쿠키 기본 설정 선택

당사는 사이트와 서비스를 제공하는 데 필요한 필수 쿠키 및 유사한 도구를 사용합니다. 고객이 사이트를 어떻게 사용하는지 파악하고 개선할 수 있도록 성능 쿠키를 사용해 익명의 통계를 수집합니다. 필수 쿠키는 비활성화할 수 없지만 '사용자 지정' 또는 ‘거부’를 클릭하여 성능 쿠키를 거부할 수 있습니다.

사용자가 동의하는 경우 AWS와 승인된 제3자도 쿠키를 사용하여 유용한 사이트 기능을 제공하고, 사용자의 기본 설정을 기억하고, 관련 광고를 비롯한 관련 콘텐츠를 표시합니다. 필수가 아닌 모든 쿠키를 수락하거나 거부하려면 ‘수락’ 또는 ‘거부’를 클릭하세요. 더 자세한 내용을 선택하려면 ‘사용자 정의’를 클릭하세요.

SDK for Python (Boto3)을 사용한 Amazon Rekognition 예제 - AWS SDK 코드 예제

Doc AWS SDK 예제 GitHub 리포지토리에서 더 많은 SDK 예제를 사용할 수 있습니다. AWS

기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.

Doc AWS SDK 예제 GitHub 리포지토리에서 더 많은 SDK 예제를 사용할 수 있습니다. AWS

기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.

SDK for Python (Boto3)을 사용한 Amazon Rekognition 예제

다음 코드 예제에서는 AWS SDK for Python (Boto3) Amazon Rekognition에서를 사용하여 작업을 수행하고 일반적인 시나리오를 구현하는 방법을 보여줍니다.

작업은 대규모 프로그램에서 발췌한 코드이며 컨텍스트에 맞춰 실행해야 합니다. 작업은 관련 시나리오의 컨텍스트에 따라 표시되며, 개별 서비스 함수를 직접적으로 호출하는 방법을 보여줍니다.

시나리오는 동일한 서비스 내에서 또는 다른 AWS 서비스와 결합된 상태에서 여러 함수를 호출하여 특정 태스크를 수행하는 방법을 보여주는 코드 예제입니다.

각 예시에는 전체 소스 코드에 대한 링크가 포함되어 있으며, 여기에서 컨텍스트에 맞춰 코드를 설정하고 실행하는 방법에 대한 지침을 찾을 수 있습니다.

작업

다음 코드 예시에서는 CompareFaces을 사용하는 방법을 보여 줍니다.

자세한 내용은 이미지에 있는 얼굴 비교를 참조하십시오.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client def compare_faces(self, target_image, similarity): """ Compares faces in the image with the largest face in the target image. :param target_image: The target image to compare against. :param similarity: Faces in the image must have a similarity value greater than this value to be included in the results. :return: A tuple. The first element is the list of faces that match the reference image. The second element is the list of faces that have a similarity value below the specified threshold. """ try: response = self.rekognition_client.compare_faces( SourceImage=self.image, TargetImage=target_image.image, SimilarityThreshold=similarity, ) matches = [ RekognitionFace(match["Face"]) for match in response["FaceMatches"] ] unmatches = [RekognitionFace(face) for face in response["UnmatchedFaces"]] logger.info( "Found %s matched faces and %s unmatched faces.", len(matches), len(unmatches), ) except ClientError: logger.exception( "Couldn't match faces from %s to %s.", self.image_name, target_image.image_name, ) raise else: return matches, unmatches
  • API 세부 정보는 AWS SDK for Python (Boto3) API 참조CompareFaces를 참조하십시오.

다음 코드 예시에서는 CompareFaces을 사용하는 방법을 보여 줍니다.

자세한 내용은 이미지에 있는 얼굴 비교를 참조하십시오.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client def compare_faces(self, target_image, similarity): """ Compares faces in the image with the largest face in the target image. :param target_image: The target image to compare against. :param similarity: Faces in the image must have a similarity value greater than this value to be included in the results. :return: A tuple. The first element is the list of faces that match the reference image. The second element is the list of faces that have a similarity value below the specified threshold. """ try: response = self.rekognition_client.compare_faces( SourceImage=self.image, TargetImage=target_image.image, SimilarityThreshold=similarity, ) matches = [ RekognitionFace(match["Face"]) for match in response["FaceMatches"] ] unmatches = [RekognitionFace(face) for face in response["UnmatchedFaces"]] logger.info( "Found %s matched faces and %s unmatched faces.", len(matches), len(unmatches), ) except ClientError: logger.exception( "Couldn't match faces from %s to %s.", self.image_name, target_image.image_name, ) raise else: return matches, unmatches
  • API 세부 정보는 AWS SDK for Python (Boto3) API 참조CompareFaces를 참조하십시오.

