary Indexes
Secondary indexes allow efficient access to data with attributes other than the primaryKey
. DynamoDB supports two types of secondary indexes:
Global secondary index - An index with a
partitionKey
and asortKey
that can be different from those on the base table. AglobalSecondaryIndex
is considered “global” because queries on the index can span all of the data in the base table, across all partitions. AglobalSecondaryIndex
is stored in its own partition space away from the base table and scales separately from the base table.Local secondary index - An index that has the same
partitionKey
as the base table, but a differentsortKey
. AlocalSecondaryIndex
is “local” in the sense that every partition of alocalSecondaryIndex
is scoped to a base table partition that has the samepartitionKey
value.
Further reading: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html
Global Secondary Indexes
TableV2
can be configured with globalSecondaryIndexes
by providing them as a TableV2
property:
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
global_secondary_indexes=[dynamodb.GlobalSecondaryIndexPropsV2(
index_name="gsi",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING)
)
]
)
Alternatively, you can add a globalSecondaryIndex
using the addGlobalSecondaryIndex
method:
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
global_secondary_indexes=[dynamodb.GlobalSecondaryIndexPropsV2(
index_name="gsi1",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING)
)
]
)
table.add_global_secondary_index(
index_name="gsi2",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING)
)
You can configure readCapacity
and writeCapacity
on a globalSecondaryIndex
when an TableV2
is configured with provisioned billing
. If TableV2
is configured with provisioned billing
but readCapacity
or writeCapacity
are not configured on a globalSecondaryIndex
, then they will be inherited from the capacity settings specified with the billing
configuration:
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
billing=dynamodb.Billing.provisioned(
read_capacity=dynamodb.Capacity.fixed(10),
write_capacity=dynamodb.Capacity.autoscaled(max_capacity=10)
),
global_secondary_indexes=[dynamodb.GlobalSecondaryIndexPropsV2(
index_name="gsi1",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
read_capacity=dynamodb.Capacity.fixed(15)
), dynamodb.GlobalSecondaryIndexPropsV2(
index_name="gsi2",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
write_capacity=dynamodb.Capacity.autoscaled(min_capacity=5, max_capacity=20)
)
]
)
All globalSecondaryIndexes
for replica tables are inherited from the primary table. You can configure contributorInsights
and readCapacity
for each globalSecondaryIndex
on a per-replica basis:
import aws_cdk as cdk
app = cdk.App()
stack = cdk.Stack(app, "Stack", env=cdk.Environment(region="us-west-2"))
global_table = dynamodb.TableV2(stack, "GlobalTable",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
contributor_insights=True,
billing=dynamodb.Billing.provisioned(
read_capacity=dynamodb.Capacity.fixed(10),
write_capacity=dynamodb.Capacity.autoscaled(max_capacity=10)
),
# each global secondary index will inherit contributor insights as true
global_secondary_indexes=[dynamodb.GlobalSecondaryIndexPropsV2(
index_name="gsi1",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
read_capacity=dynamodb.Capacity.fixed(15)
), dynamodb.GlobalSecondaryIndexPropsV2(
index_name="gsi2",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
write_capacity=dynamodb.Capacity.autoscaled(min_capacity=5, max_capacity=20)
)
],
replicas=[dynamodb.ReplicaTableProps(
region="us-east-1",
global_secondary_index_options={
"gsi1": dynamodb.ReplicaGlobalSecondaryIndexOptions(
read_capacity=dynamodb.Capacity.autoscaled(min_capacity=1, max_capacity=10)
)
}
), dynamodb.ReplicaTableProps(
region="us-east-2",
global_secondary_index_options={
"gsi2": dynamodb.ReplicaGlobalSecondaryIndexOptions(
contributor_insights=False
)
}
)
]
)
Local Secondary Indexes
TableV2
can only be configured with localSecondaryIndexes
when a sortKey
is defined as a TableV2
property.
