Seleziona le tue preferenze relative ai cookie

Utilizziamo cookie essenziali e strumenti simili necessari per fornire il nostro sito e i nostri servizi. Utilizziamo i cookie prestazionali per raccogliere statistiche anonime in modo da poter capire come i clienti utilizzano il nostro sito e apportare miglioramenti. I cookie essenziali non possono essere disattivati, ma puoi fare clic su \"Personalizza\" o \"Rifiuta\" per rifiutare i cookie prestazionali.

Se sei d'accordo, AWS e le terze parti approvate utilizzeranno i cookie anche per fornire utili funzionalità del sito, ricordare le tue preferenze e visualizzare contenuti pertinenti, inclusa la pubblicità pertinente. Per continuare senza accettare questi cookie, fai clic su \"Continua\" o \"Rifiuta\". Per effettuare scelte più dettagliate o saperne di più, fai clic su \"Personalizza\".

Distribuisci funzioni Lambda per Python con immagini di container

Modalità Focus
Distribuisci funzioni Lambda per Python con immagini di container - AWS Lambda

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Esistono tre modi per creare un'immagine di container per una funzione Lambda in Python:

Suggerimento

Per ridurre il tempo necessario all'attivazione delle funzioni del container Lambda, consulta Utilizzo di compilazioni a più fasi nella documentazione Docker. Per creare immagini di container efficienti, segui le best practice per scrivere file Docker.

Questa pagina spiega come creare, testare e implementare le immagini di container per Lambda.

Immagini di base AWS per Python

AWS fornisce le seguenti immagini di base per Python:

Tag Runtime Sistema operativo Dockerfile Definizione come obsoleto

3.13

Python 3.13 Amazon Linux 2023 Dockerfile per Python 3.13 su GitHub

Non programmato

3.12

Python 3.12 Amazon Linux 2023 Dockerfile per Python 3.12 su GitHub

Non programmato

3.11

Python 3.11 Amazon Linux 2 Dockerfile per Python 3.11 su GitHub

Non programmato

3.10

Python 3.10 Amazon Linux 2 Dockerfile per Python 3.10 su GitHub

Non programmato

3.9

Python 3.9 Amazon Linux 2 Dockerfile per Python 3.9 su GitHub

Non programmato

Repository Amazon ECR: gallery.ecr.aws/lambda/python

Le immagini di base Python 3.12 e versioni successive si basano sull'immagine di container minima di Amazon Linux 2023. I runtime Python 3.8-3.11 sono basati sull'immagine di Amazon Linux 2. Le immagini basate su AL2023 offrono offre diversi vantaggi rispetto ad Amazon Linux 2, tra cui un'impronta di implementazione ridotta e versioni aggiornate di librerie come glibc.

Le immagini basate su AL2023 utilizzano microdnf (symlink come dnf) come gestore di pacchetti anziché yum, che è il gestore di pacchetti predefinito in Amazon Linux 2. microdnf è un'implementazione autonoma di dnf. Per un elenco dei pacchetti inclusi in AL2023, consulta le colonne Container minimo in Confronto tra pacchetti installati in immagini di container Amazon Linux 2023. Per ulteriori informazioni sulle differenze tra AL2023 e Amazon Linux 2, consulta Introduzione del runtime di Amazon Linux 2023 per AWS Lambda nel blog AWS Compute.

Nota

Per eseguire immagini basate su AL2023 in locale, incluso con AWS Serverless Application Model (AWS SAM), devi usare la versione Docker 20.10.10 o successiva.

Percorso di ricerca delle dipendenze nelle immagini di base

Quando utilizzi un'istruzione import nel codice, il runtime Python cerca nelle directory del suo percorso di ricerca finché non trova il modulo o il pacchetto. Per impostazione predefinita, il runtime cerca prima nella directory {LAMBDA_TASK_ROOT}. Se includi una versione di una libreria inclusa nel runtime nella tua immagine, questa versione avrà la precedenza sulla versione inclusa nel runtime.

Gli altri passaggi del percorso di ricerca dipendono dalla versione dell'immagine base Lambda per il Python che stai utilizzando:

  • Python 3.11 e versioni successive: le librerie incluse nel runtime e le librerie installate con pip sono installate nella directory /var/lang/lib/python3.11/site-packages. Questa directory ha la precedenza su /var/runtime nel percorso di ricerca. Puoi sovrascrivere l'SDK usando pip per installare una versione più recente. Puoi usare pip per verificare che l'SDK incluso nel runtime e le sue dipendenze siano compatibili con tutti i pacchetti che installi.

  • Python 3.8-3.10: le librerie incluse nel runtime sono installate nella directory /var/runtime. Le librerie installate da pip sono installate nella directory /var/lang/lib/python3.x/site-packages. La directory /var/runtime ha la precedenza su /var/lang/lib/python3.x/site-packages nel percorso di ricerca.

Puoi visualizzare il percorso di ricerca completo per la tua funzione Lambda aggiungendo il seguente frammento di codice.

import sys search_path = sys.path print(search_path)

Utilizzo di un'immagine di base AWS per Python

Per completare le fasi riportate in questa sezione, è necessario:

Per completare le fasi riportate in questa sezione, è necessario:

Creazione di un'immagine di container da un'immagine di base AWS per Python
  1. Crea una directory per il progetto, quindi passa a quella directory.

    mkdir example cd example
  2. Crea un nuovo file denominato lambda_function.py. A fini di test, puoi utilizzare il codice della funzione di esempio seguente o sostituirlo con il tuo codice personalizzato.