다음 코드 예시에서는 CreateCollection을 사용하는 방법을 보여 줍니다.

자세한 내용은 컬렉션 생성을 참조하십시오.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollectionManager: """ Encapsulates Amazon Rekognition collection management functions. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, rekognition_client): """ Initializes the collection manager object. :param rekognition_client: A Boto3 Rekognition client. """ self.rekognition_client = rekognition_client def create_collection(self, collection_id): """ Creates an empty collection. :param collection_id: Text that identifies the collection. :return: The newly created collection. """ try: response = self.rekognition_client.create_collection( CollectionId=collection_id ) response["CollectionId"] = collection_id collection = RekognitionCollection(response, self.rekognition_client) logger.info("Created collection %s.", collection_id) except ClientError: logger.exception("Couldn't create collection %s.", collection_id) raise else: return collection
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조CreateCollection을 참조하세요.

다음 코드 예시에서는 CreateCollection을 사용하는 방법을 보여 줍니다.

자세한 내용은 컬렉션 생성을 참조하십시오.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollectionManager: """ Encapsulates Amazon Rekognition collection management functions. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, rekognition_client): """ Initializes the collection manager object. :param rekognition_client: A Boto3 Rekognition client. """ self.rekognition_client = rekognition_client def create_collection(self, collection_id): """ Creates an empty collection. :param collection_id: Text that identifies the collection. :return: The newly created collection. """ try: response = self.rekognition_client.create_collection( CollectionId=collection_id ) response["CollectionId"] = collection_id collection = RekognitionCollection(response, self.rekognition_client) logger.info("Created collection %s.", collection_id) except ClientError: logger.exception("Couldn't create collection %s.", collection_id) raise else: return collection
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조CreateCollection을 참조하세요.

다음 코드 예시에서는 DeleteCollection을 사용하는 방법을 보여 줍니다.

자세한 내용은 컬렉션 삭제를 참조하세요.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def delete_collection(self): """ Deletes the collection. """ try: self.rekognition_client.delete_collection(CollectionId=self.collection_id) logger.info("Deleted collection %s.", self.collection_id) self.collection_id = None except ClientError: logger.exception("Couldn't delete collection %s.", self.collection_id) raise
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조DeleteCollection을 참조하세요.

다음 코드 예시에서는 DeleteCollection을 사용하는 방법을 보여 줍니다.

자세한 내용은 컬렉션 삭제를 참조하세요.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def delete_collection(self): """ Deletes the collection. """ try: self.rekognition_client.delete_collection(CollectionId=self.collection_id) logger.info("Deleted collection %s.", self.collection_id) self.collection_id = None except ClientError: logger.exception("Couldn't delete collection %s.", self.collection_id) raise
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조DeleteCollection을 참조하세요.

다음 코드 예시에서는 DeleteFaces을 사용하는 방법을 보여 줍니다.

자세한 내용은 컬렉션에서 얼굴 삭제를 참조하세요.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def delete_faces(self, face_ids): """ Deletes faces from the collection. :param face_ids: The list of IDs of faces to delete. :return: The list of IDs of faces that were deleted. """ try: response = self.rekognition_client.delete_faces( CollectionId=self.collection_id, FaceIds=face_ids ) deleted_ids = response["DeletedFaces"] logger.info( "Deleted %s faces from %s.", len(deleted_ids), self.collection_id ) except ClientError: logger.exception("Couldn't delete faces from %s.", self.collection_id) raise else: return deleted_ids
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조DeleteFaces를 참조하세요.

다음 코드 예시에서는 DeleteFaces을 사용하는 방법을 보여 줍니다.

자세한 내용은 컬렉션에서 얼굴 삭제를 참조하세요.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def delete_faces(self, face_ids): """ Deletes faces from the collection. :param face_ids: The list of IDs of faces to delete. :return: The list of IDs of faces that were deleted. """ try: response = self.rekognition_client.delete_faces( CollectionId=self.collection_id, FaceIds=face_ids ) deleted_ids = response["DeletedFaces"] logger.info( "Deleted %s faces from %s.", len(deleted_ids), self.collection_id ) except ClientError: logger.exception("Couldn't delete faces from %s.", self.collection_id) raise else: return deleted_ids
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조DeleteFaces를 참조하세요.