You can provide localSecondaryIndexes
as a TableV2
property:
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
sort_key=dynamodb.Attribute(name="sk", type=dynamodb.AttributeType.NUMBER),
local_secondary_indexes=[dynamodb.LocalSecondaryIndexProps(
index_name="lsi",
sort_key=dynamodb.Attribute(name="sk", type=dynamodb.AttributeType.NUMBER)
)
]
)
Alternatively, you can add a localSecondaryIndex
using the addLocalSecondaryIndex
method:
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
sort_key=dynamodb.Attribute(name="sk", type=dynamodb.AttributeType.NUMBER),
local_secondary_indexes=[dynamodb.LocalSecondaryIndexProps(
index_name="lsi1",
sort_key=dynamodb.Attribute(name="sk", type=dynamodb.AttributeType.NUMBER)
)
]
)
table.add_local_secondary_index(
index_name="lsi2",
sort_key=dynamodb.Attribute(name="sk", type=dynamodb.AttributeType.NUMBER)
)
Streams
Each DynamoDB table produces an independent stream based on all its writes, regardless of the origination point for those writes. DynamoDB supports two stream types:
DynamoDB streams - Capture item-level changes in your table, and push the changes to a DynamoDB stream. You then can access the change information through the DynamoDB Streams API.
Kinesis streams - Amazon Kinesis Data Streams for DynamoDB captures item-level changes in your table, and replicates the changes to a Kinesis data stream. You then can consume and manage the change information from Kinesis.
DynamoDB Streams
A dynamoStream
can be configured as a TableV2
property. If the TableV2
instance has replica tables, then all replica tables will inherit the dynamoStream
setting from the primary table. If replicas are configured, but dynamoStream
is not configured, then the primary table and all replicas will be automatically configured with the NEW_AND_OLD_IMAGES
stream view type.
import aws_cdk as cdk
import aws_cdk.aws_kinesis as kinesis
app = cdk.App()
stack = cdk.Stack(app, "Stack", env=cdk.Environment(region="us-west-2"))
global_table = dynamodb.TableV2(self, "GlobalTable",
partition_key=dynamodb.Attribute(name="id", type=dynamodb.AttributeType.STRING),
dynamo_stream=dynamodb.StreamViewType.OLD_IMAGE,
# tables in us-west-2, us-east-1, and us-east-2 all have dynamo stream type of OLD_IMAGES
replicas=[dynamodb.ReplicaTableProps(region="us-east-1"), dynamodb.ReplicaTableProps(region="us-east-2")
]
)
Further reading: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
Kinesis Streams
A kinesisStream
can be configured as a TableV2
property. Replica tables will not inherit the kinesisStream
configured for the primary table and should added on a per-replica basis.
import aws_cdk as cdk
import aws_cdk.aws_kinesis as kinesis
app = cdk.App()
stack = cdk.Stack(app, "Stack", env=cdk.Environment(region="us-west-2"))
stream1 = kinesis.Stream(stack, "Stream1")
stream2 = kinesis.Stream.from_stream_arn(stack, "Stream2", "arn:aws:kinesis:us-east-2:123456789012:stream/my-stream")
global_table = dynamodb.TableV2(self, "GlobalTable",
partition_key=dynamodb.Attribute(name="id", type=dynamodb.AttributeType.STRING),
kinesis_stream=stream1, # for table in us-west-2
replicas=[dynamodb.ReplicaTableProps(region="us-east-1"), dynamodb.ReplicaTableProps(
region="us-east-2",
kinesis_stream=stream2
)
]
)
Further reading: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/kds.html
Keys
When an instance of the TableV2
construct is defined, you must define its schema using the partitionKey
(required) and sortKey
(optional) properties.
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
sort_key=dynamodb.Attribute(name="sk", type=dynamodb.AttributeType.NUMBER)
)
Contributor Insights
Enabling contributorInsights
for TableV2
will provide information about the most accessed and throttled items in a table or globalSecondaryIndex
. DynamoDB delivers this information to you via CloudWatch Contributor Insights rules, reports, and graphs of report data.
