Sélectionner vos préférences de cookies

Nous utilisons des cookies essentiels et des outils similaires qui sont nécessaires au fonctionnement de notre site et à la fourniture de nos services. Nous utilisons des cookies de performance pour collecter des statistiques anonymes afin de comprendre comment les clients utilisent notre site et d’apporter des améliorations. Les cookies essentiels ne peuvent pas être désactivés, mais vous pouvez cliquer sur « Personnaliser » ou « Refuser » pour refuser les cookies de performance.

Si vous êtes d’accord, AWS et les tiers approuvés utiliseront également des cookies pour fournir des fonctionnalités utiles au site, mémoriser vos préférences et afficher du contenu pertinent, y compris des publicités pertinentes. Pour accepter ou refuser tous les cookies non essentiels, cliquez sur « Accepter » ou « Refuser ». Pour effectuer des choix plus détaillés, cliquez sur « Personnaliser ».

Exemple de fonction Lambda d'analyse vocale pour le SDK Amazon Chime

Mode de mise au point
Exemple de fonction Lambda d'analyse vocale pour le SDK Amazon Chime - Kit SDK Amazon Chime

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Le code Python de l'exemple suivant traite les notifications reçues d'un connecteur vocal. Vous pouvez ajouter le code à une fonction AWS Lambda. Vous pouvez également l'utiliser pour déclencher votre file d'attente Amazon SQS, votre rubrique Amazon SNS ou Amazon Kinesis Data Stream. Vous pouvez ensuite enregistrer les notifications dans un fichier EventTable pour un traitement futur. Pour connaître les formats de notification exacts, voirComprendre les notifications pour le SDK Amazon Chime.

import base64 import boto3 import json import logging import time from datetime import datetime from enum import Enum log = logging.getLogger() log.setLevel(logging.INFO) dynamo = boto3.client("dynamodb") EVENT_TABLE_NAME = "EventTable" class EventType(Enum): """ This example code uses a single Lambda processor to handle either triggers from SQS, SNS, Lambda, or Kinesis. You can adapt it to fit your desired infrastructure depending on what you prefer. To distinguish where we get events from, we use an EventType enum as an example to show the different ways of parsing the notifications. """ SQS = "SQS" SNS = "SNS" LAMBDA = "LAMBDA" KINESIS = "KINESIS" class AnalyticsType(Enum): """ Define the various analytics event types that this Lambda will handle. """ SPEAKER_SEARCH = "SpeakerSearch" VOICE_TONE_ANALYSIS = "VoiceToneAnalysis" ANALYTICS_READY = "AnalyticsReady" UNKNOWN = "UNKNOWN" class DetailType(Enum): """ Define the various detail types that Voice Connector's voice analytics feature can return. """ SPEAKER_SEARCH_TYPE = "SpeakerSearchStatus" VOICE_TONE_ANALYSIS_TYPE = "VoiceToneAnalysisStatus" ANALYTICS_READY = "VoiceAnalyticsStatus" def handle(event, context): """ Example of how to handle incoming Voice Analytics notification messages from Voice Connector. """ logging.info(f"Received event of type {type(event)} with payload {event}") is_lambda = True # Handle triggers from SQS, SNS, and KDS. Use the below code if you would like # to use this Lambda as a trigger for an existing SQS queue, SNS topic or Kinesis # stream. if "Records" in event: logging.info("Handling event from SQS or SNS since Records exists") is_lambda = False for record in event.get("Records", []): _process_record(record) # If you would prefer to have your Lambda invoked directly, use the # below code to have the Voice Connector directly invoke your Lambda. # In this scenario, there are no "Records" passed. if is_lambda: logging.info(f"Handling event from Lambda") event_type = EventType.LAMBDA _process_notification_event(event_type, event) def _process_record(record): # SQS and Kinesis use eventSource. event_source = record.get("eventSource") # SNS uses EventSource. if not event_source: event_source = record.get("EventSource") # Assign the event type explicitly based on the event source value. event_type = None if event_source == "aws:sqs": event = record["body"] event_type = EventType.SQS elif event_source == "aws:sns": event = record["Sns"]["Message"] event_type = EventType.SNS elif event_source == "aws:kinesis": raw_data = record["kinesis"]["data"] raw_message = base64.b64decode(raw_data).decode('utf-8') event = json.loads(raw_message) event_type = EventType.KINESIS else: raise Exception(f"Event source {event_source} is not supported") _process_notification_event(event_type, event) def _process_notification_event( event_type: EventType, event: dict ): """ Extract the attributes from the Voice Analytics notification message and store it as a DynamoDB item to process later. """ message_id = event.get("id") analytics_type = _get_analytics_type(event.get("detail-type")) pk = None if analytics_type == AnalyticsType.ANALYTICS_READY.value or analytics_type == AnalyticsType.UNKNOWN.value: transaction_id = event.get("detail").get("transactionId") pk = f"transactionId#{transaction_id}#notificationType#{event_type.value}#analyticsType#{analytics_type}" else: task_id = event.get("detail").get("taskId") pk = f"taskId#{task_id}#notificationType#{event_type.value}#analyticsType#{analytics_type}" logging.info(f"Generated PK {pk}") _create_request_record(pk, message_id, json.dumps(event)) def _create_request_record(pk: str, sk: str, body: str): """ Record this notification message into the Dynamo db table """ try: # Use consistent ISO8601 date format. # 2019-08-01T23:09:35.369156 -> 2019-08-01T23:09:35.369Z time_now = ( datetime.utcnow().isoformat()[:-3] + "Z" ) response = dynamo.put_item( Item={ "PK": {"S": pk}, "SK": {"S": sk}, "body": {"S": body}, "createdOn": {"S": time_now}, }, TableName=EVENT_TABLE_NAME, ) logging.info(f"Added record in table {EVENT_TABLE_NAME}, response : {response}") except Exception as e: logging.error(f"Error in adding record: {e}") def _get_analytics_type(detail_type: str): """ Get analytics type based on message detail type value. """ if detail_type == DetailType.SPEAKER_SEARCH_TYPE.value: return AnalyticsType.SPEAKER_SEARCH.value elif detail_type == DetailType.VOICE_TONE_ANALYSIS_TYPE.value: return AnalyticsType.VOICE_TONE_ANALYSIS.value elif detail_type == DetailType.ANALYTICS_READY.value: return AnalyticsType.ANALYTICS_READY.value else: return AnalyticsType.UNKNOWN.value
Important

Vous devez obtenir votre consentement avant d'appeler le StartSpeakerSearchTask ou StartVoiceToneAnalysis APIs. Nous vous recommandons de conserver les événements dans une zone d'attente, telle qu'Amazon DynamoDB, jusqu'à ce que vous obteniez votre consentement.

ConfidentialitéConditions d'utilisation du sitePréférences de cookies
© 2025, Amazon Web Services, Inc. ou ses affiliés. Tous droits réservés.