Wählen Sie Ihre Cookie-Einstellungen aus

Wir verwenden essentielle Cookies und ähnliche Tools, die für die Bereitstellung unserer Website und Services erforderlich sind. Wir verwenden Performance-Cookies, um anonyme Statistiken zu sammeln, damit wir verstehen können, wie Kunden unsere Website nutzen, und Verbesserungen vornehmen können. Essentielle Cookies können nicht deaktiviert werden, aber Sie können auf „Anpassen“ oder „Ablehnen“ klicken, um Performance-Cookies abzulehnen.

Wenn Sie damit einverstanden sind, verwenden AWS und zugelassene Drittanbieter auch Cookies, um nützliche Features der Website bereitzustellen, Ihre Präferenzen zu speichern und relevante Inhalte, einschließlich relevanter Werbung, anzuzeigen. Um alle nicht notwendigen Cookies zu akzeptieren oder abzulehnen, klicken Sie auf „Akzeptieren“ oder „Ablehnen“. Um detailliertere Entscheidungen zu treffen, klicken Sie auf „Anpassen“.

Den Nvidia-RAPIDS-Accelerator für Apache Spark verwenden - Amazon EMR

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Den Nvidia-RAPIDS-Accelerator für Apache Spark verwenden

Mit Amazon EMR Version 6.2.0 und höher können Sie das RAPIDS Accelerator for Apache Spark-Plug-In von Nvidia verwenden, um Spark mithilfe von GPU-Instance-Typen ( EC2 Graphics Processing Unit) zu beschleunigen. RAPIDS Accelerator beschleunigt Ihre Apache-Spark-3.0-Pipelines für die Datenwissenschaft ohne Codeänderungen mit der GPU, beschleunigt die Datenverarbeitung und das Modelltraining und senkt gleichzeitig die Infrastrukturkosten erheblich.

Die folgenden Abschnitte führen Sie durch die Konfiguration Ihres EMR-Clusters für die Verwendung des Spark-Rapids-Plugins für Spark.

Instance-Typen auswählen

Um das Nvidia Spark-Rapids-Plugin für Spark verwenden zu können, müssen die Kern- und Task-Instance-Gruppen EC2 GPU-Instance-Typen verwenden, die die Hardwareanforderungen von Spark-Rapids erfüllen. Eine vollständige Liste der von Amazon EMR unterstützten GPU-Instance-Typen finden Sie unter Unterstützte Instance-Typen im Verwaltungshandbuch für Amazon EMR. Der Instance-Typ für die primäre Instance-Gruppe kann entweder GPU- oder Nicht-GPU-Typen sein, ARM-Instance-Typen werden jedoch nicht unterstützt.

Anwendungskonfigurationen für Ihren Cluster einrichten

1. Amazon EMR aktivieren, um die Plugins auf Ihrem neuen Cluster zu installieren

Zum Installieren von Plugins geben Sie beim Erstellen Ihres Clusters die folgende Konfiguration an:

{ "Classification":"spark", "Properties":{ "enableSparkRapids":"true" } }

2. YARN für die Verwendung von GPU konfigurieren

Einzelheiten zur Verwendung von GPU auf YARN finden Sie unter Verwenden von GPU auf YARN in der Apache-Hadoop-Dokumentation. Die folgenden Beispiele zeigen YARN-Beispielkonfigurationen für die Amazon-EMR-Versionen 6.x und 7.x:

Amazon EMR 7.x

Beispiel für eine YARN-Konfiguration für Amazon EMR 7.x

{ "Classification":"yarn-site", "Properties":{ "yarn.nodemanager.resource-plugins":"yarn.io/gpu", "yarn.resource-types":"yarn.io/gpu", "yarn.nodemanager.resource-plugins.gpu.allowed-gpu-devices":"auto", "yarn.nodemanager.resource-plugins.gpu.path-to-discovery-executables":"/usr/bin", "yarn.nodemanager.linux-container-executor.cgroups.mount":"true", "yarn.nodemanager.linux-container-executor.cgroups.mount-path":"/spark-rapids-cgroup", "yarn.nodemanager.linux-container-executor.cgroups.hierarchy":"yarn", "yarn.nodemanager.container-executor.class":"org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor" } },{ "Classification":"container-executor", "Properties":{ }, "Configurations":[ { "Classification":"gpu", "Properties":{ "module.enabled":"true" } }, { "Classification":"cgroups", "Properties":{ "root":"/spark-rapids-cgroup", "yarn-hierarchy":"yarn" } } ] }
Amazon EMR 6.x

