Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Apache Spark
Spark unterstützt standardmäßig Anwendungen, die in Scala, Java und Python geschrieben sind. Es enthält auch mehrere eng integrierte Bibliotheken für SQL (Spark
Sie können Spark zusammen mit anderen Hadoop-Anwendungen auf einem Amazon-EMR-Cluster installieren. Es kann außerdem das Amazon-EMR-Dateisystem (EMRFS) nutzen, um direkt auf Daten in Amazon S3 zuzugreifen. Hive ist auch in Spark integriert, sodass Sie ein HiveContext Objekt verwenden können, um Hive-Skripte mit Spark auszuführen. Ein Hive-Kontext ist als sqlContext
Bestandteil der Spark-Shell.
Ein Beispiel-Tutorial zur Einrichtung eines EMR-Clusters mit Spark und zur Analyse eines Beispieldatensatzes finden Sie unter Tutorial: Erste Schritte mit Amazon EMR im AWS News-Blog.
Wichtig
Apache-Spark-Version 2.3.1, verfügbar ab Amazon-EMR-Version 5.16.0, adressiert CVE-2018-8024
Die folgende Tabelle listet die Version von Spark auf, die in der neuesten Version der Amazon-EMR-7.x-Serie enthalten ist, zusammen mit den Komponenten, die Amazon EMR mit Spark installiert.
Informationen zur Version der Komponenten, die in dieser Version mit Spark installiert wurden, finden Sie unter Komponentenversionen von Version 7.8.0.
Amazon-EMR-Versionsbezeichnung | Spark-Version | Mit Spark installierte Komponenten |
---|---|---|
emr-7.8.0 |
Spark 3.5.4 |
delta, emrfs, emr-goodies, emr-ddb, emr-s3-select, hadoop-client, hadoop-hdfs-datanode, hadoop-hdfs-library, hadoop-hdfs-namenode, hadoop-httpfs-server, hadoop-kms-server, hadoop-yarn-nodemanager, hadoop-yarn-resourcemanager, hadoop-yarn-timeline-server, hudi, hudi-spark, iceberg, livy-server, nginx, r, spark-client, spark-history-server, spark-on-yarn, spark-yarn-slave |
Die folgende Tabelle listet die Version von Spark auf, die in der neuesten Version der Amazon-EMR-6.x-Serie enthalten ist, zusammen mit den Komponenten, die Amazon EMR mit Spark installiert.
Die Version der Komponenten, die mit Spark in dieser Version installiert wurden, finden Sie unter Komponentenversionen der Version 6.15.0.
Amazon-EMR-Versionsbezeichnung | Spark-Version | Mit Spark installierte Komponenten |
---|---|---|
emr-6.15.0 |
Spark 3.4.1 |
aws-sagemaker-spark-sdk, delta, emrfs, emr-goodies, emr-ddb, emr-s3-select, hadoop-client, hadoop-hdfs-datanode, hadoop-hdfs-library, hadoop-hdfs-namenode, hadoop-httpfs-server, hadoop-kms-server, hadoop-yarn-nodemanager, hadoop-yarn-resourcemanager, hadoop-yarn-timeline-server, hudi, hudi-spark, iceberg, livy-server, nginx, r, spark-client, spark-history-server, spark-on-yarn, spark-yarn-slave |
Anmerkung
Amazon-EMR-Version 6.8.0 wird mit Apache Spark 3.3.0 geliefert. Diese Spark-Version verwendet Apache Log4j 2 und die log4j2.properties
-Datei zur Konfiguration von Log4j in Spark-Prozessen. Wenn Sie Spark im Cluster verwenden oder EMR-Cluster mit benutzerdefinierten Konfigurationsparametern erstellen und ein Upgrade auf Amazon-EMR-Version 6.8.0 durchführen möchten, müssen Sie auf die neue spark-log4j2
-Konfigurationsklassifizierung und das neue Schlüsselformat für Apache Log4j 2 migrieren. Weitere Informationen finden Sie unter Migration von Apache Log4j 1.x zu Log4j 2.x.
Die folgende Tabelle listet die Version von Spark auf, die in der neuesten Version der Amazon-EMR-5.x-Serie enthalten ist, zusammen mit den Komponenten, die Amazon EMR mit Spark installiert.
Informationen zur Version der Komponenten, die in dieser Version mit Spark installiert wurden, finden Sie unter Komponentenversionen von Version 5.36.2.
Amazon-EMR-Versionsbezeichnung | Spark-Version | Mit Spark installierte Komponenten |
---|---|---|
emr-5.36.2 |
Spark 2.4.8 |
aws-sagemaker-spark-sdk, emrfs, emr-goodies, emr-ddb, emr-s3-select, hadoop-client, hadoop-hdfs-datanode, hadoop-hdfs-library, hadoop-hdfs-namenode, hadoop-httpfs-server, hadoop-kms-server, hadoop-yarn-nodemanager, hadoop-yarn-resourcemanager, hadoop-yarn-timeline-server, hudi, hudi-spark, livy-server, nginx, r, spark-client, spark-history-server, spark-on-yarn, spark-yarn-slave |
Themen
Spark-Anwendungen mit Docker mithilfe von Amazon EMR 6.x ausführen
Verwenden Sie den AWS Glue Data Catalog-Katalog mit Spark auf Amazon EMR
Verwenden Sie Amazon SageMaker Spark für maschinelles Lernen
Verwenden des Amazon Kinesis Data Streams-Connectors für strukturiertes Streaming mit Spark
Amazon-Redshift-Integration für Apache Spark mit Amazon EMR verwenden