Erkennen von Gesichtern in einem Bild - Amazon Rekognition

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Erkennen von Gesichtern in einem Bild

Amazon Rekognition Image ermöglicht die DetectFacesSuche nach wichtigen Gesichtsmerkmalen wie Augen, Nase und Mund, um Gesichter in einem Eingabebild zu erkennen. Amazon Rekognition Image erkennt die 100 größten Gesichter in einem Bild.

Sie können das Eingabebild als Array von Bild-Bytes (base64-kodierte Bild-Bytes) bereitstellen oder ein Amazon-S3-Objekt festlegen. Bei diesem Verfahren laden Sie ein Bild (JPEG oder PNG) auf Ihren S3-Bucket hoch und geben den Namen des Objektschlüssels an.

So erkennen Sie Gesichter in einem Bild
  1. Wenn Sie dies noch nicht getan haben:

    1. Erstellen oder aktualisieren Sie einen Benutzer mit AmazonRekognitionFullAccess- und AmazonS3ReadOnlyAccess-Berechtigungen. Weitere Informationen finden Sie unter Schritt 1: Richten Sie ein AWS Konto ein und erstellen Sie einen Benutzer.

    2. Installieren und konfigurieren Sie die AWS CLI und die SDKs AWS . Weitere Informationen finden Sie unter Schritt 2: Richten Sie das ein AWS CLI and AWS SDKs.

  2. Laden Sie ein Bild in Ihren S3-Bucket hoch, auf dem ein oder mehrere Gesichter abgebildet sind.

    Weitere Anleitungen finden Sie unter Upload eines Objekts in Amazon S3 im Benutzerhandbuch für Amazon Simple Storage Service.

  3. Halten Sie sich an die folgenden Beispiele zum Aufruf von DetectFaces.

    Java

    In diesem Beispiel werden der geschätzte Altersbereich für alle erkannten Gesichter und die JSON für alle erkannten Gesichtsmerkmale angezeigt. Ändern Sie den Wert von photo in den Bilddateinamen. Ändern Sie den Wert von bucket in den Amazon-S3-Bucket, in dem das Bild gespeichert ist.

    //Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) package aws.example.rekognition.image; import com.amazonaws.services.rekognition.AmazonRekognition; import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder; import com.amazonaws.services.rekognition.model.AmazonRekognitionException; import com.amazonaws.services.rekognition.model.Image; import com.amazonaws.services.rekognition.model.S3Object; import com.amazonaws.services.rekognition.model.AgeRange; import com.amazonaws.services.rekognition.model.Attribute; import com.amazonaws.services.rekognition.model.DetectFacesRequest; import com.amazonaws.services.rekognition.model.DetectFacesResult; import com.amazonaws.services.rekognition.model.FaceDetail; import com.fasterxml.jackson.databind.ObjectMapper; import java.util.List; public class DetectFaces { public static void main(String[] args) throws Exception { String photo = "input.jpg"; String bucket = "bucket"; AmazonRekognition rekognitionClient = AmazonRekognitionClientBuilder.defaultClient(); DetectFacesRequest request = new DetectFacesRequest() .withImage(new Image() .withS3Object(new S3Object() .withName(photo) .withBucket(bucket))) .withAttributes(Attribute.ALL); // Replace Attribute.ALL with Attribute.DEFAULT to get default values. try { DetectFacesResult result = rekognitionClient.detectFaces(request); List < FaceDetail > faceDetails = result.getFaceDetails(); for (FaceDetail face: faceDetails) { if (request.getAttributes().contains("ALL")) { AgeRange ageRange = face.getAgeRange(); System.out.println("The detected face is estimated to be between " + ageRange.getLow().toString() + " and " + ageRange.getHigh().toString() + " years old."); System.out.println("Here's the complete set of attributes:"); } else { // non-default attributes have null values. System.out.println("Here's the default set of attributes:"); } ObjectMapper objectMapper = new ObjectMapper(); System.out.println(objectMapper.writerWithDefaultPrettyPrinter().writeValueAsString(face)); } } catch (AmazonRekognitionException e) { e.printStackTrace(); } } }
    Java V2