Beispiel für eine YARN-Konfiguration für Amazon EMR 6.x

{ "Classification":"yarn-site", "Properties":{ "yarn.nodemanager.resource-plugins":"yarn.io/gpu", "yarn.resource-types":"yarn.io/gpu", "yarn.nodemanager.resource-plugins.gpu.allowed-gpu-devices":"auto", "yarn.nodemanager.resource-plugins.gpu.path-to-discovery-executables":"/usr/bin", "yarn.nodemanager.linux-container-executor.cgroups.mount":"true", "yarn.nodemanager.linux-container-executor.cgroups.mount-path":"/sys/fs/cgroup", "yarn.nodemanager.linux-container-executor.cgroups.hierarchy":"yarn", "yarn.nodemanager.container-executor.class":"org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor" } },{ "Classification":"container-executor", "Properties":{ }, "Configurations":[ { "Classification":"gpu", "Properties":{ "module.enabled":"true" } }, { "Classification":"cgroups", "Properties":{ "root":"/sys/fs/cgroup", "yarn-hierarchy":"yarn" } } ] }

Beispiel für eine YARN-Konfiguration für Amazon EMR 7.x

{ "Classification":"yarn-site", "Properties":{ "yarn.nodemanager.resource-plugins":"yarn.io/gpu", "yarn.resource-types":"yarn.io/gpu", "yarn.nodemanager.resource-plugins.gpu.allowed-gpu-devices":"auto", "yarn.nodemanager.resource-plugins.gpu.path-to-discovery-executables":"/usr/bin", "yarn.nodemanager.linux-container-executor.cgroups.mount":"true", "yarn.nodemanager.linux-container-executor.cgroups.mount-path":"/spark-rapids-cgroup", "yarn.nodemanager.linux-container-executor.cgroups.hierarchy":"yarn", "yarn.nodemanager.container-executor.class":"org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor" } },{ "Classification":"container-executor", "Properties":{ }, "Configurations":[ { "Classification":"gpu", "Properties":{ "module.enabled":"true" } }, { "Classification":"cgroups", "Properties":{ "root":"/spark-rapids-cgroup", "yarn-hierarchy":"yarn" } } ] }

3. Spark für die Verwendung von RAPIDS konfigurieren

Hier sind die erforderlichen Konfigurationen, damit Spark das RAPIDS-Plugin verwenden kann:

{ "Classification":"spark-defaults", "Properties":{ "spark.plugins":"com.nvidia.spark.SQLPlugin", "spark.executor.resource.gpu.discoveryScript":"/usr/lib/spark/scripts/gpu/getGpusResources.sh", "spark.executor.extraLibraryPath":"/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/compat/lib:/usr/local/cuda/lib:/usr/local/cuda/lib64:/usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/lib/native" } }

XGBoost4Die J-Spark-Bibliothek in der XGBoost Dokumentation ist auch verfügbar, wenn das Spark RAPIDS-Plugin auf Ihrem Cluster aktiviert ist. Sie können die folgende Konfiguration für die Integration in XGBoost Ihren Spark-Job verwenden:

{ "Classification":"spark-defaults", "Properties":{ "spark.submit.pyFiles":"/usr/lib/spark/jars/xgboost4j-spark_3.0-1.4.2-0.3.0.jar" } }

Weitere Spark-Konfigurationen, mit denen Sie einen GPU-beschleunigten EMR-Cluster optimieren können, finden Sie im Accelerator für Apache-Spark-Tuning-Anleitung in der Nvidia.github.io-Dokumentation.

