Seleccione sus preferencias de cookies

Usamos cookies esenciales y herramientas similares que son necesarias para proporcionar nuestro sitio y nuestros servicios. Usamos cookies de rendimiento para recopilar estadísticas anónimas para que podamos entender cómo los clientes usan nuestro sitio y hacer mejoras. Las cookies esenciales no se pueden desactivar, pero puede hacer clic en “Personalizar” o “Rechazar” para rechazar las cookies de rendimiento.

Si está de acuerdo, AWS y los terceros aprobados también utilizarán cookies para proporcionar características útiles del sitio, recordar sus preferencias y mostrar contenido relevante, incluida publicidad relevante. Para aceptar o rechazar todas las cookies no esenciales, haga clic en “Aceptar” o “Rechazar”. Para elegir opciones más detalladas, haga clic en “Personalizar”.

Configuración de la exploración de un recomendador de dominios - Amazon Personalize

Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.

Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.

Configuración de la exploración de un recomendador de dominios

Para los casos de uso Top picks for your o Recommended for you, Amazon Personalize utiliza la exploración al recomendar elementos. La exploración implica probar diferentes recomendaciones de elementos para saber cómo responden los usuarios a elementos con muy pocos datos de interacción. Puede configurar la exploración con lo siguiente:

  • Énfasis en la exploración de los elementos menos relevantes (ponderación de la exploración): configure cuánto explorar. Especifique un valor decimal entre 0 y 1. El valor predeterminado es 0,3. Cuanto más se acerque el valor a 1, mayor será la exploración. Con una mayor exploración, las recomendaciones incluyen más elementos con menos datos de interacciones de elementos o relevancia en función del comportamiento anterior. En cero, no se realiza ninguna exploración y las recomendaciones se basan en los datos actuales (relevancia).

  • Límite de antigüedad del elemento de exploración: especifique la antigüedad máxima del elemento en días desde la última interacción entre todos los elementos del conjunto de datos de interacciones de elementos. Esto define el alcance de la exploración del elemento en función de su antigüedad. Amazon Personalize determina la antigüedad del elemento en función de su marca de tiempo de creación o, si faltan los datos de esa marca, de los datos de interacciones de elementos. Para obtener más información sobre cómo Amazon Personalize determina la antigüedad del elemento, consulte Datos de la marca de tiempo de creación.

    Para aumentar el número de elementos que Amazon Personalize considera durante la exploración, indique un valor superior. El mínimo es de 1 día y el valor predeterminado es de 30 días. Las recomendaciones pueden incluir elementos con una antigüedad superior al límite de antigüedad que especifique. Esto se debe a que estos elementos son relevantes para el usuario y la exploración no los identificó.

En los siguientes ejemplos de código se muestra cómo configurar la exploración de un recomendante con AWS CLI o. AWS SDKs Para hacerlo con la consola de Amazon Personalize, especifique las columnas de exploración en la página Configuración avanzada al crear el recomendador. Para obtener más información, consulte Creación de generadores de recomendaciones (consola).

En el siguiente código se muestra cómo configurar la exploración al crear un generador de recomendaciones para el caso de uso de Top picks for you. El ejemplo utiliza los valores predeterminados.

Si tiene un conjunto de datos de elementos y quiere tener la opción de incluir metadatos al recibir recomendaciones, actualice recommender-config para agregar un campo enableMetadataWithRecommendations y establézcalo en true.

aws personalize create-recommender \ --name recommender name \ --dataset-group-arn dataset group ARN \ --recipe-arn arn:aws:personalize:::recipe/aws-vod-top-picks \ --recommender-config "{\"itemExplorationConfig\":{\"explorationWeight\":\"0.3\",\"explorationItemAgeCutOff\":\"30\"}}"

Configuración de la exploración (AWS CLI)

En el siguiente código se muestra cómo configurar la exploración al crear un generador de recomendaciones para el caso de uso de Top picks for you. El ejemplo utiliza los valores predeterminados.

Si tiene un conjunto de datos de elementos y quiere tener la opción de incluir metadatos al recibir recomendaciones, actualice recommender-config para agregar un campo enableMetadataWithRecommendations y establézcalo en true.

aws personalize create-recommender \ --name recommender name \ --dataset-group-arn dataset group ARN \ --recipe-arn arn:aws:personalize:::recipe/aws-vod-top-picks \ --recommender-config "{\"itemExplorationConfig\":{\"explorationWeight\":\"0.3\",\"explorationItemAgeCutOff\":\"30\"}}"

Para los casos de uso Top picks for your o Recommended for you, Amazon Personalize utiliza la exploración al recomendar elementos. La exploración implica probar diferentes recomendaciones de elementos para saber cómo responden los usuarios a elementos con muy pocos datos de interacción. Puede configurar la exploración con lo siguiente:

  • Énfasis en la exploración de los elementos menos relevantes (ponderación de la exploración): configure cuánto explorar. Especifique un valor decimal entre 0 y 1. El valor predeterminado es 0,3. Cuanto más se acerque el valor a 1, mayor será la exploración. Con una mayor exploración, las recomendaciones incluyen más elementos con menos datos de interacciones de elementos o relevancia en función del comportamiento anterior. En cero, no se realiza ninguna exploración y las recomendaciones se basan en los datos actuales (relevancia).

  • Límite de antigüedad del elemento de exploración: especifique la antigüedad máxima del elemento en días desde la última interacción entre todos los elementos del conjunto de datos de interacciones de elementos. Esto define el alcance de la exploración del elemento en función de su antigüedad. Amazon Personalize determina la antigüedad del elemento en función de su marca de tiempo de creación o, si faltan los datos de esa marca, de los datos de interacciones de elementos. Para obtener más información sobre cómo Amazon Personalize determina la antigüedad del elemento, consulte Datos de la marca de tiempo de creación.