    Dieser Code stammt aus dem AWS Documentation SDK Examples GitHub Repository. Das vollständige Beispiel finden Sie hier.

    import java.util.List; //snippet-start:[rekognition.java2.detect_labels.import] import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.DetectFacesRequest; import software.amazon.awssdk.services.rekognition.model.DetectFacesResponse; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.Attribute; import software.amazon.awssdk.services.rekognition.model.FaceDetail; import software.amazon.awssdk.services.rekognition.model.AgeRange; //snippet-end:[rekognition.java2.detect_labels.import] public class DetectFaces { public static void main(String[] args) { final String usage = "\n" + "Usage: " + " <bucket> <image>\n\n" + "Where:\n" + " bucket - The name of the Amazon S3 bucket that contains the image (for example, ,ImageBucket)." + " image - The name of the image located in the Amazon S3 bucket (for example, Lake.png). \n\n"; if (args.length != 2) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String image = args[1]; Region region = Region.US_WEST_2; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .credentialsProvider(ProfileCredentialsProvider.create("profile-name")) .build(); getLabelsfromImage(rekClient, bucket, image); rekClient.close(); } // snippet-start:[rekognition.java2.detect_labels_s3.main] public static void getLabelsfromImage(RekognitionClient rekClient, String bucket, String image) { try { S3Object s3Object = S3Object.builder() .bucket(bucket) .name(image) .build() ; Image myImage = Image.builder() .s3Object(s3Object) .build(); DetectFacesRequest facesRequest = DetectFacesRequest.builder() .attributes(Attribute.ALL) .image(myImage) .build(); DetectFacesResponse facesResponse = rekClient.detectFaces(facesRequest); List<FaceDetail> faceDetails = facesResponse.faceDetails(); for (FaceDetail face : faceDetails) { AgeRange ageRange = face.ageRange(); System.out.println("The detected face is estimated to be between " + ageRange.low().toString() + " and " + ageRange.high().toString() + " years old."); System.out.println("There is a smile : "+face.smile().value().toString()); } } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } // snippet-end:[rekognition.java2.detect_labels.main] }
    AWS CLI

    In diesem Beispiel wird die JSON-Ausgabe der detect-faces AWS CLI Operation angezeigt. Ersetzen Sie file durch den Namen einer Bilddatei. Ersetzen Sie bucket durch den Namen des Amazon-S3-Buckets, der die Bilddatei enthält.

    aws rekognition detect-faces --image "{"S3Object":{"Bucket":"bucket-name","Name":"image-name"}}"\ --attributes "ALL" --profile profile-name --region region-name

    Wenn Sie auf einem Windows-Gerät auf die CLI zugreifen, verwenden Sie doppelte Anführungszeichen anstelle von einfachen Anführungszeichen und maskieren Sie die inneren doppelten Anführungszeichen durch einen Backslash (d. h. \), um eventuell auftretende Parserfehler zu beheben. Sehen Sie sich zum Beispiel Folgendes an:

    aws rekognition detect-faces --image "{\"S3Object\":{\"Bucket\":\"bucket-name\",\"Name\":\"image-name\"}}" --attributes "ALL" --profile profile-name --region region-name
    Python

    In diesem Beispiel werden der geschätzte Altersbereich und andere Attribute für alle erkannten Gesichter und die JSON für alle erkannten Gesichtsmerkmale angezeigt. Ändern Sie den Wert von photo in den Bilddateinamen. Ändern Sie den Wert von bucket in den Amazon-S3-Bucket, in dem das Bild gespeichert ist. Ersetzen Sie den Wert von profile_name in der Zeile, die die Rekognition-Sitzung erstellt, durch den Namen Ihres Entwicklerprofils.