다음 코드 예시에서는 DescribeCollection을 사용하는 방법을 보여 줍니다.

자세한 내용은 컬렉션 설명을 참조하십시오.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def describe_collection(self): """ Gets data about the collection from the Amazon Rekognition service. :return: The collection rendered as a dict. """ try: response = self.rekognition_client.describe_collection( CollectionId=self.collection_id ) # Work around capitalization of Arn vs. ARN response["CollectionArn"] = response.get("CollectionARN") ( self.collection_arn, self.face_count, self.created, ) = self._unpack_collection(response) logger.info("Got data for collection %s.", self.collection_id) except ClientError: logger.exception("Couldn't get data for collection %s.", self.collection_id) raise else: return self.to_dict()
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조DescribeCollection을 참조하세요.

다음 코드 예시에서는 DescribeCollection을 사용하는 방법을 보여 줍니다.

자세한 내용은 컬렉션 설명을 참조하십시오.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def describe_collection(self): """ Gets data about the collection from the Amazon Rekognition service. :return: The collection rendered as a dict. """ try: response = self.rekognition_client.describe_collection( CollectionId=self.collection_id ) # Work around capitalization of Arn vs. ARN response["CollectionArn"] = response.get("CollectionARN") ( self.collection_arn, self.face_count, self.created, ) = self._unpack_collection(response) logger.info("Got data for collection %s.", self.collection_id) except ClientError: logger.exception("Couldn't get data for collection %s.", self.collection_id) raise else: return self.to_dict()
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조DescribeCollection을 참조하세요.

다음 코드 예시에서는 DetectFaces을 사용하는 방법을 보여 줍니다.

자세한 내용은 이미지에서 얼굴 감지를 참조하세요.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client def detect_faces(self): """ Detects faces in the image. :return: The list of faces found in the image. """ try: response = self.rekognition_client.detect_faces( Image=self.image, Attributes=["ALL"] ) faces = [RekognitionFace(face) for face in response["FaceDetails"]] logger.info("Detected %s faces.", len(faces)) except ClientError: logger.exception("Couldn't detect faces in %s.", self.image_name) raise else: return faces
  • API 세부 정보는 AWS SDK for Python (Boto3) API 참조DetectFaces를 참조하십시오.

다음 코드 예시에서는 DetectFaces을 사용하는 방법을 보여 줍니다.

자세한 내용은 이미지에서 얼굴 감지를 참조하세요.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client def detect_faces(self): """ Detects faces in the image. :return: The list of faces found in the image. """ try: response = self.rekognition_client.detect_faces( Image=self.image, Attributes=["ALL"] ) faces = [RekognitionFace(face) for face in response["FaceDetails"]] logger.info("Detected %s faces.", len(faces)) except ClientError: logger.exception("Couldn't detect faces in %s.", self.image_name) raise else: return faces
  • API 세부 정보는 AWS SDK for Python (Boto3) API 참조DetectFaces를 참조하십시오.

다음 코드 예시에서는 DetectLabels을 사용하는 방법을 보여 줍니다.

자세한 내용은 이미지에서 레이블 감지를 참조하십시오.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client def detect_labels(self, max_labels): """ Detects labels in the image. Labels are objects and people. :param max_labels: The maximum number of labels to return. :return: The list of labels detected in the image. """ try: response = self.rekognition_client.detect_labels( Image=self.image, MaxLabels=max_labels ) labels = [RekognitionLabel(label) for label in response["Labels"]] logger.info("Found %s labels in %s.", len(labels), self.image_name) except ClientError: logger.info("Couldn't detect labels in %s.", self.image_name) raise else: return labels
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조DetectLabels를 참조하세요.

다음 코드 예시에서는 DetectLabels을 사용하는 방법을 보여 줍니다.

자세한 내용은 이미지에서 레이블 감지를 참조하십시오.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client def detect_labels(self, max_labels): """ Detects labels in the image. Labels are objects and people. :param max_labels: The maximum number of labels to return. :return: The list of labels detected in the image. """ try: response = self.rekognition_client.detect_labels( Image=self.image, MaxLabels=max_labels ) labels = [RekognitionLabel(label) for label in response["Labels"]] logger.info("Found %s labels in %s.", len(labels), self.image_name) except ClientError: logger.info("Couldn't detect labels in %s.", self.image_name) raise else: return labels
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조DetectLabels를 참조하세요.

