開始方法 (AWS SDK for Python (Boto3)) - Amazon Kendra

翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛盾がある場合、英語版が優先します。

開始方法 (AWS SDK for Python (Boto3))

次のプログラムは、 を使用する例です。 Amazon Kendra Python プログラム内の 。このプログラムでは次のアクションを実行しています。

  1. CreateIndex オペレーションを使用して新しいインデックスを作成します。

  2. インデックスの作成が完了するのを待ちます。DescribeIndex オペレーションを使用して、インデックスのステータスをモニタリングします。

  3. インデックスがアクティブになると、 CreateDataSourceオペレーションを使用してデータソースが作成されます。

  4. データソースの作成が完了するのを待ちます。DescribeDataSource オペレーションを使用して、データソースのステータスをモニタリングします。

  5. データソースがアクティブになると、 StartDataSourceSyncJobオペレーションを使用してインデックスをデータソースの内容と同期します。

import boto3 from botocore.exceptions import ClientError import pprint import time kendra = boto3.client("kendra") print("Create an index.") # Provide a name for the index index_name = "python-getting-started-index" # Provide an optional decription for the index description = "Getting started index" # Provide the IAM role ARN required for indexes index_role_arn = "arn:aws:iam::${accountId}:role/KendraRoleForGettingStartedIndex" try: index_response = kendra.create_index( Description = description, Name = index_name, RoleArn = index_role_arn ) pprint.pprint(index_response) index_id = index_response["Id"] print("Wait for Amazon Kendra to create the index.") while True: # Get the details of the index, such as the status index_description = kendra.describe_index( Id = index_id ) # When status is not CREATING quit. status = index_description["Status"] print(" Creating index. Status: "+status) time.sleep(60) if status != "CREATING": break print("Create an S3 data source.") # Provide a name for the data source data_source_name = "python-getting-started-data-source" # Provide an optional description for the data source data_source_description = "Getting started data source." # Provide the IAM role ARN required for data sources data_source_role_arn = "arn:aws:iam::${accountId}:role/KendraRoleForGettingStartedDataSource" # Provide the data source connection information S3_bucket_name = "S3-bucket-name" data_source_type = "S3" # Configure the data source configuration = {"S3Configuration": { "BucketName": S3_bucket_name } } """ If you connect to your data source using a template schema, configure the template schema configuration = {"TemplateConfiguration": { "Template": {JSON schema} } } """ data_source_response = kendra.create_data_source( Name = data_source_name, Description = data_source_name, RoleArn = data_source_role_arn, Type = data_source_type, Configuration = configuration, IndexId = index_id ) pprint.pprint(data_source_response) data_source_id = data_source_response["Id"] print("Wait for Amazon Kendra to create the data source.") while True: # Get the details of the data source, such as the status data_source_description = kendra.describe_data_source( Id = data_source_id, IndexId = index_id ) # If status is not CREATING, then quit status = data_source_description["Status"] print(" Creating data source. Status: "+status) time.sleep(60) if status != "CREATING": break print("Synchronize the data source.") sync_response = kendra.start_data_source_sync_job( Id = data_source_id, IndexId = index_id ) pprint.pprint(sync_response) print("Wait for the data source to sync with the index.") while True: jobs = kendra.list_data_source_sync_jobs( Id = data_source_id, IndexId = index_id ) # For this example, there should be one job status = jobs["History"][0]["Status"] print(" Syncing data source. Status: "+status) if status != "SYNCING": break time.sleep(60) except ClientError as e: print("%s" % e) print("Program ends.")