    import boto3 import json def detect_faces(photo, bucket, region): session = boto3.Session(profile_name='profile-name', region_name=region) client = session.client('rekognition', region_name=region) response = client.detect_faces(Image={'S3Object':{'Bucket':bucket,'Name':photo}}, Attributes=['ALL']) print('Detected faces for ' + photo) for faceDetail in response['FaceDetails']: print('The detected face is between ' + str(faceDetail['AgeRange']['Low']) + ' and ' + str(faceDetail['AgeRange']['High']) + ' years old') print('Here are the other attributes:') print(json.dumps(faceDetail, indent=4, sort_keys=True)) # Access predictions for individual face details and print them print("Gender: " + str(faceDetail['Gender'])) print("Smile: " + str(faceDetail['Smile'])) print("Eyeglasses: " + str(faceDetail['Eyeglasses'])) print("Face Occluded: " + str(faceDetail['FaceOccluded'])) print("Emotions: " + str(faceDetail['Emotions'][0])) return len(response['FaceDetails']) def main(): photo='photo' bucket='bucket' region='region' face_count=detect_faces(photo, bucket, region) print("Faces detected: " + str(face_count)) if __name__ == "__main__": main()
    .NET

    In diesem Beispiel werden der geschätzte Altersbereich für alle erkannten Gesichter und die JSON für alle erkannten Gesichtsmerkmale angezeigt. Ändern Sie den Wert von photo in den Bilddateinamen. Ändern Sie den Wert von bucket in den Amazon-S3-Bucket, in dem das Bild gespeichert ist.

    //Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) using System; using System.Collections.Generic; using Amazon.Rekognition; using Amazon.Rekognition.Model; public class DetectFaces { public static void Example() { String photo = "input.jpg"; String bucket = "bucket"; AmazonRekognitionClient rekognitionClient = new AmazonRekognitionClient(); DetectFacesRequest detectFacesRequest = new DetectFacesRequest() { Image = new Image() { S3Object = new S3Object() { Name = photo, Bucket = bucket }, }, // Attributes can be "ALL" or "DEFAULT". // "DEFAULT": BoundingBox, Confidence, Landmarks, Pose, and Quality. // "ALL": See https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Rekognition/TFaceDetail.html Attributes = new List<String>() { "ALL" } }; try { DetectFacesResponse detectFacesResponse = rekognitionClient.DetectFaces(detectFacesRequest); bool hasAll = detectFacesRequest.Attributes.Contains("ALL"); foreach(FaceDetail face in detectFacesResponse.FaceDetails) { Console.WriteLine("BoundingBox: top={0} left={1} width={2} height={3}", face.BoundingBox.Left, face.BoundingBox.Top, face.BoundingBox.Width, face.BoundingBox.Height); Console.WriteLine("Confidence: {0}\nLandmarks: {1}\nPose: pitch={2} roll={3} yaw={4}\nQuality: {5}", face.Confidence, face.Landmarks.Count, face.Pose.Pitch, face.Pose.Roll, face.Pose.Yaw, face.Quality); if (hasAll) Console.WriteLine("The detected face is estimated to be between " + face.AgeRange.Low + " and " + face.AgeRange.High + " years old."); } } catch (Exception e) { Console.WriteLine(e.Message); } } }
    Ruby

    In diesem Beispiel wird der geschätzte Altersbereich für erkannte Gesichter angezeigt, außerdem sind verschiedene Gesichtsattribute aufgeführt. Ändern Sie den Wert von photo in den Bilddateinamen. Ändern Sie den Wert von bucket in den Amazon-S3-Bucket, in dem das Bild gespeichert ist.