다음 코드 예시에서는 DetectModerationLabels을 사용하는 방법을 보여 줍니다.

자세한 내용은 부적절한 이미지 감지를 참조하십시오.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client def detect_moderation_labels(self): """ Detects moderation labels in the image. Moderation labels identify content that may be inappropriate for some audiences. :return: The list of moderation labels found in the image. """ try: response = self.rekognition_client.detect_moderation_labels( Image=self.image ) labels = [ RekognitionModerationLabel(label) for label in response["ModerationLabels"] ] logger.info( "Found %s moderation labels in %s.", len(labels), self.image_name ) except ClientError: logger.exception( "Couldn't detect moderation labels in %s.", self.image_name ) raise else: return labels

다음 코드 예시에서는 DetectModerationLabels을 사용하는 방법을 보여 줍니다.

자세한 내용은 부적절한 이미지 감지를 참조하십시오.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client def detect_moderation_labels(self): """ Detects moderation labels in the image. Moderation labels identify content that may be inappropriate for some audiences. :return: The list of moderation labels found in the image. """ try: response = self.rekognition_client.detect_moderation_labels( Image=self.image ) labels = [ RekognitionModerationLabel(label) for label in response["ModerationLabels"] ] logger.info( "Found %s moderation labels in %s.", len(labels), self.image_name ) except ClientError: logger.exception( "Couldn't detect moderation labels in %s.", self.image_name ) raise else: return labels

다음 코드 예시에서는 DetectText을 사용하는 방법을 보여 줍니다.

자세한 내용은 이미지에서 텍스트 감지를 참조하십시오.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client def detect_text(self): """ Detects text in the image. :return The list of text elements found in the image. """ try: response = self.rekognition_client.detect_text(Image=self.image) texts = [RekognitionText(text) for text in response["TextDetections"]] logger.info("Found %s texts in %s.", len(texts), self.image_name) except ClientError: logger.exception("Couldn't detect text in %s.", self.image_name) raise else: return texts
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조DetectText를 참조하세요.

다음 코드 예시에서는 DetectText을 사용하는 방법을 보여 줍니다.

자세한 내용은 이미지에서 텍스트 감지를 참조하십시오.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client def detect_text(self): """ Detects text in the image. :return The list of text elements found in the image. """ try: response = self.rekognition_client.detect_text(Image=self.image) texts = [RekognitionText(text) for text in response["TextDetections"]] logger.info("Found %s texts in %s.", len(texts), self.image_name) except ClientError: logger.exception("Couldn't detect text in %s.", self.image_name) raise else: return texts
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조DetectText를 참조하세요.

다음 코드 예시에서는 DisassociateFaces을 사용하는 방법을 보여 줍니다.

SDK for Python(Boto3)
from botocore.exceptions import ClientError import boto3 import logging logger = logging.getLogger(__name__) session = boto3.Session(profile_name='profile-name') client = session.client('rekognition') def disassociate_faces(collection_id, user_id, face_ids): """ Disassociate stored faces within collection to the given user :param collection_id: The ID of the collection where user and faces are stored. :param user_id: The ID of the user that we want to disassociate faces from :param face_ids: The list of face IDs to be disassociated from the given user :return: response of AssociateFaces API """ logger.info(f'Disssociating faces from user: {user_id}, {face_ids}') try: response = client.disassociate_faces( CollectionId=collection_id, UserId=user_id, FaceIds=face_ids ) print(f'- disassociated {len(response["DisassociatedFaces"])} faces') except ClientError: logger.exception("Failed to disassociate faces from the given user") raise else: print(response) return response def main(): face_ids = ["faceId1", "faceId2"] collection_id = "collection-id" user_id = "user-id" disassociate_faces(collection_id, user_id, face_ids) if __name__ == "__main__": main()

다음 코드 예시에서는 DisassociateFaces을 사용하는 방법을 보여 줍니다.

