Sélectionner vos préférences de cookies

Nous utilisons des cookies essentiels et des outils similaires qui sont nécessaires au fonctionnement de notre site et à la fourniture de nos services. Nous utilisons des cookies de performance pour collecter des statistiques anonymes afin de comprendre comment les clients utilisent notre site et d’apporter des améliorations. Les cookies essentiels ne peuvent pas être désactivés, mais vous pouvez cliquer sur « Personnaliser » ou « Refuser » pour refuser les cookies de performance.

Si vous êtes d’accord, AWS et les tiers approuvés utiliseront également des cookies pour fournir des fonctionnalités utiles au site, mémoriser vos préférences et afficher du contenu pertinent, y compris des publicités pertinentes. Pour accepter ou refuser tous les cookies non essentiels, cliquez sur « Accepter » ou « Refuser ». Pour effectuer des choix plus détaillés, cliquez sur « Personnaliser ».

Utilisation StartTopicsDetectionJob avec un AWS SDK ou une CLI

Mode de mise au point
Utilisation StartTopicsDetectionJob avec un AWS SDK ou une CLI - Amazon Comprehend

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Les exemples de code suivants illustrent comment utiliser StartTopicsDetectionJob.

Les exemples d’actions sont des extraits de code de programmes de plus grande envergure et doivent être exécutés en contexte. Vous pouvez voir cette action en contexte dans l’exemple de code suivant :

.NET
SDK pour .NET
Note

Il y en a plus sur GitHub. Trouvez l’exemple complet et découvrez comment le configurer et l’exécuter dans le référentiel d’exemples de code AWS.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example scans the documents in an Amazon Simple Storage Service /// (Amazon S3) bucket and analyzes it for topics. The results are stored /// in another bucket and then the resulting job properties are displayed /// on the screen. This example was created using the AWS SDK for .NEt /// version 3.7 and .NET Core version 5.0. /// </summary> public static class TopicModeling { /// <summary> /// This methos calls a topic detection job by calling the Amazon /// Comprehend StartTopicsDetectionJobRequest. /// </summary> public static async Task Main() { var comprehendClient = new AmazonComprehendClient(); string inputS3Uri = "s3://input bucket/input path"; InputFormat inputDocFormat = InputFormat.ONE_DOC_PER_FILE; string outputS3Uri = "s3://output bucket/output path"; string dataAccessRoleArn = "arn:aws:iam::account ID:role/data access role"; int numberOfTopics = 10; var startTopicsDetectionJobRequest = new StartTopicsDetectionJobRequest() { InputDataConfig = new InputDataConfig() { S3Uri = inputS3Uri, InputFormat = inputDocFormat, }, OutputDataConfig = new OutputDataConfig() { S3Uri = outputS3Uri, }, DataAccessRoleArn = dataAccessRoleArn, NumberOfTopics = numberOfTopics, }; var startTopicsDetectionJobResponse = await comprehendClient.StartTopicsDetectionJobAsync(startTopicsDetectionJobRequest); var jobId = startTopicsDetectionJobResponse.JobId; Console.WriteLine("JobId: " + jobId); var describeTopicsDetectionJobRequest = new DescribeTopicsDetectionJobRequest() { JobId = jobId, }; var describeTopicsDetectionJobResponse = await comprehendClient.DescribeTopicsDetectionJobAsync(describeTopicsDetectionJobRequest); PrintJobProperties(describeTopicsDetectionJobResponse.TopicsDetectionJobProperties); var listTopicsDetectionJobsResponse = await comprehendClient.ListTopicsDetectionJobsAsync(new ListTopicsDetectionJobsRequest()); foreach (var props in listTopicsDetectionJobsResponse.TopicsDetectionJobPropertiesList) { PrintJobProperties(props); } } /// <summary> /// This method is a helper method that displays the job properties /// from the call to StartTopicsDetectionJobRequest. /// </summary> /// <param name="props">A list of properties from the call to /// StartTopicsDetectionJobRequest.</param> private static void PrintJobProperties(TopicsDetectionJobProperties props) { Console.WriteLine($"JobId: {props.JobId}, JobName: {props.JobName}, JobStatus: {props.JobStatus}"); Console.WriteLine($"NumberOfTopics: {props.NumberOfTopics}\nInputS3Uri: {props.InputDataConfig.S3Uri}"); Console.WriteLine($"InputFormat: {props.InputDataConfig.InputFormat}, OutputS3Uri: {props.OutputDataConfig.S3Uri}"); } }
  • Pour plus de détails sur l'API, reportez-vous StartTopicsDetectionJobà la section Référence des AWS SDK pour .NET API.

CLI
AWS CLI

Pour démarrer une tâche d'analyse de détection de sujets

L'start-topics-detection-jobexemple suivant lance une tâche de détection de sujets asynchrones pour tous les fichiers situés à l'adresse spécifiée par la --input-data-config balise. Lorsque le travail est terminé, le dossier est placé à l'emplacement spécifié par la --ouput-data-config balise. output outputcontient topic-terms.csv et doc-topics.csv. Le premier fichier de sortie, topic-terms.csv, est une liste des rubriques de la collection. Pour chaque sujet, la liste inclut, par défaut, les principaux termes par sujet en fonction de leur poids. Le second fichier répertorie doc-topics.csv les documents associés à un sujet et la proportion du document qui traite du sujet.

aws comprehend start-topics-detection-job \ --job-name example_topics_detection_job \ --language-code en \ --input-data-config "S3Uri=s3://amzn-s3-demo-bucket/" \ --output-data-config "S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --language-code en

Sortie :

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

Pour plus d'informations, consultez la section Modélisation des rubriques dans le manuel Amazon Comprehend Developer Guide.