4. YARN Capacity Scheduler konfigurieren

DominantResourceCalculator muss so konfiguriert sein, dass GPU-Planung und -Isolierung aktiviert werden. Weitere Informationen finden Sie unter Verwendung der GPU auf YARN in der Apache-Hadoop-Dokumentation.

{ "Classification":"capacity-scheduler", "Properties":{ "yarn.scheduler.capacity.resource-calculator":"org.apache.hadoop.yarn.util.resource.DominantResourceCalculator" } }

5. Eine JSON-Datei erstellen, die all Ihre Konfigurationen enthält

Sie können eine JSON-Datei erstellen, die Ihre Konfiguration für die Verwendung des RAPIDS-Plugins für Ihren Spark-Cluster enthält. Sie stellen die Datei später bereit, wenn Sie Ihren Cluster starten.

Sie können die Datei lokal oder in S3 speichern. Weitere Informationen zur Bereitstellung von Anwendungskonfigurationen für Ihre Cluster finden Sie unter Anwendungen konfigurieren.

Verwenden Sie die folgenden Beispieldateien als Vorlagen, um Ihre eigenen Konfigurationen zu erstellen.

Amazon EMR 7.x

my-configurations.json-Beispieldatei für Amazon EMR 7.x

[ { "Classification":"spark", "Properties":{ "enableSparkRapids":"true" } }, { "Classification":"yarn-site", "Properties":{ "yarn.nodemanager.resource-plugins":"yarn.io/gpu", "yarn.resource-types":"yarn.io/gpu", "yarn.nodemanager.resource-plugins.gpu.allowed-gpu-devices":"auto", "yarn.nodemanager.resource-plugins.gpu.path-to-discovery-executables":"/usr/bin", "yarn.nodemanager.linux-container-executor.cgroups.mount":"true", "yarn.nodemanager.linux-container-executor.cgroups.mount-path":"/spark-rapids-cgroup", "yarn.nodemanager.linux-container-executor.cgroups.hierarchy":"yarn", "yarn.nodemanager.container-executor.class":"org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor" } }, { "Classification":"container-executor", "Properties":{ }, "Configurations":[ { "Classification":"gpu", "Properties":{ "module.enabled":"true" } }, { "Classification":"cgroups", "Properties":{ "root":"/spark-rapids-cgroup", "yarn-hierarchy":"yarn" } } ] }, { "Classification":"spark-defaults", "Properties":{ "spark.plugins":"com.nvidia.spark.SQLPlugin", "spark.executor.resource.gpu.discoveryScript":"/usr/lib/spark/scripts/gpu/getGpusResources.sh", "spark.executor.extraLibraryPath":"/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/compat/lib:/usr/local/cuda/lib:/usr/local/cuda/lib64:/usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/lib/native", "spark.submit.pyFiles":"/usr/lib/spark/jars/xgboost4j-spark_3.0-1.4.2-0.3.0.jar", "spark.rapids.sql.concurrentGpuTasks":"1", "spark.executor.resource.gpu.amount":"1", "spark.executor.cores":"2", "spark.task.cpus":"1", "spark.task.resource.gpu.amount":"0.5", "spark.rapids.memory.pinnedPool.size":"0", "spark.executor.memoryOverhead":"2G", "spark.locality.wait":"0s", "spark.sql.shuffle.partitions":"200", "spark.sql.files.maxPartitionBytes":"512m" } }, { "Classification":"capacity-scheduler", "Properties":{ "yarn.scheduler.capacity.resource-calculator":"org.apache.hadoop.yarn.util.resource.DominantResourceCalculator" } } ]
Amazon EMR 6.x

