Select your cookie preferences

We use essential cookies and similar tools that are necessary to provide our site and services. We use performance cookies to collect anonymous statistics, so we can understand how customers use our site and make improvements. Essential cookies cannot be deactivated, but you can choose “Customize” or “Decline” to decline performance cookies.

If you agree, AWS and approved third parties will also use cookies to provide useful site features, remember your preferences, and display relevant content, including relevant advertising. To accept or decline all non-essential cookies, choose “Accept” or “Decline.” To make more detailed choices, choose “Customize.”

Creating a Neptune GraphMappingConfig

Focus mode
Creating a Neptune GraphMappingConfig - Amazon Neptune

The GraphMappingConfig that you create specifies how data extracted from a source data store should be loaded into a Neptune DB cluster. Its format differs depending on whether it is intended for loading RDF data or for loading property-graph data.

For RDF data, you can use the W3 R2RML language for mapping relational data to RDF.

If you are loading property-graph data to be queried using Gremlin, you create a JSON object for GraphMappingConfig.

GraphMappingConfig Layout for RDF/SPARQL Data

If you are loading RDF data to be queried using SPARQL, you write the GraphMappingConfig in R2RML. R2RML is a standard W3 language for mapping relational data to RDF. Here is one example:

@prefix rr: <http://www.w3.org/ns/r2rml#> . @prefix ex: <http://example.com/ns#> . <#TriplesMap1> rr:logicalTable [ rr:tableName "nodes" ]; rr:subjectMap [ rr:template "http://data.example.com/employee/{id}"; rr:class ex:Employee; ]; rr:predicateObjectMap [ rr:predicate ex:name; rr:objectMap [ rr:column "label" ]; ] .

Here is another example:

@prefix rr: <http://www.w3.org/ns/r2rml#> . @prefix ex: <http://example.com/#> . @prefix foaf: <http://xmlns.com/foaf/0.1/> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . <#TriplesMap2> rr:logicalTable [ rr:tableName "Student" ]; rr:subjectMap [ rr:template "http://example.com/{ID}{Name}"; rr:class foaf:Person ]; rr:predicateObjectMap [ rr:predicate ex:id ; rr:objectMap [ rr:column "ID"; rr:datatype xsd:integer ] ]; rr:predicateObjectMap [ rr:predicate foaf:name ; rr:objectMap [ rr:column "Name" ] ] .

The W3 Recommendation at R2RML: RDB to RDF Mapping Language provides details of the language.

GraphMappingConfig Layout for Property-Graph/Gremlin Data

A comparable GraphMappingConfig for property-graph data is a JSON object that provides a mapping rule for each graph entity to be genereated from the source data. The following template shows what each rule in this object looks like:

{ "rules": [ { "rule_id": "(an identifier for this rule)", "rule_name": "(a name for this rule)", "table_name": "(the name of the table or view being loaded)", "vertex_definitions": [ { "vertex_id_template": "{col1}", "vertex_label": "(the vertex to create)", "vertex_definition_id": "(an identifier for this vertex)", "vertex_properties": [ { "property_name": "(name of the property)", "property_value_template": "{col2} or text", "property_value_type": "(data type of the property)" } ] } ] }, { "rule_id": "(an identifier for this rule)", "rule_name": "(a name for this rule)", "table_name": "(the name of the table or view being loaded)", "edge_definitions": [ { "from_vertex": { "vertex_id_template": "{col1}", "vertex_definition_id": "(an identifier for the vertex referenced above)" }, "to_vertex": { "vertex_id_template": "{col3}", "vertex_definition_id": "(an identifier for the vertex referenced above)" }, "edge_id_template": { "label": "(the edge label to add)", "template": "{col1}_{col3}" }, "edge_properties":[ { "property_name": "(the property to add)", "property_value_template": "{col4} or text", "property_value_type": "(data type like String, int, double)" } ] } ] } ] }

Note that the presence of a vertex label implies that the vertex is being created here, whereas its absence implies that the vertex is created by a different source, and this definition is only adding vertex properties.

Here is a sample rule for an employee record:

{ "rules": [ { "rule_id": "1", "rule_name": "vertex_mapping_rule_from_nodes", "table_name": "nodes", "vertex_definitions": [ { "vertex_id_template": "{emp_id}", "vertex_label": "employee", "vertex_definition_id": "1", "vertex_properties": [ { "property_name": "name", "property_value_template": "{emp_name}", "property_value_type": "String" } ] } ] }, { "rule_id": "2", "rule_name": "edge_mapping_rule_from_emp", "table_name": "nodes", "edge_definitions": [ { "from_vertex": { "vertex_id_template": "{emp_id}", "vertex_definition_id": "1" }, "to_vertex": { "vertex_id_template": "{mgr_id}", "vertex_definition_id": "1" }, "edge_id_template": { "label": "reportsTo", "template": "{emp_id}_{mgr_id}" }, "edge_properties":[ { "property_name": "team", "property_value_template": "{team}", "property_value_type": "String" } ] } ] } ] }
PrivacySite termsCookie preferences
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.