    # Add to your Gemfile # gem 'aws-sdk-rekognition' require 'aws-sdk-rekognition' credentials = Aws::Credentials.new( ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY'] ) bucket = 'bucket' # the bucketname without s3:// photo = 'input.jpg'# the name of file client = Aws::Rekognition::Client.new credentials: credentials attrs = { image: { s3_object: { bucket: bucket, name: photo }, }, attributes: ['ALL'] } response = client.detect_faces attrs puts "Detected faces for: #{photo}" response.face_details.each do |face_detail| low = face_detail.age_range.low high = face_detail.age_range.high puts "The detected face is between: #{low} and #{high} years old" puts "All other attributes:" puts " bounding_box.width: #{face_detail.bounding_box.width}" puts " bounding_box.height: #{face_detail.bounding_box.height}" puts " bounding_box.left: #{face_detail.bounding_box.left}" puts " bounding_box.top: #{face_detail.bounding_box.top}" puts " age.range.low: #{face_detail.age_range.low}" puts " age.range.high: #{face_detail.age_range.high}" puts " smile.value: #{face_detail.smile.value}" puts " smile.confidence: #{face_detail.smile.confidence}" puts " eyeglasses.value: #{face_detail.eyeglasses.value}" puts " eyeglasses.confidence: #{face_detail.eyeglasses.confidence}" puts " sunglasses.value: #{face_detail.sunglasses.value}" puts " sunglasses.confidence: #{face_detail.sunglasses.confidence}" puts " gender.value: #{face_detail.gender.value}" puts " gender.confidence: #{face_detail.gender.confidence}" puts " beard.value: #{face_detail.beard.value}" puts " beard.confidence: #{face_detail.beard.confidence}" puts " mustache.value: #{face_detail.mustache.value}" puts " mustache.confidence: #{face_detail.mustache.confidence}" puts " eyes_open.value: #{face_detail.eyes_open.value}" puts " eyes_open.confidence: #{face_detail.eyes_open.confidence}" puts " mout_open.value: #{face_detail.mouth_open.value}" puts " mout_open.confidence: #{face_detail.mouth_open.confidence}" puts " emotions[0].type: #{face_detail.emotions[0].type}" puts " emotions[0].confidence: #{face_detail.emotions[0].confidence}" puts " landmarks[0].type: #{face_detail.landmarks[0].type}" puts " landmarks[0].x: #{face_detail.landmarks[0].x}" puts " landmarks[0].y: #{face_detail.landmarks[0].y}" puts " pose.roll: #{face_detail.pose.roll}" puts " pose.yaw: #{face_detail.pose.yaw}" puts " pose.pitch: #{face_detail.pose.pitch}" puts " quality.brightness: #{face_detail.quality.brightness}" puts " quality.sharpness: #{face_detail.quality.sharpness}" puts " confidence: #{face_detail.confidence}" puts "------------" puts "" end
    Node.js

    In diesem Beispiel wird der geschätzte Altersbereich für erkannte Gesichter angezeigt, außerdem sind verschiedene Gesichtsattribute aufgeführt. Ändern Sie den Wert von photo in den Bilddateinamen. Ändern Sie den Wert von bucket in den Amazon-S3-Bucket, in dem das Bild gespeichert ist.

    Ersetzen Sie den Wert von profile_name in der Zeile, die die Rekognition-Sitzung erstellt, durch den Namen Ihres Entwicklerprofils.

    Wenn Sie TypeScript Definitionen verwenden, müssen Sie möglicherweise import AWS from 'aws-sdk' anstelle vonconst AWS = require('aws-sdk'), verwenden, um das Programm mit Node.js auszuführen. Weitere Informationen finden Sie im AWS -SDK für Javascript. Je nachdem, wie Sie Ihre Konfigurationen eingerichtet haben, müssen Sie möglicherweise auch Ihre Region mit AWS.config.update({region:region}); angeben.