    Esempio Funzione Python
    import sys def handler(event, context): return 'Hello from AWS Lambda using Python' + sys.version + '!'
  3. Crea un nuovo file denominato requirements.txt. Se stai utilizzando il codice della funzione di esempio del passaggio precedente, puoi lasciare il file vuoto perché non ci sono dipendenze. Altrimenti, elenca ogni libreria richiesta. Ad esempio, ecco come dovrebbe apparire la tua versione di requirements.txt se la funzione utilizza AWS SDK for Python (Boto3):

    Esempio requirements.txt
    boto3
  4. Crea un nuovo Dockerfile con la seguente configurazione:

    Nota che l'esempio Dockerfile non include un'istruzione USER. Quando implementi un'immagine di container su Lambda, Lambda definisce automaticamente un utente Linux predefinito con autorizzazioni con privilegi minimi. Questo è diverso dal comportamento standard di Docker, che per impostazione predefinita è l'utente root quando non viene fornita alcuna istruzione USER.

    Esempio Dockerfile
    FROM public.ecr.aws/lambda/python:3.12 # Copy requirements.txt COPY requirements.txt ${LAMBDA_TASK_ROOT} # Install the specified packages RUN pip install -r requirements.txt # Copy function code COPY lambda_function.py ${LAMBDA_TASK_ROOT} # Set the CMD to your handler (could also be done as a parameter override outside of the Dockerfile) CMD [ "lambda_function.handler" ]
  5. Crea l'immagine Docker con il comando docker build. L'esempio seguente assegna un nome all'immagine docker-image e le assegna il tag test.

    docker build --platform linux/amd64 -t docker-image:test .
    Nota

    Il comando specifica l'opzione --platform linux/amd64 per garantire che il container sia compatibile con l'ambiente di esecuzione di Lambda, indipendentemente dall'architettura della macchina di sviluppo. Per creare una funzione Lambda utilizzando l'architettura del set di istruzioni ARM64, accertati di modificare il comando per utilizzare l'opzione --platform linux/arm64.

Creazione di un'immagine di container da un'immagine di base AWS per Python
  1. Crea una directory per il progetto, quindi passa a quella directory.

    mkdir example cd example
  2. Crea un nuovo file denominato lambda_function.py. A fini di test, puoi utilizzare il codice della funzione di esempio seguente o sostituirlo con il tuo codice personalizzato.

    Esempio Funzione Python
    import sys def handler(event, context): return 'Hello from AWS Lambda using Python' + sys.version + '!'
  3. Crea un nuovo file denominato requirements.txt. Se stai utilizzando il codice della funzione di esempio del passaggio precedente, puoi lasciare il file vuoto perché non ci sono dipendenze. Altrimenti, elenca ogni libreria richiesta. Ad esempio, ecco come dovrebbe apparire la tua versione di requirements.txt se la funzione utilizza AWS SDK for Python (Boto3):

    Esempio requirements.txt
    boto3
  4. Crea un nuovo Dockerfile con la seguente configurazione:

    Nota che l'esempio Dockerfile non include un'istruzione USER. Quando implementi un'immagine di container su Lambda, Lambda definisce automaticamente un utente Linux predefinito con autorizzazioni con privilegi minimi. Questo è diverso dal comportamento standard di Docker, che per impostazione predefinita è l'utente root quando non viene fornita alcuna istruzione USER.

    Esempio Dockerfile
    FROM public.ecr.aws/lambda/python:3.12 # Copy requirements.txt COPY requirements.txt ${LAMBDA_TASK_ROOT} # Install the specified packages RUN pip install -r requirements.txt # Copy function code COPY lambda_function.py ${LAMBDA_TASK_ROOT} # Set the CMD to your handler (could also be done as a parameter override outside of the Dockerfile) CMD [ "lambda_function.handler" ]
  5. Crea l'immagine Docker con il comando docker build. L'esempio seguente assegna un nome all'immagine docker-image e le assegna il tag test.

    docker build --platform linux/amd64 -t docker-image:test .
    Nota

    Il comando specifica l'opzione --platform linux/amd64 per garantire che il container sia compatibile con l'ambiente di esecuzione di Lambda, indipendentemente dall'architettura della macchina di sviluppo. Per creare una funzione Lambda utilizzando l'architettura del set di istruzioni ARM64, accertati di modificare il comando per utilizzare l'opzione --platform linux/arm64.

  1. Avvia l'immagine Docker con il comando docker run. In questo esempio, docker-image è il nome dell'immagine e test è il tag.

    docker run --platform linux/amd64 -p 9000:8080 docker-image:test

    Questo comando esegue l'immagine come container e crea un endpoint locale in localhost:9000/2015-03-31/functions/function/invocations.

    Nota

    Per creare l'immagine Docker per l'architettura del set di istruzioni ARM64, assicurati di utilizzare l'opzione --platform linux/arm64 anziché --platform linux/amd64.

  2. Da una nuova finestra di terminale, invia un evento all'endpoint locale.

    Linux/macOS

    Su MacOS o Linux, esegui il comando seguente curl:

    curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

    Questo comando richiama la funzione con un evento vuoto e restituisce una risposta. Se stai utilizzando il tuo codice della funzione anziché quello di esempio, potresti voler richiamare la funzione con un payload JSON. Esempio:

    curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{"payload":"hello world!"}'
    PowerShell

    In PowerShell, esegui il comando seguente Invoke-WebRequest:

    Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/invocations" -Method Post -Body '{}' -ContentType "application/json"

    Questo comando richiama la funzione con un evento vuoto e restituisce una risposta. Se stai utilizzando il tuo codice della funzione anziché quello di esempio, potresti voler richiamare la funzione con un payload JSON. Esempio:

    Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType "application/json"
  3. Ottieni l'ID del container.

    docker ps
  4. Utilizza il comando docker kill per arrestare il container. In questo comando, sostituisci 3766c4ab331c con l'ID del container del passaggio precedente.

    docker kill 3766c4ab331c

  1. Avvia l'immagine Docker con il comando docker run. In questo esempio, docker-image è il nome dell'immagine e test è il tag.

    docker run --platform linux/amd64 -p 9000:8080 docker-image:test

    Questo comando esegue l'immagine come container e crea un endpoint locale in localhost:9000/2015-03-31/functions/function/invocations.