SDK for Python(Boto3)
from botocore.exceptions import ClientError import boto3 import logging logger = logging.getLogger(__name__) session = boto3.Session(profile_name='profile-name') client = session.client('rekognition') def disassociate_faces(collection_id, user_id, face_ids): """ Disassociate stored faces within collection to the given user :param collection_id: The ID of the collection where user and faces are stored. :param user_id: The ID of the user that we want to disassociate faces from :param face_ids: The list of face IDs to be disassociated from the given user :return: response of AssociateFaces API """ logger.info(f'Disssociating faces from user: {user_id}, {face_ids}') try: response = client.disassociate_faces( CollectionId=collection_id, UserId=user_id, FaceIds=face_ids ) print(f'- disassociated {len(response["DisassociatedFaces"])} faces') except ClientError: logger.exception("Failed to disassociate faces from the given user") raise else: print(response) return response def main(): face_ids = ["faceId1", "faceId2"] collection_id = "collection-id" user_id = "user-id" disassociate_faces(collection_id, user_id, face_ids) if __name__ == "__main__": main()

다음 코드 예시에서는 IndexFaces을 사용하는 방법을 보여 줍니다.

자세한 내용은 컬렉션에 얼굴 추가를 참조하세요.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def index_faces(self, image, max_faces): """ Finds faces in the specified image, indexes them, and stores them in the collection. :param image: The image to index. :param max_faces: The maximum number of faces to index. :return: A tuple. The first element is a list of indexed faces. The second element is a list of faces that couldn't be indexed. """ try: response = self.rekognition_client.index_faces( CollectionId=self.collection_id, Image=image.image, ExternalImageId=image.image_name, MaxFaces=max_faces, DetectionAttributes=["ALL"], ) indexed_faces = [ RekognitionFace({**face["Face"], **face["FaceDetail"]}) for face in response["FaceRecords"] ] unindexed_faces = [ RekognitionFace(face["FaceDetail"]) for face in response["UnindexedFaces"] ] logger.info( "Indexed %s faces in %s. Could not index %s faces.", len(indexed_faces), image.image_name, len(unindexed_faces), ) except ClientError: logger.exception("Couldn't index faces in image %s.", image.image_name) raise else: return indexed_faces, unindexed_faces
  • API 세부 정보는 AWS SDK for Python (Boto3) API 참조IndexFaces를 참조하십시오.

다음 코드 예시에서는 IndexFaces을 사용하는 방법을 보여 줍니다.

자세한 내용은 컬렉션에 얼굴 추가를 참조하세요.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def index_faces(self, image, max_faces): """ Finds faces in the specified image, indexes them, and stores them in the collection. :param image: The image to index. :param max_faces: The maximum number of faces to index. :return: A tuple. The first element is a list of indexed faces. The second element is a list of faces that couldn't be indexed. """ try: response = self.rekognition_client.index_faces( CollectionId=self.collection_id, Image=image.image, ExternalImageId=image.image_name, MaxFaces=max_faces, DetectionAttributes=["ALL"], ) indexed_faces = [ RekognitionFace({**face["Face"], **face["FaceDetail"]}) for face in response["FaceRecords"] ] unindexed_faces = [ RekognitionFace(face["FaceDetail"]) for face in response["UnindexedFaces"] ] logger.info( "Indexed %s faces in %s. Could not index %s faces.", len(indexed_faces), image.image_name, len(unindexed_faces), ) except ClientError: logger.exception("Couldn't index faces in image %s.", image.image_name) raise else: return indexed_faces, unindexed_faces
  • API 세부 정보는 AWS SDK for Python (Boto3) API 참조IndexFaces를 참조하십시오.

다음 코드 예시에서는 ListCollections을 사용하는 방법을 보여 줍니다.

자세한 내용은 컬렉션 나열을 참조하십시오.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollectionManager: """ Encapsulates Amazon Rekognition collection management functions. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, rekognition_client): """ Initializes the collection manager object. :param rekognition_client: A Boto3 Rekognition client. """ self.rekognition_client = rekognition_client def list_collections(self, max_results): """ Lists collections for the current account. :param max_results: The maximum number of collections to return. :return: The list of collections for the current account. """ try: response = self.rekognition_client.list_collections(MaxResults=max_results) collections = [ RekognitionCollection({"CollectionId": col_id}, self.rekognition_client) for col_id in response["CollectionIds"] ] except ClientError: logger.exception("Couldn't list collections.") raise else: return collections
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조ListCollections를 참조하세요.

다음 코드 예시에서는 ListCollections을 사용하는 방법을 보여 줍니다.

자세한 내용은 컬렉션 나열을 참조하십시오.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollectionManager: """ Encapsulates Amazon Rekognition collection management functions. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, rekognition_client): """ Initializes the collection manager object. :param rekognition_client: A Boto3 Rekognition client. """ self.rekognition_client = rekognition_client def list_collections(self, max_results): """ Lists collections for the current account. :param max_results: The maximum number of collections to return. :return: The list of collections for the current account. """ try: response = self.rekognition_client.list_collections(MaxResults=max_results) collections = [ RekognitionCollection({"CollectionId": col_id}, self.rekognition_client) for col_id in response["CollectionIds"] ] except ClientError: logger.exception("Couldn't list collections.") raise else: return collections
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조ListCollections를 참조하세요.