Python
SDK pour Python (Boto3)
Note

Il y en a plus sur GitHub. Trouvez l’exemple complet et découvrez comment le configurer et l’exécuter dans le référentiel d’exemples de code AWS.

class ComprehendTopicModeler: """Encapsulates a Comprehend topic modeler.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def start_job( self, job_name, input_bucket, input_key, input_format, output_bucket, output_key, data_access_role_arn, ): """ Starts a topic modeling job. Input is read from the specified Amazon S3 input bucket and written to the specified output bucket. Output data is stored in a tar archive compressed in gzip format. The job runs asynchronously, so you can call `describe_topics_detection_job` to get job status until it returns a status of SUCCEEDED. :param job_name: The name of the job. :param input_bucket: An Amazon S3 bucket that contains job input. :param input_key: The prefix used to find input data in the input bucket. If multiple objects have the same prefix, all of them are used. :param input_format: The format of the input data, either one document per file or one document per line. :param output_bucket: The Amazon S3 bucket where output data is written. :param output_key: The prefix prepended to the output data. :param data_access_role_arn: The Amazon Resource Name (ARN) of a role that grants Comprehend permission to read from the input bucket and write to the output bucket. :return: Information about the job, including the job ID. """ try: response = self.comprehend_client.start_topics_detection_job( JobName=job_name, DataAccessRoleArn=data_access_role_arn, InputDataConfig={ "S3Uri": f"s3://{input_bucket}/{input_key}", "InputFormat": input_format.value, }, OutputDataConfig={"S3Uri": f"s3://{output_bucket}/{output_key}"}, ) logger.info("Started topic modeling job %s.", response["JobId"]) except ClientError: logger.exception("Couldn't start topic modeling job.") raise else: return response
  • Pour plus de détails sur l'API, consultez StartTopicsDetectionJoble AWS manuel de référence de l'API SDK for Python (Boto3).

SDK pour .NET
Note

Il y en a plus sur GitHub. Trouvez l’exemple complet et découvrez comment le configurer et l’exécuter dans le référentiel d’exemples de code AWS.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example scans the documents in an Amazon Simple Storage Service /// (Amazon S3) bucket and analyzes it for topics. The results are stored /// in another bucket and then the resulting job properties are displayed /// on the screen. This example was created using the AWS SDK for .NEt /// version 3.7 and .NET Core version 5.0. /// </summary> public static class TopicModeling { /// <summary> /// This methos calls a topic detection job by calling the Amazon /// Comprehend StartTopicsDetectionJobRequest. /// </summary> public static async Task Main() { var comprehendClient = new AmazonComprehendClient(); string inputS3Uri = "s3://input bucket/input path"; InputFormat inputDocFormat = InputFormat.ONE_DOC_PER_FILE; string outputS3Uri = "s3://output bucket/output path"; string dataAccessRoleArn = "arn:aws:iam::account ID:role/data access role"; int numberOfTopics = 10; var startTopicsDetectionJobRequest = new StartTopicsDetectionJobRequest() { InputDataConfig = new InputDataConfig() { S3Uri = inputS3Uri, InputFormat = inputDocFormat, }, OutputDataConfig = new OutputDataConfig() { S3Uri = outputS3Uri, }, DataAccessRoleArn = dataAccessRoleArn, NumberOfTopics = numberOfTopics, }; var startTopicsDetectionJobResponse = await comprehendClient.StartTopicsDetectionJobAsync(startTopicsDetectionJobRequest); var jobId = startTopicsDetectionJobResponse.JobId; Console.WriteLine("JobId: " + jobId); var describeTopicsDetectionJobRequest = new DescribeTopicsDetectionJobRequest() { JobId = jobId, }; var describeTopicsDetectionJobResponse = await comprehendClient.DescribeTopicsDetectionJobAsync(describeTopicsDetectionJobRequest); PrintJobProperties(describeTopicsDetectionJobResponse.TopicsDetectionJobProperties); var listTopicsDetectionJobsResponse = await comprehendClient.ListTopicsDetectionJobsAsync(new ListTopicsDetectionJobsRequest()); foreach (var props in listTopicsDetectionJobsResponse.TopicsDetectionJobPropertiesList) { PrintJobProperties(props); } } /// <summary> /// This method is a helper method that displays the job properties /// from the call to StartTopicsDetectionJobRequest. /// </summary> /// <param name="props">A list of properties from the call to /// StartTopicsDetectionJobRequest.</param> private static void PrintJobProperties(TopicsDetectionJobProperties props) { Console.WriteLine($"JobId: {props.JobId}, JobName: {props.JobName}, JobStatus: {props.JobStatus}"); Console.WriteLine($"NumberOfTopics: {props.NumberOfTopics}\nInputS3Uri: {props.InputDataConfig.S3Uri}"); Console.WriteLine($"InputFormat: {props.InputDataConfig.InputFormat}, OutputS3Uri: {props.OutputDataConfig.S3Uri}"); } }
  • Pour plus de détails sur l'API, reportez-vous StartTopicsDetectionJobà la section Référence des AWS SDK pour .NET API.

Pour obtenir la liste complète des guides de développement du AWS SDK et des exemples de code, consultezUtilisation d'Amazon Comprehend avec un SDK AWS. Cette rubrique comprend également des informations sur le démarrage et sur les versions précédentes de SDK.

Rubrique suivante :

Scénarios

Rubrique précédente :

StartDocumentClassificationJob
ConfidentialitéConditions d'utilisation du sitePréférences de cookies
© 2025, Amazon Web Services, Inc. ou ses affiliés. Tous droits réservés.