SageMakerCreateTrainingJobJsonataProps
- class aws_cdk.aws_stepfunctions_tasks.SageMakerCreateTrainingJobJsonataProps(*, comment=None, query_language=None, state_name=None, credentials=None, heartbeat=None, heartbeat_timeout=None, integration_pattern=None, task_timeout=None, timeout=None, assign=None, outputs=None, algorithm_specification, output_data_config, training_job_name, enable_network_isolation=None, environment=None, hyperparameters=None, input_data_config=None, resource_config=None, role=None, stopping_condition=None, tags=None, vpc_config=None)
Bases:
TaskStateJsonataBaseProps
Properties for creating an Amazon SageMaker training job using JSONata.
- Parameters:
comment (
Optional
[str
]) – A comment describing this state. Default: No commentquery_language (
Optional
[QueryLanguage
]) – The name of the query language used by the state. If the state does not contain aqueryLanguage
field, then it will use the query language specified in the top-levelqueryLanguage
field. Default: - JSONPathstate_name (
Optional
[str
]) – Optional name for this state. Default: - The construct ID will be used as state namecredentials (
Union
[Credentials
,Dict
[str
,Any
],None
]) – Credentials for an IAM Role that the State Machine assumes for executing the task. This enables cross-account resource invocations. Default: - None (Task is executed using the State Machine’s execution role)heartbeat (
Optional
[Duration
]) – (deprecated) Timeout for the heartbeat. Default: - Noneheartbeat_timeout (
Optional
[Timeout
]) – Timeout for the heartbeat. [disable-awslint:duration-prop-type] is needed because all props interface in aws-stepfunctions-tasks extend this interface Default: - Noneintegration_pattern (
Optional
[IntegrationPattern
]) – AWS Step Functions integrates with services directly in the Amazon States Language. You can control these AWS services using service integration patterns. Depending on the AWS Service, the Service Integration Pattern availability will vary. Default: -IntegrationPattern.REQUEST_RESPONSE
for most tasks.IntegrationPattern.RUN_JOB
for the following exceptions:BatchSubmitJob
,EmrAddStep
,EmrCreateCluster
,EmrTerminationCluster
, andEmrContainersStartJobRun
.task_timeout (
Optional
[Timeout
]) – Timeout for the task. [disable-awslint:duration-prop-type] is needed because all props interface in aws-stepfunctions-tasks extend this interface Default: - Nonetimeout (
Optional
[Duration
]) – (deprecated) Timeout for the task. Default: - Noneassign (
Optional
[Mapping
[str
,Any
]]) – Workflow variables to store in this step. Using workflow variables, you can store data in a step and retrieve that data in future steps. Default: - Not assign variablesoutputs (
Any
) – Used to specify and transform output from the state. When specified, the value overrides the state output default. The output field accepts any JSON value (object, array, string, number, boolean, null). Any string value, including those inside objects or arrays, will be evaluated as JSONata if surrounded by {% %} characters. Output also accepts a JSONata expression directly. Default: - $states.result or $states.errorOutputalgorithm_specification (
Union
[AlgorithmSpecification
,Dict
[str
,Any
]]) – Identifies the training algorithm to use.output_data_config (
Union
[OutputDataConfig
,Dict
[str
,Any
]]) – Identifies the Amazon S3 location where you want Amazon SageMaker to save the results of model training.training_job_name (
str
) – Training Job Name.enable_network_isolation (
Optional
[bool
]) – Isolates the training container. No inbound or outbound network calls can be made to or from the training container. Default: falseenvironment (
Optional
[Mapping
[str
,str
]]) – Environment variables to set in the Docker container. Default: - No environment variableshyperparameters (
Optional
[Mapping
[str
,Any
]]) – Algorithm-specific parameters that influence the quality of the model. Set hyperparameters before you start the learning process. For a list of hyperparameters provided by Amazon SageMaker Default: - No hyperparametersinput_data_config (
Optional
[Sequence
[Union
[Channel
,Dict
[str
,Any