다음 코드 예시에서는 ListFaces을 사용하는 방법을 보여 줍니다.

자세한 내용은 컬렉션 내 얼굴 나열을 참조하세요.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def list_faces(self, max_results): """ Lists the faces currently indexed in the collection. :param max_results: The maximum number of faces to return. :return: The list of faces in the collection. """ try: response = self.rekognition_client.list_faces( CollectionId=self.collection_id, MaxResults=max_results ) faces = [RekognitionFace(face) for face in response["Faces"]] logger.info( "Found %s faces in collection %s.", len(faces), self.collection_id ) except ClientError: logger.exception( "Couldn't list faces in collection %s.", self.collection_id ) raise else: return faces
  • API 세부 정보는 AWS SDK for Python (Boto3) API 참조ListFaces를 참조하십시오.

다음 코드 예시에서는 ListFaces을 사용하는 방법을 보여 줍니다.

자세한 내용은 컬렉션 내 얼굴 나열을 참조하세요.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def list_faces(self, max_results): """ Lists the faces currently indexed in the collection. :param max_results: The maximum number of faces to return. :return: The list of faces in the collection. """ try: response = self.rekognition_client.list_faces( CollectionId=self.collection_id, MaxResults=max_results ) faces = [RekognitionFace(face) for face in response["Faces"]] logger.info( "Found %s faces in collection %s.", len(faces), self.collection_id ) except ClientError: logger.exception( "Couldn't list faces in collection %s.", self.collection_id ) raise else: return faces
  • API 세부 정보는 AWS SDK for Python (Boto3) API 참조ListFaces를 참조하십시오.

다음 코드 예시에서는 RecognizeCelebrities을 사용하는 방법을 보여 줍니다.

자세한 내용은 이미지에서 유명인 인식을 참조하세요.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client def recognize_celebrities(self): """ Detects celebrities in the image. :return: A tuple. The first element is the list of celebrities found in the image. The second element is the list of faces that were detected but did not match any known celebrities. """ try: response = self.rekognition_client.recognize_celebrities(Image=self.image) celebrities = [ RekognitionCelebrity(celeb) for celeb in response["CelebrityFaces"] ] other_faces = [ RekognitionFace(face) for face in response["UnrecognizedFaces"] ] logger.info( "Found %s celebrities and %s other faces in %s.", len(celebrities), len(other_faces), self.image_name, ) except ClientError: logger.exception("Couldn't detect celebrities in %s.", self.image_name) raise else: return celebrities, other_faces
  • API 세부 정보는 AWS SDK for Python (Boto3) API 참조RecognizeCelebrities를 참조하십시오.

다음 코드 예시에서는 RecognizeCelebrities을 사용하는 방법을 보여 줍니다.

자세한 내용은 이미지에서 유명인 인식을 참조하세요.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client def recognize_celebrities(self): """ Detects celebrities in the image. :return: A tuple. The first element is the list of celebrities found in the image. The second element is the list of faces that were detected but did not match any known celebrities. """ try: response = self.rekognition_client.recognize_celebrities(Image=self.image) celebrities = [ RekognitionCelebrity(celeb) for celeb in response["CelebrityFaces"] ] other_faces = [ RekognitionFace(face) for face in response["UnrecognizedFaces"] ] logger.info( "Found %s celebrities and %s other faces in %s.", len(celebrities), len(other_faces), self.image_name, ) except ClientError: logger.exception("Couldn't detect celebrities in %s.", self.image_name) raise else: return celebrities, other_faces
  • API 세부 정보는 AWS SDK for Python (Boto3) API 참조RecognizeCelebrities를 참조하십시오.

다음 코드 예시에서는 SearchFaces을 사용하는 방법을 보여 줍니다.

