SageMakerCreateTrainingJobProps
- class aws_cdk.aws_stepfunctions_tasks.SageMakerCreateTrainingJobProps(*, comment=None, credentials=None, heartbeat=None, heartbeat_timeout=None, input_path=None, integration_pattern=None, output_path=None, result_path=None, result_selector=None, state_name=None, task_timeout=None, timeout=None, algorithm_specification, output_data_config, training_job_name, enable_network_isolation=None, environment=None, hyperparameters=None, input_data_config=None, resource_config=None, role=None, stopping_condition=None, tags=None, vpc_config=None)
Bases:
TaskStateBaseProps
Properties for creating an Amazon SageMaker training job.
- Parameters:
comment (
Optional
[str
]) – An optional description for this state. Default: - No commentcredentials (
Union
[Credentials
,Dict
[str
,Any
],None
]) – Credentials for an IAM Role that the State Machine assumes for executing the task. This enables cross-account resource invocations. Default: - None (Task is executed using the State Machine’s execution role)heartbeat (
Optional
[Duration
]) – (deprecated) Timeout for the heartbeat. Default: - Noneheartbeat_timeout (
Optional
[Timeout
]) – Timeout for the heartbeat. [disable-awslint:duration-prop-type] is needed because all props interface in aws-stepfunctions-tasks extend this interface Default: - Noneinput_path (
Optional
[str
]) – JSONPath expression to select part of the state to be the input to this state. May also be the special value JsonPath.DISCARD, which will cause the effective input to be the empty object {}. Default: - The entire task input (JSON path ‘$’)integration_pattern (
Optional
[IntegrationPattern
]) – AWS Step Functions integrates with services directly in the Amazon States Language. You can control these AWS services using service integration patterns. Depending on the AWS Service, the Service Integration Pattern availability will vary. Default: -IntegrationPattern.REQUEST_RESPONSE
for most tasks.IntegrationPattern.RUN_JOB
for the following exceptions:BatchSubmitJob
,EmrAddStep
,EmrCreateCluster
,EmrTerminationCluster
, andEmrContainersStartJobRun
.output_path (
Optional
[str
]) – JSONPath expression to select select a portion of the state output to pass to the next state. May also be the special value JsonPath.DISCARD, which will cause the effective output to be the empty object {}. Default: - The entire JSON node determined by the state input, the task result, and resultPath is passed to the next state (JSON path ‘$’)result_path (
Optional
[str
]) – JSONPath expression to indicate where to inject the state’s output. May also be the special value JsonPath.DISCARD, which will cause the state’s input to become its output. Default: - Replaces the entire input with the result (JSON path ‘$’)result_selector (
Optional
[Mapping
[str
,Any
]]) – The JSON that will replace the state’s raw result and become the effective result before ResultPath is applied. You can use ResultSelector to create a payload with values that are static or selected from the state’s raw result. Default: - Nonestate_name (
Optional
[str
]) – Optional name for this state. Default: - The construct ID will be used as state nametask_timeout (
Optional
[Timeout
]) – Timeout for the task. [disable-awslint:duration-prop-type] is needed because all props interface in aws-stepfunctions-tasks extend this interface Default: - Nonetimeout (
Optional
[Duration
]) – (deprecated) Timeout for the task. Default: - Nonealgorithm_specification (
Union
[AlgorithmSpecification
,Dict
[str
,Any
]]) – Identifies the training algorithm to use.output_data_config (
Union
[OutputDataConfig
,Dict
[str
,Any
]]) – Identifies the Amazon S3 location where you want Amazon SageMaker to save the results of model training.training_job_name (
str
) – Training Job Name.enable_network_isolation (
Optional
[bool
]) – Isolates the training container. No inbound or outbound network calls can be made to or from the training container. Default: falseenvironment (
Optional
[Mapping
[str
,str
]]) – Environment variables to set in the Docker container. Default: - No environment variableshyperparameters (
Optional
[Mapping
[str
,Any
]]) – Algorithm-specific parameters that influence the quality of the model. Set hyperparameters before you start the learning process. For a list of hyperparameters provided by Amazon SageMaker Default: - No hyperparametersinput_data_config (
Optional
[Sequence
[Union
[Channel
,Dict
[str
,Any
]]]]) – Describes the various datasets (e.g. train, validation, test) and the Amazon S3 location where stored. Default: - No inputDataConfigresource_config (
Union
[ResourceConfig
,Dict
[str
,Any
],None
]) – Specifies the resources, ML compute instances, and ML storage volumes to deploy for model training. Default: - 1 instance of EC2M4.XLarge
with10GB
volumerole (
Optional
[IRole
]) – Role for the Training Job. The role must be granted all necessary permissions for the SageMaker training job to be able to operate. See https://docs.aws.amazon.com/fr_fr/sagemaker/latest/dg/sagemaker-roles.html#sagemaker-roles-createtrainingjob-perms Default: - a role will be created.stopping_condition (
Union
[StoppingCondition
,Dict
[str
,Any
],None
]) – Sets a time limit for training. Default: - max runtime of 1 hourtags (
Optional
[Mapping
[str
,str
]]) – Tags to be applied to the train job. Default: - No tagsvpc_config (
Union
[VpcConfig
,Dict
[str
,Any
],None
]) – Specifies the VPC that you want your training job to connect to. Default: - No VPC
- ExampleMetadata:
infused
Example:
tasks.SageMakerCreateTrainingJob(self, "TrainSagemaker", training_job_name=sfn.JsonPath.string_at("$.JobName"), algorithm_specification=tasks.AlgorithmSpecification( algorithm_name="BlazingText", training_input_mode=tasks.InputMode.FILE ), input_data_config=[tasks.Channel( channel_name="train", data_source=tasks.DataSource( s3_data_source=tasks.S3DataSource( s3_data_type=tasks.S3DataType.S3_PREFIX, s3_location=tasks.S3Location.from_json_expression("$.S3Bucket") ) ) )], output_data_config=tasks.OutputDataConfig( s3_output_location=tasks.S3Location.from_bucket(s3.Bucket.from_bucket_name(self, "Bucket", "amzn-s3-demo-bucket"), "myoutputpath") ), resource_config=tasks.ResourceConfig( instance_count=1, instance_type=ec2.InstanceType(sfn.JsonPath.string_at("$.InstanceType")), volume_size=Size.gibibytes(50) ), # optional: default is 1 instance of EC2 `M4.XLarge` with `10GB` volume stopping_condition=tasks.StoppingCondition( max_runtime=Duration.hours(2) ) )
Attributes
- algorithm_specification
Identifies the training algorithm to use.