]]]]) – Describes the various datasets (e.g. train, validation, test) and the Amazon S3 location where stored. Default: - No inputDataConfigresource_config (
Union
[ResourceConfig
,Dict
[str
,Any
],None
]) – Specifies the resources, ML compute instances, and ML storage volumes to deploy for model training. Default: - 1 instance of EC2M4.XLarge
with10GB
volumerole (
Optional
[IRole
]) – Role for the Training Job. The role must be granted all necessary permissions for the SageMaker training job to be able to operate. See https://docs.aws.amazon.com/fr_fr/sagemaker/latest/dg/sagemaker-roles.html#sagemaker-roles-createtrainingjob-perms Default: - a role will be created.stopping_condition (
Union
[StoppingCondition
,Dict
[str
,Any
],None
]) – Sets a time limit for training. Default: - max runtime of 1 hourtags (
Optional
[Mapping
[str
,str
]]) – Tags to be applied to the train job. Default: - No tagsvpc_config (
Union
[VpcConfig
,Dict
[str
,Any
],None
]) – Specifies the VPC that you want your training job to connect to. Default: - No VPC
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk as cdk from aws_cdk import aws_ec2 as ec2 from aws_cdk import aws_iam as iam from aws_cdk import aws_kms as kms from aws_cdk import aws_stepfunctions as stepfunctions from aws_cdk import aws_stepfunctions_tasks as stepfunctions_tasks # assign: Any # docker_image: stepfunctions_tasks.DockerImage # hyperparameters: Any # instance_type: ec2.InstanceType # key: kms.Key # outputs: Any # role: iam.Role # s3_location: stepfunctions_tasks.S3Location # size: cdk.Size # subnet: ec2.Subnet # subnet_filter: ec2.SubnetFilter # task_role: stepfunctions.TaskRole # timeout: stepfunctions.Timeout # vpc: ec2.Vpc sage_maker_create_training_job_jsonata_props = stepfunctions_tasks.SageMakerCreateTrainingJobJsonataProps( algorithm_specification=stepfunctions_tasks.AlgorithmSpecification( algorithm_name="algorithmName", metric_definitions=[stepfunctions_tasks.MetricDefinition( name="name", regex="regex" )], training_image=docker_image, training_input_mode=stepfunctions_tasks.InputMode.PIPE ), output_data_config=stepfunctions_tasks.OutputDataConfig( s3_output_location=s3_location, # the properties below are optional encryption_key=key ), training_job_name="trainingJobName", # the properties below are optional assign={ "assign_key": assign }, comment="comment", credentials=stepfunctions.Credentials( role=task_role ), enable_network_isolation=False, environment={ "environment_key": "environment" }, heartbeat=cdk.Duration.minutes(30), heartbeat_timeout=timeout, hyperparameters={ "hyperparameters_key": hyperparameters }, input_data_config=[stepfunctions_tasks.Channel( channel_name="channelName", data_source=stepfunctions_tasks.DataSource( s3_data_source=stepfunctions_tasks.S3DataSource( s3_location=s3_location, # the properties below are optional attribute_names=["attributeNames"], s3_data_distribution_type=stepfunctions_tasks.S3DataDistributionType.FULLY_REPLICATED, s3_data_type=stepfunctions_tasks.S3DataType.MANIFEST_FILE ) ), # the properties below are optional compression_type=stepfunctions_tasks.CompressionType.NONE, content_type="contentType", input_mode=stepfunctions_tasks.InputMode.PIPE, record_wrapper_type=stepfunctions_tasks.RecordWrapperType.NONE, shuffle_config=stepfunctions_tasks.ShuffleConfig( seed=123 ) )], integration_pattern=stepfunctions.IntegrationPattern.REQUEST_RESPONSE, outputs=outputs, query_language=stepfunctions.QueryLanguage.JSON_PATH, resource_config=stepfunctions_tasks.ResourceConfig( instance_count=123, instance_type=instance_type, volume_size=size, # the properties below are optional volume_encryption_key=key ), role=role, state_name="stateName", stopping_condition=stepfunctions_tasks.StoppingCondition( max_runtime=cdk.Duration.minutes(30) ), tags={ "tags_key": "tags" }, task_timeout=timeout, timeout=cdk.Duration.minutes(30), vpc_config=stepfunctions_tasks.VpcConfig( vpc=vpc, # the properties below are optional subnets=ec2.SubnetSelection( availability_zones=["availabilityZones"], one_per_az=False, subnet_filters=[subnet_filter], subnet_group_name="subnetGroupName", subnets=[subnet], subnet_type=ec2.SubnetType.PRIVATE_ISOLATED ) ) )
Attributes
- algorithm_specification
Identifies the training algorithm to use.