    Nota

    Per creare l'immagine Docker per l'architettura del set di istruzioni ARM64, assicurati di utilizzare l'opzione --platform linux/arm64 anziché --platform linux/amd64.

  2. Da una nuova finestra di terminale, invia un evento all'endpoint locale.

    Linux/macOS

    Su MacOS o Linux, esegui il comando seguente curl:

    curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

    Questo comando richiama la funzione con un evento vuoto e restituisce una risposta. Se stai utilizzando il tuo codice della funzione anziché quello di esempio, potresti voler richiamare la funzione con un payload JSON. Esempio:

    curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{"payload":"hello world!"}'
    PowerShell

    In PowerShell, esegui il comando seguente Invoke-WebRequest:

    Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/invocations" -Method Post -Body '{}' -ContentType "application/json"

    Questo comando richiama la funzione con un evento vuoto e restituisce una risposta. Se stai utilizzando il tuo codice della funzione anziché quello di esempio, potresti voler richiamare la funzione con un payload JSON. Esempio:

    Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType "application/json"

    Su MacOS o Linux, esegui il comando seguente curl:

    curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

    Questo comando richiama la funzione con un evento vuoto e restituisce una risposta. Se stai utilizzando il tuo codice della funzione anziché quello di esempio, potresti voler richiamare la funzione con un payload JSON. Esempio:

    curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{"payload":"hello world!"}'
  3. Ottieni l'ID del container.

    docker ps
  4. Utilizza il comando docker kill per arrestare il container. In questo comando, sostituisci 3766c4ab331c con l'ID del container del passaggio precedente.

    docker kill 3766c4ab331c
Caricamento dell'immagine su Amazon ECR e creazione della funzione Lambda
  1. Per autenticare la CLI Docker nel registro Amazon ECR, esegui il comando get-login-password.

    • Imposta il valore di --region sulla Regione AWS in cui desideri creare il repository Amazon ECR.

    • Sostituisci 111122223333 con l'ID dell'Account AWS.

    aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-stdin 111122223333.dkr.ecr.us-east-1.amazonaws.com
  2. Crea un repository in Amazon ECR utilizzando il commando create-repository.

    aws ecr create-repository --repository-name hello-world --region us-east-1 --image-scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE
    Nota

    Il repository Amazon ECR deve essere nella stessa Regione AWS della funzione Lambda.

    In caso di esito positivo, dovresti ottenere una risposta simile a questa:

    { "repository": { "repositoryArn": "arn:aws:ecr:us-east-1:111122223333:repository/hello-world", "registryId": "111122223333", "repositoryName": "hello-world", "repositoryUri": "111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world", "createdAt": "2023-03-09T10:39:01+00:00", "imageTagMutability": "MUTABLE", "imageScanningConfiguration": { "scanOnPush": true }, "encryptionConfiguration": { "encryptionType": "AES256" } } }
  3. Copia il repositoryUri dall'output del passaggio precedente.

  4. Esegui il comando docker tag per etichettare l'immagine locale nel repository Amazon ECR come versione più recente. In questo comando:

    • docker-image:test è il nome e tag dell'immagine Docker. Si tratta del nome e del tag dell'immagine specificati nel comando docker build.

    • Sostituisci l'<ECRrepositoryUri> con l'repositoryUri copiato. Assicurati di includere :latest alla fine dell'URI.

    docker tag docker-image:test <ECRrepositoryUri>:latest

    Esempio:

    docker tag docker-image:test 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest
  5. Esegui il comando docker push per implementare la tua immagine locale sul repository Amazon ECR. Assicurati di includere :latest alla fine dell'URI del repository.

    docker push 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest
  6. Crea un ruolo di esecuzione per la funzione, se non lo hai già fatto. Il nome della risorsa Amazon (ARN) del ruolo ti occorrerà nel passaggio successivo.

  7. Creazione della funzione Lambda Per ImageUri, specifica l'URI del repository creato in precedenza. Assicurati di includere :latest alla fine dell'URI.

    aws lambda create-function \ --function-name hello-world \ --package-type Image \ --code ImageUri=111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \ --role arn:aws:iam::111122223333:role/lambda-ex
    Nota

    È possibile creare una funzione utilizzando un'immagine in un account AWS diverso, purché l'immagine si trovi nella stessa regione della funzione Lambda. Per ulteriori informazioni, consulta Autorizzazioni Amazon ECR per più account.

  8. Richiama la funzione.

    aws lambda invoke --function-name hello-world response.json

    Dovresti ottenere una risposta simile a questa:

    { "ExecutedVersion": "$LATEST", "StatusCode": 200 }
  9. Per vedere l'output della funzione, controlla il file response.json.

Per aggiornare il codice della funzione, devi creare nuovamente l'immagine, caricare la nuova immagine nel repository Amazon ECR e quindi utilizzare il comando update-function-code per implementare l'immagine nella funzione Lambda.

Lambda risolve il tag dell'immagine in un digest di immagine specifico. Ciò significa che se punti il tag immagine utilizzato per implementare la funzione su una nuova immagine in Amazon ECR, Lambda non aggiorna automaticamente la funzione per utilizzare la nuova immagine.