    // Load the SDK var AWS = require('aws-sdk'); const bucket = 'bucket-name' // the bucketname without s3:// const photo = 'photo-name' // the name of file var credentials = new AWS.SharedIniFileCredentials({profile: 'profile-name'}); AWS.config.credentials = credentials; AWS.config.update({region:'region-name'}); const client = new AWS.Rekognition(); const params = { Image: { S3Object: { Bucket: bucket, Name: photo }, }, Attributes: ['ALL'] } client.detectFaces(params, function(err, response) { if (err) { console.log(err, err.stack); // an error occurred } else { console.log(`Detected faces for: ${photo}`) response.FaceDetails.forEach(data => { let low = data.AgeRange.Low let high = data.AgeRange.High console.log(`The detected face is between: ${low} and ${high} years old`) console.log("All other attributes:") console.log(` BoundingBox.Width: ${data.BoundingBox.Width}`) console.log(` BoundingBox.Height: ${data.BoundingBox.Height}`) console.log(` BoundingBox.Left: ${data.BoundingBox.Left}`) console.log(` BoundingBox.Top: ${data.BoundingBox.Top}`) console.log(` Age.Range.Low: ${data.AgeRange.Low}`) console.log(` Age.Range.High: ${data.AgeRange.High}`) console.log(` Smile.Value: ${data.Smile.Value}`) console.log(` Smile.Confidence: ${data.Smile.Confidence}`) console.log(` Eyeglasses.Value: ${data.Eyeglasses.Value}`) console.log(` Eyeglasses.Confidence: ${data.Eyeglasses.Confidence}`) console.log(` Sunglasses.Value: ${data.Sunglasses.Value}`) console.log(` Sunglasses.Confidence: ${data.Sunglasses.Confidence}`) console.log(` Gender.Value: ${data.Gender.Value}`) console.log(` Gender.Confidence: ${data.Gender.Confidence}`) console.log(` Beard.Value: ${data.Beard.Value}`) console.log(` Beard.Confidence: ${data.Beard.Confidence}`) console.log(` Mustache.Value: ${data.Mustache.Value}`) console.log(` Mustache.Confidence: ${data.Mustache.Confidence}`) console.log(` EyesOpen.Value: ${data.EyesOpen.Value}`) console.log(` EyesOpen.Confidence: ${data.EyesOpen.Confidence}`) console.log(` MouthOpen.Value: ${data.MouthOpen.Value}`) console.log(` MouthOpen.Confidence: ${data.MouthOpen.Confidence}`) console.log(` Emotions[0].Type: ${data.Emotions[0].Type}`) console.log(` Emotions[0].Confidence: ${data.Emotions[0].Confidence}`) console.log(` Landmarks[0].Type: ${data.Landmarks[0].Type}`) console.log(` Landmarks[0].X: ${data.Landmarks[0].X}`) console.log(` Landmarks[0].Y: ${data.Landmarks[0].Y}`) console.log(` Pose.Roll: ${data.Pose.Roll}`) console.log(` Pose.Yaw: ${data.Pose.Yaw}`) console.log(` Pose.Pitch: ${data.Pose.Pitch}`) console.log(` Quality.Brightness: ${data.Quality.Brightness}`) console.log(` Quality.Sharpness: ${data.Quality.Sharpness}`) console.log(` Confidence: ${data.Confidence}`) console.log("------------") console.log("") }) // for response.faceDetails } // if });

DetectFaces Operationsanforderung

Die Eingabe in DetectFaces ist ein Bild. In diesem Beispiel wird das Bild aus einem Amazon-S3-Bucket geladen. Der Attributes-Parameter gibt an, dass alle Gesichtsmerkmale zurückgegeben werden sollen. Weitere Informationen finden Sie unter Arbeiten mit Bildern.

{ "Image": { "S3Object": { "Bucket": "bucket", "Name": "input.jpg" } }, "Attributes": [ "ALL" ] }

DetectFaces Antwort auf die Operation

DetectFaces gibt die folgenden Informationen für jedes erkannte Gesicht zurück:

  • Begrenzungsrahmen – Koordinaten des Begrenzungsrahmens, der das Gesicht umgibt.

  • Zuverlässigkeit – Maß an Sicherheit, dass der Begrenzungsrahmen ein Gesicht enthält.

  • Wichtige Gesichtsmerkmale – Eine Vielzahl von wichtigen Gesichtsmerkmalen. Für jedes wichtige Merkmal (wie beispielsweise das linke Auge, das rechte Auge oder den Mund) liefert die Antwort die X- und Y-Koordinaten.

  • Gesichtsattribute: Eine Reihe von Gesichtsattributen, z. B. ob das Gesicht verdeckt ist, wird als FaceDetail-Objekt zurückgegeben. Das Set beinhaltet: Bart AgeRange, Emotions, Brillen EyeDirection,, Gender, EyesOpen FaceOccluded, Schnurrbart MouthOpen, Lächeln und Sonnenbrille. Für jedes dieser Attribute liefert die Antwort einen Wert. Der Wert kann von unterschiedlichem Typ sein, z. B. ein boolescher Typ (ob eine Person eine Sonnenbrille trägt), eine Zeichenkette (ob die Person männlich oder weiblich ist) oder ein Winkelgradwert (für die Blickrichtung der Augen). Außerdem enthält die Antwort für die meisten Attribute einen Zuverlässigkeitswert für den erkannten Wert. Beachten Sie, dass die EyeDirection Attribute FaceOccluded und zwar bei der Verwendung unterstützt werdenDetectFaces, bei der Analyse von Videos mit und jedoch nicht. StartFaceDetection GetFaceDetection

  • Qualität – Beschreibt die Helligkeit und die Schärfe des Gesichts. Informationen zur Sicherstellung der bestmöglichen Gesichtserkennung finden Sie unter Empfehlungen zu Eingabebildern für den Gesichtsvergleich.