- assign
Workflow variables to store in this step.
Using workflow variables, you can store data in a step and retrieve that data in future steps.
- Default:
Not assign variables
- See:
https://docs.aws.amazon.com/step-functions/latest/dg/workflow-variables.html
- comment
A comment describing this state.
- Default:
No comment
- credentials
Credentials for an IAM Role that the State Machine assumes for executing the task.
This enables cross-account resource invocations.
- Default:
None (Task is executed using the State Machine’s execution role)
- See:
- enable_network_isolation
Isolates the training container.
No inbound or outbound network calls can be made to or from the training container.
- Default:
false
- environment
Environment variables to set in the Docker container.
- Default:
No environment variables
- heartbeat
(deprecated) Timeout for the heartbeat.
- Default:
None
- Deprecated:
use
heartbeatTimeout
- Stability:
deprecated
- heartbeat_timeout
Timeout for the heartbeat.
[disable-awslint:duration-prop-type] is needed because all props interface in aws-stepfunctions-tasks extend this interface
- Default:
None
- hyperparameters
Algorithm-specific parameters that influence the quality of the model.
Set hyperparameters before you start the learning process. For a list of hyperparameters provided by Amazon SageMaker
- Default:
No hyperparameters
- See:
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
- input_data_config
Describes the various datasets (e.g. train, validation, test) and the Amazon S3 location where stored.
- Default:
No inputDataConfig
- integration_pattern
AWS Step Functions integrates with services directly in the Amazon States Language.
You can control these AWS services using service integration patterns.
Depending on the AWS Service, the Service Integration Pattern availability will vary.
- Default:
IntegrationPattern.REQUEST_RESPONSE
for most tasks.
IntegrationPattern.RUN_JOB
for the following exceptions:BatchSubmitJob
,EmrAddStep
,EmrCreateCluster
,EmrTerminationCluster
, andEmrContainersStartJobRun
.
- output_data_config
Identifies the Amazon S3 location where you want Amazon SageMaker to save the results of model training.
- outputs
Used to specify and transform output from the state.
When specified, the value overrides the state output default. The output field accepts any JSON value (object, array, string, number, boolean, null). Any string value, including those inside objects or arrays, will be evaluated as JSONata if surrounded by {% %} characters. Output also accepts a JSONata expression directly.
- Default:
$states.result or $states.errorOutput
- See:
- query_language
The name of the query language used by the state.
If the state does not contain a
queryLanguage
field, then it will use the query language specified in the top-levelqueryLanguage
field.- Default:
JSONPath
- resource_config
Specifies the resources, ML compute instances, and ML storage volumes to deploy for model training.
- Default:
1 instance of EC2
M4.XLarge
with10GB
volume
- role
Role for the Training Job.
The role must be granted all necessary permissions for the SageMaker training job to be able to operate.
- Default:
a role will be created.
- state_name
Optional name for this state.
- Default:
The construct ID will be used as state name
- stopping_condition
Sets a time limit for training.
- Default:
max runtime of 1 hour
- tags
Tags to be applied to the train job.
- Default:
No tags
- task_timeout
Timeout for the task.
[disable-awslint:duration-prop-type] is needed because all props interface in aws-stepfunctions-tasks extend this interface
- Default:
None
- timeout
(deprecated) Timeout for the task.
- Default:
None
- Deprecated:
use
taskTimeout
- Stability:
deprecated
- training_job_name
Training Job Name.
- vpc_config
Specifies the VPC that you want your training job to connect to.
- Default:
No VPC