Per implementare la nuova immagine nella stessa funzione Lambda, devi utilizzare il comando update-function-code anche se il tag dell'immagine in Amazon ECR rimane lo stesso. Nell'esempio seguente, l'opzione --publish crea una nuova versione della funzione utilizzando l'immagine del container aggiornata.

aws lambda update-function-code \ --function-name hello-world \ --image-uri 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \ --publish

Caricamento dell'immagine su Amazon ECR e creazione della funzione Lambda
  1. Per autenticare la CLI Docker nel registro Amazon ECR, esegui il comando get-login-password.

    • Imposta il valore di --region sulla Regione AWS in cui desideri creare il repository Amazon ECR.

    • Sostituisci 111122223333 con l'ID dell'Account AWS.

    aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-stdin 111122223333.dkr.ecr.us-east-1.amazonaws.com
  2. Crea un repository in Amazon ECR utilizzando il commando create-repository.

    aws ecr create-repository --repository-name hello-world --region us-east-1 --image-scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE
    Nota

    Il repository Amazon ECR deve essere nella stessa Regione AWS della funzione Lambda.

    In caso di esito positivo, dovresti ottenere una risposta simile a questa:

    { "repository": { "repositoryArn": "arn:aws:ecr:us-east-1:111122223333:repository/hello-world", "registryId": "111122223333", "repositoryName": "hello-world", "repositoryUri": "111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world", "createdAt": "2023-03-09T10:39:01+00:00", "imageTagMutability": "MUTABLE", "imageScanningConfiguration": { "scanOnPush": true }, "encryptionConfiguration": { "encryptionType": "AES256" } } }
  3. Copia il repositoryUri dall'output del passaggio precedente.

  4. Esegui il comando docker tag per etichettare l'immagine locale nel repository Amazon ECR come versione più recente. In questo comando:

    • docker-image:test è il nome e tag dell'immagine Docker. Si tratta del nome e del tag dell'immagine specificati nel comando docker build.

    • Sostituisci l'<ECRrepositoryUri> con l'repositoryUri copiato. Assicurati di includere :latest alla fine dell'URI.

    docker tag docker-image:test <ECRrepositoryUri>:latest

    Esempio:

    docker tag docker-image:test 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest
  5. Esegui il comando docker push per implementare la tua immagine locale sul repository Amazon ECR. Assicurati di includere :latest alla fine dell'URI del repository.

    docker push 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest
  6. Crea un ruolo di esecuzione per la funzione, se non lo hai già fatto. Il nome della risorsa Amazon (ARN) del ruolo ti occorrerà nel passaggio successivo.

  7. Creazione della funzione Lambda Per ImageUri, specifica l'URI del repository creato in precedenza. Assicurati di includere :latest alla fine dell'URI.

    aws lambda create-function \ --function-name hello-world \ --package-type Image \ --code ImageUri=111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \ --role arn:aws:iam::111122223333:role/lambda-ex
    Nota

    È possibile creare una funzione utilizzando un'immagine in un account AWS diverso, purché l'immagine si trovi nella stessa regione della funzione Lambda. Per ulteriori informazioni, consulta Autorizzazioni Amazon ECR per più account.

  8. Richiama la funzione.

    aws lambda invoke --function-name hello-world response.json

    Dovresti ottenere una risposta simile a questa:

    { "ExecutedVersion": "$LATEST", "StatusCode": 200 }
  9. Per vedere l'output della funzione, controlla il file response.json.

Per aggiornare il codice della funzione, devi creare nuovamente l'immagine, caricare la nuova immagine nel repository Amazon ECR e quindi utilizzare il comando update-function-code per implementare l'immagine nella funzione Lambda.

Lambda risolve il tag dell'immagine in un digest di immagine specifico. Ciò significa che se punti il tag immagine utilizzato per implementare la funzione su una nuova immagine in Amazon ECR, Lambda non aggiorna automaticamente la funzione per utilizzare la nuova immagine.

Per implementare la nuova immagine nella stessa funzione Lambda, devi utilizzare il comando update-function-code anche se il tag dell'immagine in Amazon ECR rimane lo stesso. Nell'esempio seguente, l'opzione --publish crea una nuova versione della funzione utilizzando l'immagine del container aggiornata.

aws lambda update-function-code \ --function-name hello-world \ --image-uri 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \ --publish

Utilizzo di un'immagine di base alternativa con il client di interfaccia di runtime

Se utilizzi un'immagine di base solo per il sistema operativo o un'immagine di base alternativa, devi includere il client dell'interfaccia di runtime nell'immagine. Il client dell'interfaccia di runtime estende l'Utilizzo dell'API di runtime Lambda per runtime personalizzati, che gestisce l'interazione tra Lambda e il codice della funzione.

Installa il client di interfaccia di runtime per Python utilizzando il gestore di pacchetti pip:

pip install awslambdaric

È inoltre possibile scaricare il client dell'interfaccia runtime per Python da GitHub.

L'esempio seguente dimostra come creare un'immagine di container per Python utilizzando un'immagine di base non AWS. Il Dockerfile di esempio utilizza un'immagine di base Python ufficiale. Il Dockerfile include il client di interfaccia di runtime per Python.

Per completare le fasi riportate in questa sezione, è necessario:

Per completare le fasi riportate in questa sezione, è necessario:

Creazione di un'immagine di container da un'immagine di base non AWS
  1. Crea una directory per il progetto, quindi passa a quella directory.

    mkdir example cd example
  2. Crea un nuovo file denominato lambda_function.py. A fini di test, puoi utilizzare il codice della funzione di esempio seguente o sostituirlo con il tuo codice personalizzato.