my-configurations.json-Beispieldatei für Amazon EMR 6.x

[ { "Classification":"spark", "Properties":{ "enableSparkRapids":"true" } }, { "Classification":"yarn-site", "Properties":{ "yarn.nodemanager.resource-plugins":"yarn.io/gpu", "yarn.resource-types":"yarn.io/gpu", "yarn.nodemanager.resource-plugins.gpu.allowed-gpu-devices":"auto", "yarn.nodemanager.resource-plugins.gpu.path-to-discovery-executables":"/usr/bin", "yarn.nodemanager.linux-container-executor.cgroups.mount":"true", "yarn.nodemanager.linux-container-executor.cgroups.mount-path":"/sys/fs/cgroup", "yarn.nodemanager.linux-container-executor.cgroups.hierarchy":"yarn", "yarn.nodemanager.container-executor.class":"org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor" } }, { "Classification":"container-executor", "Properties":{ }, "Configurations":[ { "Classification":"gpu", "Properties":{ "module.enabled":"true" } }, { "Classification":"cgroups", "Properties":{ "root":"/sys/fs/cgroup", "yarn-hierarchy":"yarn" } } ] }, { "Classification":"spark-defaults", "Properties":{ "spark.plugins":"com.nvidia.spark.SQLPlugin", "spark.executor.resource.gpu.discoveryScript":"/usr/lib/spark/scripts/gpu/getGpusResources.sh", "spark.executor.extraLibraryPath":"/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/compat/lib:/usr/local/cuda/lib:/usr/local/cuda/lib64:/usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/lib/native", "spark.submit.pyFiles":"/usr/lib/spark/jars/xgboost4j-spark_3.0-1.4.2-0.3.0.jar", "spark.rapids.sql.concurrentGpuTasks":"1", "spark.executor.resource.gpu.amount":"1", "spark.executor.cores":"2", "spark.task.cpus":"1", "spark.task.resource.gpu.amount":"0.5", "spark.rapids.memory.pinnedPool.size":"0", "spark.executor.memoryOverhead":"2G", "spark.locality.wait":"0s", "spark.sql.shuffle.partitions":"200", "spark.sql.files.maxPartitionBytes":"512m" } }, { "Classification":"capacity-scheduler", "Properties":{ "yarn.scheduler.capacity.resource-calculator":"org.apache.hadoop.yarn.util.resource.DominantResourceCalculator" } } ]

my-configurations.json-Beispieldatei für Amazon EMR 7.x

[ { "Classification":"spark", "Properties":{ "enableSparkRapids":"true" } }, { "Classification":"yarn-site", "Properties":{ "yarn.nodemanager.resource-plugins":"yarn.io/gpu", "yarn.resource-types":"yarn.io/gpu", "yarn.nodemanager.resource-plugins.gpu.allowed-gpu-devices":"auto", "yarn.nodemanager.resource-plugins.gpu.path-to-discovery-executables":"/usr/bin", "yarn.nodemanager.linux-container-executor.cgroups.mount":"true", "yarn.nodemanager.linux-container-executor.cgroups.mount-path":"/spark-rapids-cgroup", "yarn.nodemanager.linux-container-executor.cgroups.hierarchy":"yarn", "yarn.nodemanager.container-executor.class":"org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor" } }, { "Classification":"container-executor", "Properties":{ }, "Configurations":[ { "Classification":"gpu", "Properties":{ "module.enabled":"true" } }, { "Classification":"cgroups", "Properties":{ "root":"/spark-rapids-cgroup", "yarn-hierarchy":"yarn" } } ] }, { "Classification":"spark-defaults", "Properties":{ "spark.plugins":"com.nvidia.spark.SQLPlugin", "spark.executor.resource.gpu.discoveryScript":"/usr/lib/spark/scripts/gpu/getGpusResources.sh", "spark.executor.extraLibraryPath":"/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/compat/lib:/usr/local/cuda/lib:/usr/local/cuda/lib64:/usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/lib/native", "spark.submit.pyFiles":"/usr/lib/spark/jars/xgboost4j-spark_3.0-1.4.2-0.3.0.jar", "spark.rapids.sql.concurrentGpuTasks":"1", "spark.executor.resource.gpu.amount":"1", "spark.executor.cores":"2", "spark.task.cpus":"1", "spark.task.resource.gpu.amount":"0.5", "spark.rapids.memory.pinnedPool.size":"0", "spark.executor.memoryOverhead":"2G", "spark.locality.wait":"0s", "spark.sql.shuffle.partitions":"200", "spark.sql.files.maxPartitionBytes":"512m" } }, { "Classification":"capacity-scheduler", "Properties":{ "yarn.scheduler.capacity.resource-calculator":"org.apache.hadoop.yarn.util.resource.DominantResourceCalculator" } } ]