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
contributor_insights=True
)
When you use Table
, you can enable contributor insights for a table or specific global secondary index by setting contributorInsightsEnabled
to true
.
table = dynamodb.Table(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
contributor_insights_enabled=True
)
table.add_global_secondary_index(
contributor_insights_enabled=True, # for a specific global secondary index
index_name="gsi",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING)
)
Further reading: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/contributorinsights_HowItWorks.html
Deletion Protection
deletionProtection
determines if your DynamoDB table is protected from deletion and is configurable as a TableV2
property. When enabled, the table cannot be deleted by any user or process.
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
deletion_protection=True
)
You can also specify the removalPolicy
as a property of the TableV2
construct. This property allows you to control what happens to tables provisioned using TableV2
during stack
deletion. By default, the removalPolicy
is RETAIN
which will cause all tables provisioned using TableV2
to be retained in the account, but orphaned from the stack
they were created in. You can also set the removalPolicy
to DESTROY
which will delete all tables created using TableV2
during stack
deletion:
import aws_cdk as cdk
app = cdk.App()
stack = cdk.Stack(app, "Stack", env=cdk.Environment(region="us-west-2"))
global_table = dynamodb.TableV2(stack, "GlobalTable",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
# applys to all replicas, i.e., us-west-2, us-east-1, us-east-2
removal_policy=cdk.RemovalPolicy.DESTROY,
replicas=[dynamodb.ReplicaTableProps(region="us-east-1"), dynamodb.ReplicaTableProps(region="us-east-2")
]
)
deletionProtection
is configurable on a per-replica basis. If the removalPolicy
is set to DESTROY
, but some replicas
have deletionProtection
enabled, then only the replicas
without deletionProtection
will be deleted during stack
deletion:
import aws_cdk as cdk
app = cdk.App()
stack = cdk.Stack(app, "Stack", env=cdk.Environment(region="us-west-2"))
global_table = dynamodb.TableV2(stack, "GlobalTable",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
removal_policy=cdk.RemovalPolicy.DESTROY,
deletion_protection=True,
# only the replica in us-east-1 will be deleted during stack deletion
replicas=[dynamodb.ReplicaTableProps(
region="us-east-1",
deletion_protection=False
), dynamodb.ReplicaTableProps(
region="us-east-2",
deletion_protection=True
)
]
)
Point-in-Time Recovery
pointInTimeRecovery
provides automatic backups of your DynamoDB table data which helps protect your tables from accidental write or delete operations.
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
point_in_time_recovery=True
)
Table Class
You can configure a TableV2
instance with table classes:
STANDARD - the default mode, and is recommended for the vast majority of workloads.
STANDARD_INFREQUENT_ACCESS - optimized for tables where storage is the dominant cost.
table = dynamodb.TableV2(self, "Table",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
table_class=dynamodb.TableClass.STANDARD_INFREQUENT_ACCESS
)
Further reading: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.TableClasses.html
Referencing Existing Global Tables
To reference an existing DynamoDB table in your CDK application, use the TableV2.fromTableName
, TableV2.fromTableArn
, or TableV2.fromTableAttributes
factory methods:
# user: iam.User
table = dynamodb.TableV2.from_table_arn(self, "ImportedTable", "arn:aws:dynamodb:us-east-1:123456789012:table/my-table")
# now you can call methods on the referenced table
table.grant_read_write_data(user)
If you intend to use the tableStreamArn
(including indirectly, for example by creating an
aws-cdk-lib/aws-lambda-event-sources.DynamoEventSource
on the referenced table), you must use the
TableV2.fromTableAttributes
method and the tableStreamArn
property must be populated.
To grant permissions to indexes for a referenced table you can either set grantIndexPermissions
to true
, or you can provide the indexes via the globalIndexes
or localIndexes
properties. This will enable grant*
methods to also grant permissions to all table indexes.