    Esempio Funzione Python
    import sys def handler(event, context): return 'Hello from AWS Lambda using Python' + sys.version + '!'
  3. Crea un nuovo file denominato requirements.txt. Se stai utilizzando il codice della funzione di esempio del passaggio precedente, puoi lasciare il file vuoto perché non ci sono dipendenze. Altrimenti, elenca ogni libreria richiesta. Ad esempio, ecco come dovrebbe apparire la tua versione di requirements.txt se la funzione utilizza AWS SDK for Python (Boto3):

    Esempio requirements.txt
    boto3
  4. Crea un nuovo Dockerfile. Il seguente Dockerfile utilizza un'immagine di base Python ufficiale anziché un'immagine di base AWS. Il Dockerfile include il client di interfaccia di runtime, che rende l'immagine compatibile con Lambda. Il seguente Dockerfile di esempio utilizza una build multi-fase.

    • Imposta la proprietà FROM sull'immagine di base.

    • Imposta l'ENTRYPOINT sul modulo su cui desideri che il container Docker venga eseguito all'avvio. In questo caso, il modulo è il client di interfaccia di runtime.

    • Imposta il CMD specificando il gestore della funzione Lambda.

    Nota che l'esempio Dockerfile non include un'istruzione USER. Quando implementi un'immagine di container su Lambda, Lambda definisce automaticamente un utente Linux predefinito con autorizzazioni con privilegi minimi. Questo è diverso dal comportamento standard di Docker, che per impostazione predefinita è l'utente root quando non viene fornita alcuna istruzione USER.

    Esempio Dockerfile
    # Define custom function directory ARG FUNCTION_DIR="/function" FROM python:3.12 AS build-image # Include global arg in this stage of the build ARG FUNCTION_DIR # Copy function code RUN mkdir -p ${FUNCTION_DIR} COPY . ${FUNCTION_DIR} # Install the function's dependencies RUN pip install \ --target ${FUNCTION_DIR} \ awslambdaric # Use a slim version of the base Python image to reduce the final image size FROM python:3.12-slim # Include global arg in this stage of the build ARG FUNCTION_DIR # Set working directory to function root directory WORKDIR ${FUNCTION_DIR} # Copy in the built dependencies COPY --from=build-image ${FUNCTION_DIR} ${FUNCTION_DIR} # Set runtime interface client as default command for the container runtime ENTRYPOINT [ "/usr/local/bin/python", "-m", "awslambdaric" ] # Pass the name of the function handler as an argument to the runtime CMD [ "lambda_function.handler" ]
  5. Crea l'immagine Docker con il comando docker build. L'esempio seguente assegna un nome all'immagine docker-image e le assegna il tag test.

    docker build --platform linux/amd64 -t docker-image:test .
    Nota

    Il comando specifica l'opzione --platform linux/amd64 per garantire che il container sia compatibile con l'ambiente di esecuzione di Lambda, indipendentemente dall'architettura della macchina di sviluppo. Per creare una funzione Lambda utilizzando l'architettura del set di istruzioni ARM64, accertati di modificare il comando per utilizzare l'opzione --platform linux/arm64.

Creazione di un'immagine di container da un'immagine di base non AWS
  1. Crea una directory per il progetto, quindi passa a quella directory.

    mkdir example cd example
  2. Crea un nuovo file denominato lambda_function.py. A fini di test, puoi utilizzare il codice della funzione di esempio seguente o sostituirlo con il tuo codice personalizzato.

    Esempio Funzione Python
    import sys def handler(event, context): return 'Hello from AWS Lambda using Python' + sys.version + '!'
  3. Crea un nuovo file denominato requirements.txt. Se stai utilizzando il codice della funzione di esempio del passaggio precedente, puoi lasciare il file vuoto perché non ci sono dipendenze. Altrimenti, elenca ogni libreria richiesta. Ad esempio, ecco come dovrebbe apparire la tua versione di requirements.txt se la funzione utilizza AWS SDK for Python (Boto3):

    Esempio requirements.txt
    boto3
  4. Crea un nuovo Dockerfile. Il seguente Dockerfile utilizza un'immagine di base Python ufficiale anziché un'immagine di base AWS. Il Dockerfile include il client di interfaccia di runtime, che rende l'immagine compatibile con Lambda. Il seguente Dockerfile di esempio utilizza una build multi-fase.

    • Imposta la proprietà FROM sull'immagine di base.

    • Imposta l'ENTRYPOINT sul modulo su cui desideri che il container Docker venga eseguito all'avvio. In questo caso, il modulo è il client di interfaccia di runtime.

    • Imposta il CMD specificando il gestore della funzione Lambda.

    Nota che l'esempio Dockerfile non include un'istruzione USER. Quando implementi un'immagine di container su Lambda, Lambda definisce automaticamente un utente Linux predefinito con autorizzazioni con privilegi minimi. Questo è diverso dal comportamento standard di Docker, che per impostazione predefinita è l'utente root quando non viene fornita alcuna istruzione USER.

    Esempio Dockerfile
    # Define custom function directory ARG FUNCTION_DIR="/function" FROM python:3.12 AS build-image # Include global arg in this stage of the build ARG FUNCTION_DIR # Copy function code RUN mkdir -p ${FUNCTION_DIR} COPY . ${FUNCTION_DIR} # Install the function's dependencies RUN pip install \ --target ${FUNCTION_DIR} \ awslambdaric # Use a slim version of the base Python image to reduce the final image size FROM python:3.12-slim # Include global arg in this stage of the build ARG FUNCTION_DIR # Set working directory to function root directory WORKDIR ${FUNCTION_DIR} # Copy in the built dependencies COPY --from=build-image ${FUNCTION_DIR} ${FUNCTION_DIR} # Set runtime interface client as default command for the container runtime ENTRYPOINT [ "/usr/local/bin/python", "-m", "awslambdaric" ] # Pass the name of the function handler as an argument to the runtime CMD [ "lambda_function.handler" ]
  5. Crea l'immagine Docker con il comando docker build. L'esempio seguente assegna un nome all'immagine docker-image e le assegna il tag test.

    docker build --platform linux/amd64 -t docker-image:test .
    Nota

    Il comando specifica l'opzione --platform linux/amd64 per garantire che il container sia compatibile con l'ambiente di esecuzione di Lambda, indipendentemente dall'architettura della macchina di sviluppo. Per creare una funzione Lambda utilizzando l'architettura del set di istruzioni ARM64, accertati di modificare il comando per utilizzare l'opzione --platform linux/arm64.