  • Pose – Beschreibt die Rotation des Gesichts auf dem Bild.

Die Anforderung kann eine Reihe von Gesichtsattributen enthalten, die Sie zurückgeben möchten. Eine DEFAULT-Teilmenge der Gesichtsattribute – BoundingBox, Confidence, Pose, Quality und Landmarks – wird immer zurückgegeben. Sie können die Rückgabe bestimmter Gesichtsattribute (zusätzlich zur Standardliste) anfordern, indem Sie ["DEFAULT", "FACE_OCCLUDED", "EYE_DIRECTION"] oder nur ein Attribut verwenden, wie z. B. ["FACE_OCCLUDED"], verwenden. Sie können alle Gesichtsattribute anfordern, indem Sie ["ALL"] verwenden. Das Anfordern weiterer Attribute kann die Antwortzeit verlängern.

Nachfolgend finden Sie eine Beispielantwort eines Amazon-Rekognition-Video-APIDetectFaces-Aufrufs.

{ "FaceDetails": [ { "BoundingBox": { "Width": 0.7919622659683228, "Height": 0.7510867118835449, "Left": 0.08881539851427078, "Top": 0.151064932346344 }, "AgeRange": { "Low": 18, "High": 26 }, "Smile": { "Value": false, "Confidence": 89.77348327636719 }, "Eyeglasses": { "Value": true, "Confidence": 99.99996948242188 }, "Sunglasses": { "Value": true, "Confidence": 93.65237426757812 }, "Gender": { "Value": "Female", "Confidence": 99.85968780517578 }, "Beard": { "Value": false, "Confidence": 77.52591705322266 }, "Mustache": { "Value": false, "Confidence": 94.48904418945312 }, "EyesOpen": { "Value": true, "Confidence": 98.57169342041016 }, "MouthOpen": { "Value": false, "Confidence": 74.33953094482422 }, "Emotions": [ { "Type": "SAD", "Confidence": 65.56403350830078 }, { "Type": "CONFUSED", "Confidence": 31.277774810791016 }, { "Type": "DISGUSTED", "Confidence": 15.553778648376465 }, { "Type": "ANGRY", "Confidence": 8.012762069702148 }, { "Type": "SURPRISED", "Confidence": 7.621500015258789 }, { "Type": "FEAR", "Confidence": 7.243380546569824 }, { "Type": "CALM", "Confidence": 5.8196024894714355 }, { "Type": "HAPPY", "Confidence": 2.2830512523651123 } ], "Landmarks": [ { "Type": "eyeLeft", "X": 0.30225440859794617, "Y": 0.41018882393836975 }, { "Type": "eyeRight", "X": 0.6439348459243774, "Y": 0.40341562032699585 }, { "Type": "mouthLeft", "X": 0.343580037355423, "Y": 0.6951127648353577 }, { "Type": "mouthRight", "X": 0.6306480765342712, "Y": 0.6898072361946106 }, { "Type": "nose", "X": 0.47164231538772583, "Y": 0.5763645172119141 }, { "Type": "leftEyeBrowLeft", "X": 0.1732882857322693, "Y": 0.34452149271965027 }, { "Type": "leftEyeBrowRight", "X": 0.3655243515968323, "Y": 0.33231860399246216 }, { "Type": "leftEyeBrowUp", "X": 0.2671719491481781, "Y": 0.31669262051582336 }, { "Type": "rightEyeBrowLeft", "X": 0.5613729953765869, "Y": 0.32813435792922974 }, { "Type": "rightEyeBrowRight", "X": 0.7665090560913086, "Y": 0.3318614959716797 }, { "Type": "rightEyeBrowUp", "X": 0.6612788438796997, "Y": 0.3082450032234192 }, { "Type": "leftEyeLeft", "X": 0.2416982799768448, "Y": 0.4085965156555176 }, { "Type": "leftEyeRight", "X": 0.36943578720092773, "Y": 