Key concepts of Amazon Q Business
This section describes the key concepts and terms related to Amazon Q Business.
Topics
- Retrieval Augmented Generation
- Large language model
- Retriever
- Index
- Data source
- Data source connector
- IAM Identity Center
- Identity Federation through IAM
- Identity provider
- Document
- Application environment
- Web experience
- Guardrails
- Plugins
- Amazon Q Apps
- Quick prompts
- Document attributes
- Filtering using document attributes
- Relevance tuning
- Custom document enrichment
- Field mappings
- User store
- Index capacity
- Tags
- Large language model
- Hallucination
Retrieval Augmented Generation
Retrieval Augmented Generation (RAG) is a natural language processing (NLP) technique. Using RAG, generative artificial intelligence (generative AI) is conditioned on specific documents that are retrieved from a dataset. Amazon Q Business has a built-in RAG system. A RAG model has the following two components:
-
A retrieval component retrieves relevant documents for the user query.
-
A generation component takes the query and the retrieved documents and then generates an answer to the query using a large language model.
Large language model
A large language model (LLM) is a language-based, machine learning model that's tuned to a large number (billions) of parameters and trained on a large corpus of documents.
Retriever
A retriever pulls data from an index in real time during a conversation. Amazon Q Business supports a native index retriever and also a Amazon Kendra index retriever.
Index
An index is a corpus of documents. Amazon Q Business supports its own index where you can add and sync documents. An index has fields that you can map your document attributes to, to enhance your end user's chat experience. Amazon Q Business creates an index for you when it creates your Amazon Q Business native retriever. Amazon Q Business provides two types of index: Enterprise and Starter.
You can also use an Amazon Kendra index as a retriever for your generative AI application environment.
Data source
A data source is a document repository.
Data source connector
A data source connector can crawl and synchronize a data source with an Amazon Q Business index at customizable intervals. Amazon Q Business supports multiple connectors so that you can build your generative AI solution with minimal configuring. For a list of Amazon Q Business supported connectors, see Supported connectors. For an overview of Amazon Q Business connector features, see Amazon Q Business data source connector features.
IAM Identity Center
You can manage user access to your Amazon Q Business application environment using IAM Identity Center as your AWS gateway to the identity provider of your choice. For more information on creating an Amazon Q Business application environment integrated with IAM Identity Center see Configuring an IAM Identity Center instance and Configuring an Amazon Q Business application. For more information about using IAM Identity Center to manage access to applications, see Manage access to applications in the IAM Identity Center User Guide.
Identity Federation through IAM
Amazon Q Business supports identity federation through AWS Identity and Access Management. When you use identity federation, you can manage users with your enterprise identity provider (IdP) and use AWS Identity and Access Management to authenticate users when they sign in to AWS Identity and Access Management. For more information on creating an Amazon Q Business application environment integrated with AWS Identity and Access Management see Configuring an Amazon Q Business application.
Identity provider
An identity provider (IdP) is a service that stores, manages, maintains, and verifies user identities for your application environment (in this case, Amazon Q Business). Some examples of IdPs are IAM Identity Center, Okta, and Microsoft EntraID (formerly Azure Active Directory).
Document
In Amazon Q Business, a document is a unit of data. Specific document formats supported include .csv, .docx, HTML, JSON, .pdf, plaintext, .ppt, .pptx, .rtf, and .xslx. For more information, see Supported document types.
Application environment
An Amazon Q Business application environment is the primary resource that you use to create a chat solution. To create the application environment, you can use either the Amazon Q Business console or Amazon Q Business API actions.
Web experience
An Amazon Q Business web experience is the chat interface that you create using your Amazon Q Business application environment. Then, your end users can chat with your organization’s Amazon Q Business web experience. You can configure and customize your Amazon Q Business web experience using either the Amazon Q Business console or the Amazon Q Business API.