Resource Policy
Using resourcePolicy
you can add a resource policy to a table in the form of a PolicyDocument
:
// resource policy document
const policy = new iam.PolicyDocument({
statements: [
new iam.PolicyStatement({
actions: ['dynamodb:GetItem'],
principals: [new iam.AccountRootPrincipal()],
resources: ['*'],
}),
],
});
// table with resource policy
new dynamodb.TableV2(this, 'TableTestV2-1', {
partitionKey: {
name: 'id',
type: dynamodb.AttributeType.STRING,
},
removalPolicy: RemovalPolicy.DESTROY,
resourcePolicy: policy,
});
TableV2 doesn’t support creating a replica and adding a resource-based policy to that replica in the same stack update in Regions other than the Region where you deploy the stack update. To incorporate a resource-based policy into a replica, you’ll need to initially deploy the replica without the policy, followed by a subsequent update to include the desired policy.
Grants
Using any of the grant*
methods on an instance of the TableV2
construct will only apply to the primary table, its indexes, and any associated encryptionKey
. As an example, grantReadData
used below will only apply the table in us-west-2
:
import aws_cdk as cdk
import aws_cdk.aws_kms as kms
# user: iam.User
app = cdk.App()
stack = cdk.Stack(app, "Stack", env=cdk.Environment(region="us-west-2"))
table_key = kms.Key(stack, "Key")
replica_key_arns = {
"us-east-1": "arn:aws:kms:us-east-1:123456789012:key/g24efbna-az9b-42ro-m3bp-cq249l94fca6",
"us-east-2": "arn:aws:kms:us-east-2:123456789012:key/g24efbna-az9b-42ro-m3bp-cq249l94fca6"
}
global_table = dynamodb.TableV2(stack, "GlobalTable",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
encryption=dynamodb.TableEncryptionV2.customer_managed_key(table_key, replica_key_arns),
replicas=[dynamodb.ReplicaTableProps(region="us-east-1"), dynamodb.ReplicaTableProps(region="us-east-2")
]
)
# grantReadData only applys to the table in us-west-2 and the tableKey
global_table.grant_read_data(user)
The replica
method can be used to grant to a specific replica table:
import aws_cdk as cdk
import aws_cdk.aws_kms as kms
# user: iam.User
app = cdk.App()
stack = cdk.Stack(app, "Stack", env=cdk.Environment(region="us-west-2"))
table_key = kms.Key(stack, "Key")
replica_key_arns = {
"us-east-1": "arn:aws:kms:us-east-1:123456789012:key/g24efbna-az9b-42ro-m3bp-cq249l94fca6",
"us-east-2": "arn:aws:kms:us-east-2:123456789012:key/g24efbna-az9b-42ro-m3bp-cq249l94fca6"
}
global_table = dynamodb.TableV2(stack, "GlobalTable",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
encryption=dynamodb.TableEncryptionV2.customer_managed_key(table_key, replica_key_arns),
replicas=[dynamodb.ReplicaTableProps(region="us-east-1"), dynamodb.ReplicaTableProps(region="us-east-2")
]
)
# grantReadData applys to the table in us-east-2 and the key arn for the key in us-east-2
global_table.replica("us-east-2").grant_read_data(user)
Metrics
You can use metric*
methods to generate metrics for a table that can be used when configuring an Alarm
or Graphs
. The metric*
methods only apply to the primary table provisioned using the TableV2
construct. As an example, metricConsumedReadCapacityUnits
used below is only for the table in us-west-2
:
import aws_cdk as cdk
import aws_cdk.aws_cloudwatch as cloudwatch
app = cdk.App()
stack = cdk.Stack(app, "Stack", env=cdk.Environment(region="us-west-2"))
global_table = dynamodb.TableV2(stack, "GlobalTable",
partition_key=dynamodb.Attribute(name="pk", type=dynamodb.AttributeType.STRING),
replicas=[dynamodb.ReplicaTableProps(region="us-east-1"), dynamodb.ReplicaTableProps(region="us-east-2")
]
)
# metric is only for the table in us-west-2
metric = global_table.metric_consumed_read_capacity_units()