0.41230902075767517 }, { "Type": "leftEyeUp", "X": 0.29974061250686646, "Y": 0.3971870541572571 }, { "Type": "leftEyeDown", "X": 0.30360740423202515, "Y": 0.42347756028175354 }, { "Type": "rightEyeLeft", "X": 0.5755768418312073, "Y": 0.4081145226955414 }, { "Type": "rightEyeRight", "X": 0.7050536870956421, "Y": 0.39924031496047974 }, { "Type": "rightEyeUp", "X": 0.642906129360199, "Y": 0.39026668667793274 }, { "Type": "rightEyeDown", "X": 0.6423097848892212, "Y": 0.41669243574142456 }, { "Type": "noseLeft", "X": 0.4122826159000397, "Y": 0.5987403392791748 }, { "Type": "noseRight", "X": 0.5394935011863708, "Y": 0.5960900187492371 }, { "Type": "mouthUp", "X": 0.478581964969635, "Y": 0.6660456657409668 }, { "Type": "mouthDown", "X": 0.483366996049881, "Y": 0.7497162818908691 }, { "Type": "leftPupil", "X": 0.30225440859794617, "Y": 0.41018882393836975 }, { "Type": "rightPupil", "X": 0.6439348459243774, "Y": 0.40341562032699585 }, { "Type": "upperJawlineLeft", "X": 0.11031254380941391, "Y": 0.3980775475502014 }, { "Type": "midJawlineLeft", "X": 0.19301874935626984, "Y": 0.7034031748771667 }, { "Type": "chinBottom", "X": 0.4939905107021332, "Y": 0.8877836465835571 }, { "Type": "midJawlineRight", "X": 0.7990140914916992, "Y": 0.6899225115776062 }, { "Type": "upperJawlineRight", "X": 0.8548634648323059, "Y": 0.38160091638565063 } ], "Pose": { "Roll": -5.83309268951416, "Yaw": -2.4244730472564697, "Pitch": 2.6216139793395996 }, "Quality": { "Brightness": 96.16363525390625, "Sharpness": 95.51618957519531 }, "Confidence": 99.99872589111328, "FaceOccluded": { "Value": true, "Confidence": 99.99726104736328 }, "EyeDirection": { "Yaw": 16.299732, "Pitch": -6.407457, "Confidence": 99.968704 } } ], "ResponseMetadata": { "RequestId": "8bf02607-70b7-4f20-be55-473fe1bba9a2", "HTTPStatusCode": 200, "HTTPHeaders": { "x-amzn-requestid": "8bf02607-70b7-4f20-be55-473fe1bba9a2", "content-type": "application/x-amz-json-1.1", "content-length": "3409", "date": "Wed, 26 Apr 2023 20:18:50 GMT" }, "RetryAttempts": 0 } }

Beachten Sie Folgendes:

  • Die Pose Daten beschreiben die Rotation des erkannten Gesichts. Auf Basis der Daten zu BoundingBox und Pose können Sie den Begrenzungsrahmen um die Gesichter ziehen, die Ihre Anwendung anzeigt.

  • Das Attribut Quality beschreibt die Helligkeit und die Schärfe des Gesichts. Es kann dabei helfen, Gesichter auf mehreren Bildern zu vergleichen und das Beste auszuwählen.

  • Die vorherige Antwort zeigt alle landmarks des Gesichts, die der Dienst erkennen kann, sowie alle Gesichtsattribute und Emotionen. Um all diese Ergebnisse in der Antwort zu erhalten, müssen Sie den Parameter attributes mit Wert ALL angeben. Standardmäßig liefert die DetectFaces-API nur die folgenden fünf Gesichtsattribute: BoundingBox, Confidence, Pose, Quality und landmarks. Die gelieferten standardmäßigen Merkmale sind: eyeLeft, eyeRight, nose, mouthLeft und mouthRight.