OutputDataConfig
- class aws_cdk.aws_stepfunctions_tasks.OutputDataConfig(*, s3_output_location, encryption_key=None)
Bases:
object
Configures the S3 bucket where SageMaker will save the result of model training.
- Parameters:
s3_output_location (
S3Location
) – Identifies the S3 path where you want Amazon SageMaker to store the model artifacts.encryption_key (
Optional
[IKey
]) – Optional KMS encryption key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. Default: - Amazon SageMaker uses the default KMS key for Amazon S3 for your role’s account
- ExampleMetadata:
infused
Example:
tasks.SageMakerCreateTrainingJob(self, "TrainSagemaker", training_job_name=sfn.JsonPath.string_at("$.JobName"), algorithm_specification=tasks.AlgorithmSpecification( algorithm_name="BlazingText", training_input_mode=tasks.InputMode.FILE ), input_data_config=[tasks.Channel( channel_name="train", data_source=tasks.DataSource( s3_data_source=tasks.S3DataSource( s3_data_type=tasks.S3DataType.S3_PREFIX, s3_location=tasks.S3Location.from_json_expression("$.S3Bucket") ) ) )], output_data_config=tasks.OutputDataConfig( s3_output_location=tasks.S3Location.from_bucket(s3.Bucket.from_bucket_name(self, "Bucket", "amzn-s3-demo-bucket"), "myoutputpath") ), resource_config=tasks.ResourceConfig( instance_count=1, instance_type=ec2.InstanceType(sfn.JsonPath.string_at("$.InstanceType")), volume_size=Size.gibibytes(50) ), # optional: default is 1 instance of EC2 `M4.XLarge` with `10GB` volume stopping_condition=tasks.StoppingCondition( max_runtime=Duration.hours(2) ) )
Attributes
- encryption_key
Optional KMS encryption key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- Default:
Amazon SageMaker uses the default KMS key for Amazon S3 for your role’s account
- s3_output_location
Identifies the S3 path where you want Amazon SageMaker to store the model artifacts.