    Para aumentar el número de elementos que Amazon Personalize considera durante la exploración, indique un valor superior. El mínimo es de 1 día y el valor predeterminado es de 30 días. Las recomendaciones pueden incluir elementos con una antigüedad superior al límite de antigüedad que especifique. Esto se debe a que estos elementos son relevantes para el usuario y la exploración no los identificó.

En el código siguiente se muestra cómo configurar la exploración al crear un generador de recomendación. El ejemplo utiliza los valores predeterminados.

SDK for Python (Boto3)
import boto3 personalize = boto3.client('personalize') create_recommender_response = personalize.create_recommender( name = 'recommender name', recipeArn = 'arn:aws:personalize:::recipe/aws-vod-top-picks', datasetGroupArn = 'dataset group ARN', recommenderConfig = {"itemExplorationConfig": {"explorationWeight": "0.3", "explorationItemAgeCutOff": "30"}} ) recommender_arn = create_recommender_response['recommenderArn'] print('Recommender ARN:' + recommender_arn)
SDK for JavaScript v3
// Get service clients and commands using ES6 syntax. import { CreateRecommenderCommand, PersonalizeClient } from "@aws-sdk/client-personalize"; // create personalizeClient const personalizeClient = new PersonalizeClient({ region: "REGION" }); // set the recommender's parameters export const createRecommenderParam = { name: "RECOMMENDER_NAME", /* required */ recipeArn: "RECIPE_ARN", /* required */ datasetGroupArn: "DATASET_GROUP_ARN", /* required */ recommenderConfig: { itemExplorationConfig: { explorationWeight: "0.3", explorationItemAgeCutOff: "30" } } }; export const run = async () => { try { const response = await personalizeClient.send(new CreateRecommenderCommand(createRecommenderParam)); console.log("Success", response); return response; // For unit tests. } catch (err) { console.log("Error", err); } }; run();

Para los casos de uso Top picks for your o Recommended for you, Amazon Personalize utiliza la exploración al recomendar elementos. La exploración implica probar diferentes recomendaciones de elementos para saber cómo responden los usuarios a elementos con muy pocos datos de interacción. Puede configurar la exploración con lo siguiente:

  • Énfasis en la exploración de los elementos menos relevantes (ponderación de la exploración): configure cuánto explorar. Especifique un valor decimal entre 0 y 1. El valor predeterminado es 0,3. Cuanto más se acerque el valor a 1, mayor será la exploración. Con una mayor exploración, las recomendaciones incluyen más elementos con menos datos de interacciones de elementos o relevancia en función del comportamiento anterior. En cero, no se realiza ninguna exploración y las recomendaciones se basan en los datos actuales (relevancia).

  • Límite de antigüedad del elemento de exploración: especifique la antigüedad máxima del elemento en días desde la última interacción entre todos los elementos del conjunto de datos de interacciones de elementos. Esto define el alcance de la exploración del elemento en función de su antigüedad. Amazon Personalize determina la antigüedad del elemento en función de su marca de tiempo de creación o, si faltan los datos de esa marca, de los datos de interacciones de elementos. Para obtener más información sobre cómo Amazon Personalize determina la antigüedad del elemento, consulte Datos de la marca de tiempo de creación.

    Para aumentar el número de elementos que Amazon Personalize considera durante la exploración, indique un valor superior. El mínimo es de 1 día y el valor predeterminado es de 30 días. Las recomendaciones pueden incluir elementos con una antigüedad superior al límite de antigüedad que especifique. Esto se debe a que estos elementos son relevantes para el usuario y la exploración no los identificó.

En el código siguiente se muestra cómo configurar la exploración al crear un generador de recomendación. El ejemplo utiliza los valores predeterminados.

SDK for Python (Boto3)
import boto3 personalize = boto3.client('personalize') create_recommender_response = personalize.create_recommender( name = 'recommender name', recipeArn = 'arn:aws:personalize:::recipe/aws-vod-top-picks', datasetGroupArn = 'dataset group ARN', recommenderConfig = {"itemExplorationConfig": {"explorationWeight": "0.3", "explorationItemAgeCutOff": "30"}} ) recommender_arn = create_recommender_response['recommenderArn'] print('Recommender ARN:' + recommender_arn)
SDK for JavaScript v3
// Get service clients and commands using ES6 syntax. import { CreateRecommenderCommand, PersonalizeClient } from "@aws-sdk/client-personalize"; // create personalizeClient const personalizeClient = new PersonalizeClient({ region: "REGION" }); // set the recommender's parameters export const createRecommenderParam = { name: "RECOMMENDER_NAME", /* required */ recipeArn: "RECIPE_ARN", /* required */ datasetGroupArn: "DATASET_GROUP_ARN", /* required */ recommenderConfig: { itemExplorationConfig: { explorationWeight: "0.3", explorationItemAgeCutOff: "30" } } }; export const run = async () => { try { const response = await personalizeClient.send(new CreateRecommenderCommand(createRecommenderParam)); console.log("Success", response); return response; // For unit tests. } catch (err) { console.log("Error", err); } }; run();
import boto3 personalize = boto3.client('personalize') create_recommender_response = personalize.create_recommender( name = 'recommender name', recipeArn = 'arn:aws:personalize:::recipe/aws-vod-top-picks', datasetGroupArn = 'dataset group ARN', recommenderConfig = {"itemExplorationConfig": {"explorationWeight": "0.3", "explorationItemAgeCutOff": "30"}} ) recommender_arn = create_recommender_response['recommenderArn'] print('Recommender ARN:' + recommender_arn)
PrivacidadTérminos del sitioPreferencias de cookies
© 2025, Amazon Web Services, Inc o sus afiliados. Todos los derechos reservados.