cloudwatch.Alarm(self, "Alarm",
metric=metric,
evaluation_periods=1,
threshold=1
)
The replica
method can be used to generate a metric for a specific replica table:
import * as cdk form 'aws-cdk-lib';
import * as cloudwatch from 'aws-cdk-lib/aws-cloudwatch';
class FooStack extends cdk.Stack {
public readonly globalTable: dynamodb.TableV2;
public constructor(scope: Construct, id: string, props: cdk.StackProps) {
super(scope, id, props);
this.globalTable = new dynamodb.Tablev2(this, 'GlobalTable', {
partitionKey: { name: 'pk', type: dynamodb.AttributeType.STRING },
replicas: [
{ region: 'us-east-1' },
{ region: 'us-east-2' },
],
});
}
}
interface BarStack extends cdk.StackProps {
readonly replicaTable: dynamodb.ITableV2;
}
class BarStack extends cdk.Stack {
public constructor(scope: Construct, id: string, props: BarStackProps) {
super(scope, id, props);
// metric is only for the table in us-east-1
const metric = props.replicaTable.metricConsumedReadCapacityUnits();
new cloudwatch.Alarm(this, 'Alarm', {
metric: metric,
evaluationPeriods: 1,
threshold: 1,
});
}
}
const app = new cdk.App();
const fooStack = new FooStack(app, 'FooStack', { env: { region: 'us-west-2' } });
const barStack = new BarStack(app, 'BarStack', {
replicaTable: fooStack.globalTable.replica('us-east-1'),
env: { region: 'us-east-1' },
});
import from S3 Bucket
You can import data in S3 when creating a Table using the Table
construct.
To import data into DynamoDB, it is required that your data is in a CSV, DynamoDB JSON, or Amazon Ion format within an Amazon S3 bucket.
The data may be compressed using ZSTD or GZIP formats, or you may choose to import it without compression.
The data source can be a single S3 object or multiple S3 objects sharing a common prefix.
Further reading: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/S3DataImport.HowItWorks.html
use CSV format
The InputFormat.csv
method accepts delimiter
and headerList
options as arguments.
If delimiter
is not specified, ,
is used by default.
And if headerList
is specified, the first line of CSV is treated as data instead of header.
import aws_cdk as cdk
import aws_cdk.aws_s3 as s3
# bucket: s3.IBucket
app = cdk.App()
stack = cdk.Stack(app, "Stack")
dynamodb.Table(stack, "Table",
partition_key=dynamodb.Attribute(
name="id",
type=dynamodb.AttributeType.STRING
),
import_source=dynamodb.ImportSourceSpecification(
compression_type=dynamodb.InputCompressionType.GZIP,
input_format=dynamodb.InputFormat.csv(
delimiter=",",
header_list=["id", "name"]
),
bucket=bucket,
key_prefix="prefix"
)
)
use DynamoDB JSON format
Use the InputFormat.dynamoDBJson()
method to specify the inputFormat
property.
There are currently no options available.
import aws_cdk as cdk
import aws_cdk.aws_s3 as s3
# bucket: s3.IBucket
app = cdk.App()
stack = cdk.Stack(app, "Stack")
dynamodb.Table(stack, "Table",
partition_key=dynamodb.Attribute(
name="id",
type=dynamodb.AttributeType.STRING
),
import_source=dynamodb.ImportSourceSpecification(
compression_type=dynamodb.InputCompressionType.GZIP,
input_format=dynamodb.InputFormat.dynamo_dBJson(),
bucket=bucket,
key_prefix="prefix"
)
)
use Amazon Ion format
Use the InputFormat.ion()
method to specify the inputFormat
property.
There are currently no options available.
import aws_cdk as cdk
import aws_cdk.aws_s3 as s3
# bucket: s3.IBucket
app = cdk.App()
stack = cdk.Stack(app, "Stack")
dynamodb.Table(stack, "Table",
partition_key=dynamodb.Attribute(
name="id",
type=dynamodb.AttributeType.STRING
),
import_source=dynamodb.ImportSourceSpecification(
compression_type=dynamodb.InputCompressionType.GZIP,
input_format=dynamodb.InputFormat.ion(),
bucket=bucket,
key_prefix="prefix"
)
)