Fügen Sie eine Bootstrap-Aktion für Ihren Cluster hinzu

Weitere Informationen zur Bereitstellung von Bootstrap-Aktionsskripten bei der Erstellung Ihres Clusters finden Sie unter Grundlagen der Bootstrap-Aktion im Verwaltungshandbuch für Amazon EMR.

Die folgenden Beispielskripts zeigen, wie eine Bootstrap-Aktionsdatei für Amazon EMR 6.x und 7.x erstellt wird:

Amazon EMR 7.x

my-bootstrap-action.sh-Beispieldatei für Amazon EMR 7.x

Um YARN zur Verwaltung von GPU-Ressourcen mit Amazon EMR 7.x-Versionen zu verwenden, müssen Sie manuell mounten CGroup v1 auf Ihrem Cluster. Sie können dies mit einem Bootstrap-Aktionsskript tun, wie in diesem Beispiel gezeigt.

#!/bin/bash set -ex sudo mkdir -p /spark-rapids-cgroup/devices sudo mount -t cgroup -o devices cgroupv1-devices /spark-rapids-cgroup/devices sudo chmod a+rwx -R /spark-rapids-cgroup
Amazon EMR 6.x

my-bootstrap-action.sh-Beispieldatei für Amazon EMR 6.x

Für Amazon EMR 6.x-Versionen müssen Sie öffnen CGroup Berechtigungen für YARN auf Ihrem Cluster. Sie können dies mit einem Bootstrap-Aktionsskript tun, wie in diesem Beispiel gezeigt.

#!/bin/bash set -ex sudo chmod a+rwx -R /sys/fs/cgroup/cpu,cpuacct sudo chmod a+rwx -R /sys/fs/cgroup/devices

my-bootstrap-action.sh-Beispieldatei für Amazon EMR 7.x

Um YARN zur Verwaltung von GPU-Ressourcen mit Amazon EMR 7.x-Versionen zu verwenden, müssen Sie manuell mounten CGroup v1 auf Ihrem Cluster. Sie können dies mit einem Bootstrap-Aktionsskript tun, wie in diesem Beispiel gezeigt.

#!/bin/bash set -ex sudo mkdir -p /spark-rapids-cgroup/devices sudo mount -t cgroup -o devices cgroupv1-devices /spark-rapids-cgroup/devices sudo chmod a+rwx -R /spark-rapids-cgroup

Ihren Cluster starten

Der letzte Schritt besteht darin, Ihren Cluster mit den oben genannten Cluster-Konfigurationen zu starten. Hier ist ein Beispielbefehl zum Starten eines Clusters über die Amazon-EMR-CLI:

aws emr create-cluster \ --release-label emr-7.7.0 \ --applications Name=Hadoop Name=Spark \ --service-role EMR_DefaultRole_V2 \ --ec2-attributes KeyName=my-key-pair,InstanceProfile=EMR_EC2_DefaultRole \ --instance-groups InstanceGroupType=MASTER,InstanceCount=1,InstanceType=m4.4xlarge \ InstanceGroupType=CORE,InstanceCount=1,InstanceType=g4dn.2xlarge \ InstanceGroupType=TASK,InstanceCount=1,InstanceType=g4dn.2xlarge \ --configurations file:///my-configurations.json \ --bootstrap-actions Name='My Spark Rapids Bootstrap action',Path=s3://amzn-s3-demo-bucket/my-bootstrap-action.sh
DatenschutzNutzungsbedingungen für die WebsiteCookie-Einstellungen
© 2025, Amazon Web Services, Inc. oder Tochtergesellschaften. Alle Rechte vorbehalten.