자세한 내용은 얼굴 검색(얼굴 ID)을 참조하세요.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def search_faces(self, face_id, threshold, max_faces): """ Searches for faces in the collection that match another face from the collection. :param face_id: The ID of the face in the collection to search for. :param threshold: The match confidence must be greater than this value for a face to be included in the results. :param max_faces: The maximum number of faces to return. :return: The list of matching faces found in the collection. This list does not contain the face specified by `face_id`. """ try: response = self.rekognition_client.search_faces( CollectionId=self.collection_id, FaceId=face_id, FaceMatchThreshold=threshold, MaxFaces=max_faces, ) faces = [RekognitionFace(face["Face"]) for face in response["FaceMatches"]] logger.info( "Found %s faces in %s that match %s.", len(faces), self.collection_id, face_id, ) except ClientError: logger.exception( "Couldn't search for faces in %s that match %s.", self.collection_id, face_id, ) raise else: return faces
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조SearchFaces를 참조하세요.

다음 코드 예시에서는 SearchFaces을 사용하는 방법을 보여 줍니다.

자세한 내용은 얼굴 검색(얼굴 ID)을 참조하세요.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def search_faces(self, face_id, threshold, max_faces): """ Searches for faces in the collection that match another face from the collection. :param face_id: The ID of the face in the collection to search for. :param threshold: The match confidence must be greater than this value for a face to be included in the results. :param max_faces: The maximum number of faces to return. :return: The list of matching faces found in the collection. This list does not contain the face specified by `face_id`. """ try: response = self.rekognition_client.search_faces( CollectionId=self.collection_id, FaceId=face_id, FaceMatchThreshold=threshold, MaxFaces=max_faces, ) faces = [RekognitionFace(face["Face"]) for face in response["FaceMatches"]] logger.info( "Found %s faces in %s that match %s.", len(faces), self.collection_id, face_id, ) except ClientError: logger.exception( "Couldn't search for faces in %s that match %s.", self.collection_id, face_id, ) raise else: return faces
  • API 세부 정보는 AWS SDK for Python(Boto3) API 참조SearchFaces를 참조하세요.

다음 코드 예시에서는 SearchFacesByImage을 사용하는 방법을 보여 줍니다.

자세한 내용은 얼굴 검색(이미지)을 참조하세요.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def search_faces_by_image(self, image, threshold, max_faces): """ Searches for faces in the collection that match the largest face in the reference image. :param image: The image that contains the reference face to search for. :param threshold: The match confidence must be greater than this value for a face to be included in the results. :param max_faces: The maximum number of faces to return. :return: A tuple. The first element is the face found in the reference image. The second element is the list of matching faces found in the collection. """ try: response = self.rekognition_client.search_faces_by_image( CollectionId=self.collection_id, Image=image.image, FaceMatchThreshold=threshold, MaxFaces=max_faces, ) image_face = RekognitionFace( { "BoundingBox": response["SearchedFaceBoundingBox"], "Confidence": response["SearchedFaceConfidence"], } ) collection_faces = [ RekognitionFace(face["Face"]) for face in response["FaceMatches"] ] logger.info( "Found %s faces in the collection that match the largest " "face in %s.", len(collection_faces), image.image_name, ) except ClientError: logger.exception( "Couldn't search for faces in %s that match %s.", self.collection_id, image.image_name, ) raise else: return image_face, collection_faces
  • API 세부 정보는 AWS SDK for Python (Boto3) API 참조SearchFacesByImage를 참조하십시오.

다음 코드 예시에서는 SearchFacesByImage을 사용하는 방법을 보여 줍니다.

자세한 내용은 얼굴 검색(이미지)을 참조하세요.

SDK for Python (Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def search_faces_by_image(self, image, threshold, max_faces): """ Searches for faces in the collection that match the largest face in the reference image. :param image: The image that contains the reference face to search for. :param threshold: The match confidence must be greater than this value for a face to be included in the results. :param max_faces: The maximum number of faces to return. :return: A tuple. The first element is the face found in the reference image. The second element is the list of matching faces found in the collection. """ try: response = self.rekognition_client.search_faces_by_image( CollectionId=self.collection_id, Image=image.image, FaceMatchThreshold=threshold, MaxFaces=max_faces, ) image_face = RekognitionFace( { "BoundingBox": response["SearchedFaceBoundingBox"], "Confidence": response["SearchedFaceConfidence"], } ) collection_faces = [ RekognitionFace(face["Face"]) for face in response["FaceMatches"] ] logger.info( "Found %s faces in the collection that match the largest " "face in %s.", len(collection_faces), image.image_name, ) except ClientError: logger.exception( "Couldn't search for faces in %s that match %s.", self.collection_id, image.image_name, ) raise else: return image_face, collection_faces
  • API 세부 정보는 AWS SDK for Python (Boto3) API 참조SearchFacesByImage를 참조하십시오.

