Pilih preferensi cookie Anda

Kami menggunakan cookie penting serta alat serupa yang diperlukan untuk menyediakan situs dan layanan. Kami menggunakan cookie performa untuk mengumpulkan statistik anonim sehingga kami dapat memahami cara pelanggan menggunakan situs dan melakukan perbaikan. Cookie penting tidak dapat dinonaktifkan, tetapi Anda dapat mengklik “Kustom” atau “Tolak” untuk menolak cookie performa.

Jika Anda setuju, AWS dan pihak ketiga yang disetujui juga akan menggunakan cookie untuk menyediakan fitur situs yang berguna, mengingat preferensi Anda, dan menampilkan konten yang relevan, termasuk iklan yang relevan. Untuk menerima atau menolak semua cookie yang tidak penting, klik “Terima” atau “Tolak”. Untuk membuat pilihan yang lebih detail, klik “Kustomisasi”.

[AG.DLM.3] Automate data processes for reliable collection, transformation, and storage using pipelines - DevOps Guidance
Halaman ini belum diterjemahkan ke dalam bahasa Anda. Minta terjemahan

[AG.DLM.3] Automate data processes for reliable collection, transformation, and storage using pipelines

Category: FOUNDATIONAL

A data pipeline is a series of steps to systematically collect, transform, and store data from various sources. Data pipelines can follow different sequences, such as extract, transform, and load (ETL), or extract and load unstructured data directly into a data lake without transformations.

Consistent data collection and transformation fuels informed decision-making, proactive responses, and feedback loops. Data pipelines play a key role in enhancing data quality by performing operations like sorting, reformatting, deduplication, verification, and validation, making data more useful for analysis.

Just as DevOps principles are applied to software delivery, the same can be done with data management through pipelines using a methodology commonly referred to as DataOps. DataOps incorporates DevOps principles into data management, including the automation of testing and deployment processes for data pipelines. This approach improves monitoring, accelerates issue troubleshooting, and fosters collaboration between development and data operations teams.

Related information:

PrivasiSyarat situsPreferensi cookie
© 2025, Amazon Web Services, Inc. atau afiliasinya. Semua hak dilindungi undang-undang.