- comment
An optional description for this state.
- Default:
No comment
- credentials
Credentials for an IAM Role that the State Machine assumes for executing the task.
This enables cross-account resource invocations.
- Default:
None (Task is executed using the State Machine’s execution role)
- See:
- enable_network_isolation
Isolates the training container.
No inbound or outbound network calls can be made to or from the training container.
- Default:
false
- environment
Environment variables to set in the Docker container.
- Default:
No environment variables
- heartbeat
(deprecated) Timeout for the heartbeat.
- Default:
None
- Deprecated:
use
heartbeatTimeout
- Stability:
deprecated
- heartbeat_timeout
Timeout for the heartbeat.
[disable-awslint:duration-prop-type] is needed because all props interface in aws-stepfunctions-tasks extend this interface
- Default:
None
- hyperparameters
Algorithm-specific parameters that influence the quality of the model.
Set hyperparameters before you start the learning process. For a list of hyperparameters provided by Amazon SageMaker
- Default:
No hyperparameters
- See:
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
- input_data_config
Describes the various datasets (e.g. train, validation, test) and the Amazon S3 location where stored.
- Default:
No inputDataConfig
- input_path
JSONPath expression to select part of the state to be the input to this state.
May also be the special value JsonPath.DISCARD, which will cause the effective input to be the empty object {}.
- Default:
The entire task input (JSON path ‘$’)
- integration_pattern
AWS Step Functions integrates with services directly in the Amazon States Language.
You can control these AWS services using service integration patterns.
Depending on the AWS Service, the Service Integration Pattern availability will vary.
- Default:
IntegrationPattern.REQUEST_RESPONSE
for most tasks.
IntegrationPattern.RUN_JOB
for the following exceptions:BatchSubmitJob
,EmrAddStep
,EmrCreateCluster
,EmrTerminationCluster
, andEmrContainersStartJobRun
.
- output_data_config
Identifies the Amazon S3 location where you want Amazon SageMaker to save the results of model training.
- output_path
JSONPath expression to select select a portion of the state output to pass to the next state.
May also be the special value JsonPath.DISCARD, which will cause the effective output to be the empty object {}.
- Default:
The entire JSON node determined by the state input, the task result,
and resultPath is passed to the next state (JSON path ‘$’)
- resource_config
Specifies the resources, ML compute instances, and ML storage volumes to deploy for model training.
- Default:
1 instance of EC2
M4.XLarge
with10GB
volume
- result_path
JSONPath expression to indicate where to inject the state’s output.
May also be the special value JsonPath.DISCARD, which will cause the state’s input to become its output.
- Default:
Replaces the entire input with the result (JSON path ‘$’)
- result_selector
The JSON that will replace the state’s raw result and become the effective result before ResultPath is applied.
You can use ResultSelector to create a payload with values that are static or selected from the state’s raw result.
- role
Role for the Training Job.
The role must be granted all necessary permissions for the SageMaker training job to be able to operate.
- Default:
a role will be created.
- state_name
Optional name for this state.
- Default:
The construct ID will be used as state name
- stopping_condition
Sets a time limit for training.
- Default:
max runtime of 1 hour
- tags
Tags to be applied to the train job.
- Default:
No tags
- task_timeout
Timeout for the task.
[disable-awslint:duration-prop-type] is needed because all props interface in aws-stepfunctions-tasks extend this interface
- Default:
None
- timeout
(deprecated) Timeout for the task.
- Default:
None
- Deprecated:
use
taskTimeout
- Stability:
deprecated
- training_job_name
Training Job Name.
- vpc_config
Specifies the VPC that you want your training job to connect to.
- Default:
No VPC