Usa il simulatore dell'interfaccia di runtime per testare localmente l'immagine. Puoi creare l'emulatore nella tua immagine o seguire la procedura riportata e installarlo sul tuo computer locale.

Installazione ed esecuzione dell'emulatore di interfaccia di runtime sul computer locale
  1. Dalla directory del progetto, esegui il comando seguente per scaricare l'emulatore di interfaccia di runtime (architettura x86-64) da GitHub e installarlo sul computer locale.

    Linux/macOS
    mkdir -p ~/.aws-lambda-rie && \ curl -Lo ~/.aws-lambda-rie/aws-lambda-rie https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/download/aws-lambda-rie && \ chmod +x ~/.aws-lambda-rie/aws-lambda-rie

    Per installare l'emulatore arm64, sostituisci l'URL del repository GitHub nel comando precedente con quanto segue:

    https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/download/aws-lambda-rie-arm64
    PowerShell
    $dirPath = "$HOME\.aws-lambda-rie" if (-not (Test-Path $dirPath)) { New-Item -Path $dirPath -ItemType Directory } $downloadLink = "https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/download/aws-lambda-rie" $destinationPath = "$HOME\.aws-lambda-rie\aws-lambda-rie" Invoke-WebRequest -Uri $downloadLink -OutFile $destinationPath

    Per installare l'emulatore arm64, sostituisci $downloadLink con quanto segue:

    https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/download/aws-lambda-rie-arm64
  2. Avvia l'immagine Docker con il comando docker run. Tieni presente quanto segue:

    • docker-image è il nome dell'immagine e test è il tag.

    • /usr/local/bin/python -m awslambdaric lambda_function.handler è l'ENTRYPOINT seguito dal CMD del Dockerfile.

    Linux/macOS
    docker run --platform linux/amd64 -d -v ~/.aws-lambda-rie:/aws-lambda -p 9000:8080 \ --entrypoint /aws-lambda/aws-lambda-rie \ docker-image:test \ /usr/local/bin/python -m awslambdaric lambda_function.handler
    PowerShell
    docker run --platform linux/amd64 -d -v "$HOME\.aws-lambda-rie:/aws-lambda" -p 9000:8080 ` --entrypoint /aws-lambda/aws-lambda-rie ` docker-image:test ` /usr/local/bin/python -m awslambdaric lambda_function.handler

    Questo comando esegue l'immagine come container e crea un endpoint locale in localhost:9000/2015-03-31/functions/function/invocations.

    Nota

    Per creare l'immagine Docker per l'architettura del set di istruzioni ARM64, assicurati di utilizzare l'opzione --platform linux/arm64 anziché --platform linux/amd64.

  3. Pubblica un evento nell'endpoint locale.

    Linux/macOS

    Su MacOS o Linux, esegui il comando seguente curl:

    curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

    Questo comando richiama la funzione con un evento vuoto e restituisce una risposta. Se stai utilizzando il tuo codice della funzione anziché quello di esempio, potresti voler richiamare la funzione con un payload JSON. Esempio:

    curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{"payload":"hello world!"}'
    PowerShell

    In PowerShell, esegui il comando seguente Invoke-WebRequest:

    Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/invocations" -Method Post -Body '{}' -ContentType "application/json"

    Questo comando richiama la funzione con un evento vuoto e restituisce una risposta. Se stai utilizzando il tuo codice della funzione anziché quello di esempio, potresti voler richiamare la funzione con un payload JSON. Esempio:

    Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType "application/json"
  4. Ottieni l'ID del container.

    docker ps
  5. Utilizza il comando docker kill per arrestare il container. In questo comando, sostituisci 3766c4ab331c con l'ID del container del passaggio precedente.

    docker kill 3766c4ab331c

Usa il simulatore dell'interfaccia di runtime per testare localmente l'immagine. Puoi creare l'emulatore nella tua immagine o seguire la procedura riportata e installarlo sul tuo computer locale.

Installazione ed esecuzione dell'emulatore di interfaccia di runtime sul computer locale
  1. Dalla directory del progetto, esegui il comando seguente per scaricare l'emulatore di interfaccia di runtime (architettura x86-64) da GitHub e installarlo sul computer locale.

    Linux/macOS
    mkdir -p ~/.aws-lambda-rie && \ curl -Lo ~/.aws-lambda-rie/aws-lambda-rie https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/download/aws-lambda-rie && \ chmod +x ~/.aws-lambda-rie/aws-lambda-rie

    Per installare l'emulatore arm64, sostituisci l'URL del repository GitHub nel comando precedente con quanto segue:

    https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/download/aws-lambda-rie-arm64
    PowerShell
    $dirPath = "$HOME\.aws-lambda-rie" if (-not (Test-Path $dirPath)) { New-Item -Path $dirPath -ItemType Directory } $downloadLink = "https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/download/aws-lambda-rie" $destinationPath = "$HOME\.aws-lambda-rie\aws-lambda-rie" Invoke-WebRequest -Uri $downloadLink -OutFile $destinationPath

    Per installare l'emulatore arm64, sostituisci $downloadLink con quanto segue:

    https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/download/aws-lambda-rie-arm64
    mkdir -p ~/.aws-lambda-rie && \ curl -Lo ~/.aws-lambda-rie/aws-lambda-rie https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/download/aws-lambda-rie && \ chmod +x ~/.aws-lambda-rie/aws-lambda-rie

    Per installare l'emulatore arm64, sostituisci l'URL del repository GitHub nel comando precedente con quanto segue:

    https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/download/aws-lambda-rie-arm64
  2. Avvia l'immagine Docker con il comando docker run. Tieni presente quanto segue:

    • docker-image è il nome dell'immagine e test è il tag.

