本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
下列程序顯示如何使用CreateDataset作業從現有資料集的建立資料集。
-
若您尚未這樣做,請安裝AWS CLI並設定和AWS SDK。如需詳細資訊,請參閱步驟 4:設定 AWS CLI 和 AWS SDKs。
使用下列範例程式碼,透過複製另一個資料集來建立資料集。
- AWS CLI
-
使用下列程式碼建立資料集。取代下列項目:
project_arn
— 您要新增資料集的專案的 ARN。dataset_type
— 您要在專案中建立的資料集類型 (TRAIN
或TEST
)。dataset_arn
— 使用您要複製之資料集的 ARN。
aws rekognition create-dataset --project-arn
project_arn
\ --dataset-typedataset_type
\ --dataset-source '{ "DatasetArn" : "dataset_arn
" }' \ --profile custom-labels-access - Python
-
下列範例會使用現有資料集建立資料集,並顯示其 ARN。
若要執行程式,請提供下列命令列引數:
project_arn
— 您要使用的專案的 ARN。dataset_type
— 您要建立的專案資料集類型 (train
或test
)。dataset_arn
— 您要建立資料集的資料集的 ARN。
# Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. # PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-custom-labels-developer-guide/blob/master/LICENSE-SAMPLECODE.) import argparse import logging import time import json import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) def create_dataset_from_existing_dataset(rek_client, project_arn, dataset_type, dataset_arn): """ Creates an Amazon Rekognition Custom Labels dataset using an existing dataset. :param rek_client: The Amazon Rekognition Custom Labels Boto3 client. :param project_arn: The ARN of the project in which you want to create a dataset. :param dataset_type: The type of the dataset that you want to create (train or test). :param dataset_arn: The ARN of the existing dataset that you want to use. """ try: # Create the dataset dataset_type=dataset_type.upper() logger.info( "Creating %s dataset for project %s from dataset %s.", dataset_type,project_arn, dataset_arn) dataset_source = json.loads( '{ "DatasetArn": "' + dataset_arn + '"}' ) response = rek_client.create_dataset( ProjectArn=project_arn, DatasetType=dataset_type, DatasetSource=dataset_source ) dataset_arn = response['DatasetArn'] logger.info("New dataset ARN: %s", dataset_arn) finished = False while finished is False: dataset = rek_client.describe_dataset(DatasetArn=dataset_arn) status = dataset['DatasetDescription']['Status'] if status == "CREATE_IN_PROGRESS": logger.info(("Creating dataset: %s ", dataset_arn)) time.sleep(5) continue if status == "CREATE_COMPLETE": logger.info("Dataset created: %s", dataset_arn) finished = True continue if status == "CREATE_FAILED": error_message = f"Dataset creation failed: {status} : {dataset_arn}" logger.exception(error_message) raise Exception(error_message) error_message = f"Failed. Unexpected state for dataset creation: {status} : {dataset_arn}" logger.exception(error_message) raise Exception(error_message) return dataset_arn except ClientError as err: logger.exception( "Couldn't create dataset: %s",err.response['Error']['Message'] ) raise def add_arguments(parser): """ Adds command line arguments to the parser. :param parser: The command line parser. """ parser.add_argument( "project_arn", help="The ARN of the project in which you want to create the dataset." ) parser.add_argument( "dataset_type", help="The type of the dataset that you want to create (train or test)." ) parser.add_argument( "dataset_arn", help="The ARN of the dataset that you want to copy from." ) def main(): logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") try: # Get command line arguments. parser = argparse.ArgumentParser(usage=argparse.SUPPRESS) add_arguments(parser) args = parser.parse_args() print( f"Creating {args.dataset_type} dataset for project {args.project_arn}") # Create the dataset. session = boto3.Session(profile_name='custom-labels-access') rekognition_client = session.client("rekognition") dataset_arn = create_dataset_from_existing_dataset(rekognition_client, args.project_arn, args.dataset_type, args.dataset_arn) print(f"Finished creating dataset: {dataset_arn}") except ClientError as err: logger.exception("Problem creating dataset: %s", err) print(f"Problem creating dataset: {err}") except Exception as err: logger.exception("Problem creating dataset: %s", err) print(f"Problem creating dataset: {err}") if __name__ == "__main__": main()
- Java V2
-
下列範例會使用現有資料集建立資料集,並顯示其 ARN。
若要執行程式,請提供下列命令列引數:
project_arn
— 您要使用的專案的 ARN。dataset_type
— 您要建立的專案資料集類型 (train
或test
)。dataset_arn
— 您要建立資料集的資料集的 ARN。
/* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: Apache-2.0 */ package com.example.rekognition; import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.CreateDatasetRequest; import software.amazon.awssdk.services.rekognition.model.CreateDatasetResponse; import software.amazon.awssdk.services.rekognition.model.DatasetDescription; import software.amazon.awssdk.services.rekognition.model.DatasetSource; import software.amazon.awssdk.services.rekognition.model.DatasetStatus; import software.amazon.awssdk.services.rekognition.model.DatasetType; import software.amazon.awssdk.services.rekognition.model.DescribeDatasetRequest; import software.amazon.awssdk.services.rekognition.model.DescribeDatasetResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import java.util.logging.Level; import java.util.logging.Logger; public class CreateDatasetExisting { public static final Logger logger = Logger.getLogger(CreateDatasetExisting.class.getName()); public static String createMyDataset(RekognitionClient rekClient, String projectArn, String datasetType, String existingDatasetArn) throws Exception, RekognitionException { try { logger.log(Level.INFO, "Creating {0} dataset for project : {1} from dataset {2} ", new Object[] { datasetType.toString(), projectArn, existingDatasetArn }); DatasetType requestDatasetType = null; switch (datasetType) { case "train": requestDatasetType = DatasetType.TRAIN; break; case "test": requestDatasetType = DatasetType.TEST; break; default: logger.log(Level.SEVERE, "Unrecognized dataset type: {0}", datasetType); throw new Exception("Unrecognized dataset type: " + datasetType); } DatasetSource datasetSource = DatasetSource.builder().datasetArn(existingDatasetArn).build(); CreateDatasetRequest createDatasetRequest = CreateDatasetRequest.builder().projectArn(projectArn) .datasetType(requestDatasetType).datasetSource(datasetSource).build(); CreateDatasetResponse response = rekClient.createDataset(createDatasetRequest); boolean created = false; //Wait until create finishes do { DescribeDatasetRequest describeDatasetRequest = DescribeDatasetRequest.builder() .datasetArn(response.datasetArn()).build(); DescribeDatasetResponse describeDatasetResponse = rekClient.describeDataset(describeDatasetRequest); DatasetDescription datasetDescription = describeDatasetResponse.datasetDescription(); DatasetStatus status = datasetDescription.status(); logger.log(Level.INFO, "Creating dataset ARN: {0} ", response.datasetArn()); switch (status) { case CREATE_COMPLETE: logger.log(Level.INFO, "Dataset created"); created = true; break; case CREATE_IN_PROGRESS: Thread.sleep(5000); break; case CREATE_FAILED: String error = "Dataset creation failed: " + datasetDescription.statusAsString() + " " + datasetDescription.statusMessage() + " " + response.datasetArn(); logger.log(Level.SEVERE, error); throw new Exception(error); default: String unexpectedError = "Unexpected creation state: " + datasetDescription.statusAsString() + " " + datasetDescription.statusMessage() + " " + response.datasetArn(); logger.log(Level.SEVERE, unexpectedError); throw new Exception(unexpectedError); } } while (created == false); return response.datasetArn(); } catch (RekognitionException e) { logger.log(Level.SEVERE, "Could not create dataset: {0}", e.getMessage()); throw e; } } public static void main(String[] args) { String datasetType = null; String datasetArn = null; String projectArn = null; String datasetSourceArn = null; final String USAGE = "\n" + "Usage: " + "<project_arn> <dataset_type> <dataset_arn>\n\n" + "Where:\n" + " project_arn - the ARN of the project that you want to add copy the datast to.\n\n" + " dataset_type - the type of the dataset that you want to create (train or test).\n\n" + " dataset_arn - the ARN of the dataset that you want to copy from.\n\n"; if (args.length != 3) { System.out.println(USAGE); System.exit(1); } projectArn = args[0]; datasetType = args[1]; datasetSourceArn = args[2]; try { // Get the Rekognition client RekognitionClient rekClient = RekognitionClient.builder() .credentialsProvider(ProfileCredentialsProvider.create("custom-labels-access")) .region(Region.US_WEST_2) .build(); // Create the dataset datasetArn = createMyDataset(rekClient, projectArn, datasetType, datasetSourceArn); System.out.println(String.format("Created dataset: %s", datasetArn)); rekClient.close(); } catch (RekognitionException rekError) { logger.log(Level.SEVERE, "Rekognition client error: {0}", rekError.getMessage()); System.exit(1); } catch (Exception rekError) { logger.log(Level.SEVERE, "Error: {0}", rekError.getMessage()); System.exit(1); } } }
使用下列程式碼建立資料集。取代下列項目:
project_arn
— 您要新增資料集的專案的 ARN。dataset_type
— 您要在專案中建立的資料集類型 (TRAIN
或TEST
)。dataset_arn
— 使用您要複製之資料集的 ARN。
aws rekognition create-dataset --project-arn
project_arn
\ --dataset-typedataset_type
\ --dataset-source '{ "DatasetArn" : "dataset_arn
" }' \ --profile custom-labels-access
添加更多圖像
描述資料集 (SDK)