Guardrails
An Amazon Q Business feature that lets you define global controls and topic-level controls for your application environment. Using this feature, you can control what sources your application environment will use to generate responses from, and also control what topics it will respond to and how. For more information, see Guardrails.
Plugins
Amazon Q Business includes a plugins feature that you can use to interact with third-party services such as Jira and Salesforce. With the plugins feature, you can perform actions specific to that service (like creating a ticket) from within your Amazon Q Business web experience chat. For more information, see Plugins.
Amazon Q Apps
Amazon Q Business allows web experience users to create lightweight, purpose-built Q Apps to fulfill specific tasks from within their web experience. For example, you can use Amazon Q Business to create an app with a web experience that exclusively generates marketing-related content to improve your marketing team's productivity. Your marketing team members can, in turn, also create their own Amazon Q Apps with its own marketing content-generation capabilities—like writing customer emails and creating promotional content using a certain style of voice, tone, and branding. For more information, see Amazon Q Apps.
Quick prompts
The Amazon Q Business quick prompts feature helps with end user discoverability of the web experience chat features. Use this feature to prompt your end user to engage with their web experience chat in specific ways. For example, you can show the available configured plugins or inform users that they can choose to summarize their chat.
Document attributes
Document attributes are structural metadata associated with documents, such as document title, document type, and date and time created. Amazon Q Business extracts document attributes during the document ingestion process to provide customizable chat and data manipulation capabilities for your application environment. Amazon Q Business offers reserved document attributes that you can use. Or, you can create custom attributes. For more information, see Document attributes, Filtering using document attributes, Boosting using document attributes, and Custom document enrichment.
Filtering using document attributes
Filtering using document attributes is an Amazon Q Business feature that you can use to filter your Amazon Q Business chat responses for your end user. For example, if you have a document attribute associated with a data source type, you can use the attribute to mandate that chat responses only be generated from a specific data source. For more information, see Filtering using document attributes.
Relevance tuning
You can choose to use document attributes to boost and tune the relevance of chat responses for end users from specific content. For example, if you have a document attribute associated document creation or updation date, you use these attributes to boost chat responses from more recently created or updated documents. For more information, see Relevance tuning.
Custom document enrichment
Document enrichment is an Amazon Q Business feature that you can use to manipulate your document content and document attributes. You can use document enrichment to perform optical character recognition (OCR) or translation. Document enrichment uses basic and Lambda operations. For more information see, Document attributes and types and Document enrichment.
Field mappings
An Amazon Q Business index has fields that help you structure data to aid the retrieval process. You can map index fields to your document attributes when you add documents directly to an index, or use a data source connector.
User store
User Store is an Amazon Q Business data source connector feature that streamlines user and group management across all the data sources attached to your application environment. For more information about how this feature works and implementation details, see Understanding User Store.
Index capacity
When you use an Amazon Q Business native retriever for your application environment, you must provision data storage capacity for your index. Amazon Q Business provides two types of index: Enterprise and Starter. Both index types include 20,000 documents or 200 MB of total extracted text (whichever is reached first) and 100 hours of data connector usage (time that it takes to scan and index new, updated, or deleted documents) by default. For more information, see Amazon Q Business Index types and Pricing for subscriptions and indices.
Tags
Manage your Amazon Q Business applications and data sources by assigning tags or labels. You can use tags to categorize your Amazon Q Business resources in various ways. For example, categorize by purpose, owner, or application environment, or any combination. Each tag consists of a key and a value, both of which you define. For more information, see Tags.
Large language model
A foundation model (FM) is a broad, function-based machine learning model (not specific to language systems). An FM is tuned to a large number (billions) of parameters and is trained on a large corpus of documents.
Hallucination
A hallucination, in the machine learning context, is a confident response by an AI application environment that isn't justified by its training data. Think of a hallucination as instances where the response doesn't make sense in the context of the prompt, or when the responses are out of scope with the documents provided. Amazon Q Business offers you the ability to minimize hallucinations by allowing your retrieval system to generate responses only from your existing enterprise data.