    • /usr/local/bin/python -m awslambdaric lambda_function.handler è l'ENTRYPOINT seguito dal CMD del Dockerfile.

    Linux/macOS
    docker run --platform linux/amd64 -d -v ~/.aws-lambda-rie:/aws-lambda -p 9000:8080 \ --entrypoint /aws-lambda/aws-lambda-rie \ docker-image:test \ /usr/local/bin/python -m awslambdaric lambda_function.handler
    PowerShell
    docker run --platform linux/amd64 -d -v "$HOME\.aws-lambda-rie:/aws-lambda" -p 9000:8080 ` --entrypoint /aws-lambda/aws-lambda-rie ` docker-image:test ` /usr/local/bin/python -m awslambdaric lambda_function.handler
    docker run --platform linux/amd64 -d -v ~/.aws-lambda-rie:/aws-lambda -p 9000:8080 \ --entrypoint /aws-lambda/aws-lambda-rie \ docker-image:test \ /usr/local/bin/python -m awslambdaric lambda_function.handler

    Questo comando esegue l'immagine come container e crea un endpoint locale in localhost:9000/2015-03-31/functions/function/invocations.

    Nota

    Per creare l'immagine Docker per l'architettura del set di istruzioni ARM64, assicurati di utilizzare l'opzione --platform linux/arm64 anziché --platform linux/amd64.

  3. Pubblica un evento nell'endpoint locale.

    Linux/macOS

    Su MacOS o Linux, esegui il comando seguente curl:

    curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

    Questo comando richiama la funzione con un evento vuoto e restituisce una risposta. Se stai utilizzando il tuo codice della funzione anziché quello di esempio, potresti voler richiamare la funzione con un payload JSON. Esempio:

    curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{"payload":"hello world!"}'
    PowerShell

    In PowerShell, esegui il comando seguente Invoke-WebRequest:

    Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/invocations" -Method Post -Body '{}' -ContentType "application/json"

    Questo comando richiama la funzione con un evento vuoto e restituisce una risposta. Se stai utilizzando il tuo codice della funzione anziché quello di esempio, potresti voler richiamare la funzione con un payload JSON. Esempio:

    Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType "application/json"

    Su MacOS o Linux, esegui il comando seguente curl:

    curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

    Questo comando richiama la funzione con un evento vuoto e restituisce una risposta. Se stai utilizzando il tuo codice della funzione anziché quello di esempio, potresti voler richiamare la funzione con un payload JSON. Esempio:

    curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{"payload":"hello world!"}'
  4. Ottieni l'ID del container.

    docker ps
  5. Utilizza il comando docker kill per arrestare il container. In questo comando, sostituisci 3766c4ab331c con l'ID del container del passaggio precedente.

    docker kill 3766c4ab331c
Caricamento dell'immagine su Amazon ECR e creazione della funzione Lambda
  1. Per autenticare la CLI Docker nel registro Amazon ECR, esegui il comando get-login-password.

    • Imposta il valore di --region sulla Regione AWS in cui desideri creare il repository Amazon ECR.

    • Sostituisci 111122223333 con l'ID dell'Account AWS.

    aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-stdin 111122223333.dkr.ecr.us-east-1.amazonaws.com
  2. Crea un repository in Amazon ECR utilizzando il commando create-repository.

    aws ecr create-repository --repository-name hello-world --region us-east-1 --image-scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE
    Nota

    Il repository Amazon ECR deve essere nella stessa Regione AWS della funzione Lambda.

    In caso di esito positivo, dovresti ottenere una risposta simile a questa:

    { "repository": { "repositoryArn": "arn:aws:ecr:us-east-1:111122223333:repository/hello-world", "registryId": "111122223333", "repositoryName": "hello-world", "repositoryUri": "111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world", "createdAt": "2023-03-09T10:39:01+00:00", "imageTagMutability": "MUTABLE", "imageScanningConfiguration": { "scanOnPush": true }, "encryptionConfiguration": { "encryptionType": "AES256" } } }
  3. Copia il repositoryUri dall'output del passaggio precedente.

  4. Esegui il comando docker tag per etichettare l'immagine locale nel repository Amazon ECR come versione più recente. In questo comando:

    • docker-image:test è il nome e tag dell'immagine Docker. Si tratta del nome e del tag dell'immagine specificati nel comando docker build.

    • Sostituisci l'<ECRrepositoryUri> con l'repositoryUri copiato. Assicurati di includere :latest alla fine dell'URI.

    docker tag docker-image:test <ECRrepositoryUri>:latest

    Esempio:

    docker tag docker-image:test 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest
  5. Esegui il comando docker push per implementare la tua immagine locale sul repository Amazon ECR. Assicurati di includere :latest alla fine dell'URI del repository.

    docker push 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest
  6. Crea un ruolo di esecuzione per la funzione, se non lo hai già fatto. Il nome della risorsa Amazon (ARN) del ruolo ti occorrerà nel passaggio successivo.

  7. Creazione della funzione Lambda Per ImageUri, specifica l'URI del repository creato in precedenza. Assicurati di includere :latest alla fine dell'URI.

    aws lambda create-function \ --function-name hello-world \ --package-type Image \ --code ImageUri=111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \ --role arn:aws:iam::111122223333:role/lambda-ex
    Nota

    È possibile creare una funzione utilizzando un'immagine in un account AWS diverso, purché l'immagine si trovi nella stessa regione della funzione Lambda. Per ulteriori informazioni, consulta Autorizzazioni Amazon ECR per più account.

  8. Richiama la funzione.

    aws lambda invoke --function-name hello-world response.json

    Dovresti ottenere una risposta simile a questa:

    { "ExecutedVersion": "$LATEST", "StatusCode": 200 }
  9. Per vedere l'output della funzione, controlla il file response.json.

Per aggiornare il codice della funzione, devi creare nuovamente l'immagine, caricare la nuova immagine nel repository Amazon ECR e quindi utilizzare il comando update-function-code per implementare l'immagine nella funzione Lambda.

Lambda risolve il tag dell'immagine in un digest di immagine specifico. Ciò significa che se punti il tag immagine utilizzato per implementare la funzione su una nuova immagine in Amazon ECR, Lambda non aggiorna automaticamente la funzione per utilizzare la nuova immagine.

Per implementare la nuova immagine nella stessa funzione Lambda, devi utilizzare il comando update-function-code anche se il tag dell'immagine in Amazon ECR rimane lo stesso. Nell'esempio seguente, l'opzione --publish crea una nuova versione della funzione utilizzando l'immagine del container aggiornata.

aws lambda update-function-code \ --function-name hello-world \ --image-uri 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \ --publish

Caricamento dell'immagine su Amazon ECR e creazione della funzione Lambda
  1. Per autenticare la CLI Docker nel registro Amazon ECR, esegui il comando get-login-password.

    • Imposta il valore di --region sulla Regione AWS in cui desideri creare il repository Amazon ECR.

    • Sostituisci 111122223333 con l'ID dell'Account AWS.

    aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-stdin 111122223333.dkr.ecr.us-east-1.amazonaws.com
  2. Crea un repository in Amazon ECR utilizzando il commando create-repository.

    aws ecr create-repository --repository-name hello-world --region us-east-1 --image-scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE
    Nota

    Il repository Amazon ECR deve essere nella stessa Regione AWS della funzione Lambda.

    In caso di esito positivo, dovresti ottenere una risposta simile a questa:

    { "repository": { "repositoryArn": "arn:aws:ecr:us-east-1:111122223333:repository/hello-world", "registryId": "111122223333", "repositoryName": "hello-world", "repositoryUri": "111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world", "createdAt": "2023-03-09T10:39:01+00:00", "imageTagMutability": "MUTABLE", "imageScanningConfiguration": { "scanOnPush": true }, "encryptionConfiguration": { "encryptionType": "AES256" } } }
  3. Copia il repositoryUri dall'output del passaggio precedente.

  4. Esegui il comando docker tag per etichettare l'immagine locale nel repository Amazon ECR come versione più recente. In questo comando:

    • docker-image:test è il nome e tag dell'immagine Docker. Si tratta del nome e del tag dell'immagine specificati nel comando docker build.

    • Sostituisci l'<ECRrepositoryUri> con l'repositoryUri copiato. Assicurati di includere :latest alla fine dell'URI.

    docker tag docker-image:test <ECRrepositoryUri>:latest

    Esempio:

    docker tag docker-image:test 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest
  5. Esegui il comando docker push per implementare la tua immagine locale sul repository Amazon ECR. Assicurati di includere :latest alla fine dell'URI del repository.

    docker push 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest
  6. Crea un ruolo di esecuzione per la funzione, se non lo hai già fatto. Il nome della risorsa Amazon (ARN) del ruolo ti occorrerà nel passaggio successivo.

  7. Creazione della funzione Lambda Per ImageUri, specifica l'URI del repository creato in precedenza. Assicurati di includere :latest alla fine dell'URI.

    aws lambda create-function \ --function-name hello-world \ --package-type Image \ --code ImageUri=111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \ --role arn:aws:iam::111122223333:role/lambda-ex
    Nota

    È possibile creare una funzione utilizzando un'immagine in un account AWS diverso, purché l'immagine si trovi nella stessa regione della funzione Lambda. Per ulteriori informazioni, consulta Autorizzazioni Amazon ECR per più account.

  8. Richiama la funzione.

    aws lambda invoke --function-name hello-world response.json

    Dovresti ottenere una risposta simile a questa:

    { "ExecutedVersion": "$LATEST", "StatusCode": 200 }
  9. Per vedere l'output della funzione, controlla il file response.json.

Per aggiornare il codice della funzione, devi creare nuovamente l'immagine, caricare la nuova immagine nel repository Amazon ECR e quindi utilizzare il comando update-function-code per implementare l'immagine nella funzione Lambda.

Lambda risolve il tag dell'immagine in un digest di immagine specifico. Ciò significa che se punti il tag immagine utilizzato per implementare la funzione su una nuova immagine in Amazon ECR, Lambda non aggiorna automaticamente la funzione per utilizzare la nuova immagine.

Per implementare la nuova immagine nella stessa funzione Lambda, devi utilizzare il comando update-function-code anche se il tag dell'immagine in Amazon ECR rimane lo stesso. Nell'esempio seguente, l'opzione --publish crea una nuova versione della funzione utilizzando l'immagine del container aggiornata.

aws lambda update-function-code \ --function-name hello-world \ --image-uri 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \ --publish

Per un esempio di come creare un'immagine Python da un'immagine di base Alpine, consulta Supporto delle immagini di container per Lambda sul Blog AWS.

PrivacyCondizioni del sitoPreferenze cookie
© 2025, Amazon Web Services, Inc. o società affiliate. Tutti i diritti riservati.