시나리오

다음 코드 예제에서는 다음과 같은 작업을 수행하는 방법을 보여줍니다.

  • Amazon Rekognition 컬렉션을 생성합니다.

  • 컬렉션에 이미지를 추가하고 컬렉션에서 얼굴을 감지합니다.

  • 컬렉션에서 참조 이미지와 일치하는 얼굴을 검색합니다.

  • 컬렉션을 삭제합니다.

자세한 내용은 컬렉션에서 얼굴 검색을 참조하십시오.

SDK for Python(Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

Amazon Rekognition 함수를 래핑하는 클래스를 생성합니다.

import logging from pprint import pprint import boto3 from botocore.exceptions import ClientError from rekognition_objects import RekognitionFace from rekognition_image_detection import RekognitionImage logger = logging.getLogger(__name__) class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client @classmethod def from_file(cls, image_file_name, rekognition_client, image_name=None): """ Creates a RekognitionImage object from a local file. :param image_file_name: The file name of the image. The file is opened and its bytes are read. :param rekognition_client: A Boto3 Rekognition client. :param image_name: The name of the image. If this is not specified, the file name is used as the image name. :return: The RekognitionImage object, initialized with image bytes from the file. """ with open(image_file_name, "rb") as img_file: image = {"Bytes": img_file.read()} name = image_file_name if image_name is None else image_name return cls(image, name, rekognition_client) class RekognitionCollectionManager: """ Encapsulates Amazon Rekognition collection management functions. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, rekognition_client): """ Initializes the collection manager object. :param rekognition_client: A Boto3 Rekognition client. """ self.rekognition_client = rekognition_client def create_collection(self, collection_id): """ Creates an empty collection. :param collection_id: Text that identifies the collection. :return: The newly created collection. """ try: response = self.rekognition_client.create_collection( CollectionId=collection_id ) response["CollectionId"] = collection_id collection = RekognitionCollection(response, self.rekognition_client) logger.info("Created collection %s.", collection_id) except ClientError: logger.exception("Couldn't create collection %s.", collection_id) raise else: return collection def list_collections(self, max_results): """ Lists collections for the current account. :param max_results: The maximum number of collections to return. :return: The list of collections for the current account. """ try: response = self.rekognition_client.list_collections(MaxResults=max_results) collections = [ RekognitionCollection({"CollectionId": col_id}, self.rekognition_client) for col_id in response["CollectionIds"] ] except ClientError: logger.exception("Couldn't list collections.") raise else: return collections class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def to_dict(self): """ Renders parts of the collection data to a dict. :return: The collection data as a dict. """ rendering = { "collection_id": self.collection_id, "collection_arn": self.collection_arn, "face_count": self.face_count, "created": self.created, } return rendering def describe_collection(self): """ Gets data about the collection from the Amazon Rekognition service. :return: The collection rendered as a dict. """ try: response = self.rekognition_client.describe_collection( CollectionId=self.collection_id ) # Work around capitalization of Arn vs. ARN response["CollectionArn"] = response.get("CollectionARN") ( self.collection_arn, self.face_count, self.created, ) = self._unpack_collection(response) logger.info("Got data for collection %s.", self.collection_id) except ClientError: logger.exception("Couldn't get data for collection %s.", self.collection_id) raise else: return self.to_dict() def delete_collection(self): """ Deletes the collection. """ try: self.rekognition_client.delete_collection(CollectionId=self.collection_id) logger.info("Deleted collection %s.", self.collection_id) self.collection_id = None except ClientError: logger.exception("Couldn't delete collection %s.", self.collection_id) raise def index_faces(self, image, max_faces): """ Finds faces in the specified image, indexes them, and stores them in the collection. :param image: The image to index. :param max_faces: The maximum number of faces to index. :return: A tuple. The first element is a list of indexed faces. The second element is a list of faces that couldn't be indexed. """ try: response = self.rekognition_client.index_faces( CollectionId=self.collection_id, Image=image.image, ExternalImageId=image.image_name, MaxFaces=max_faces, DetectionAttributes=["ALL"], ) indexed_faces = [ RekognitionFace({**face["Face"], **face["FaceDetail"]}) for face in response["FaceRecords"] ] unindexed_faces = [ RekognitionFace(face["FaceDetail"]) for face in response["UnindexedFaces"] ] logger.info( "Indexed %s faces in %s. Could not index %s faces.", len(indexed_faces), image.image_name, len(unindexed_faces), ) except ClientError: logger.exception("Couldn't index faces in image %s.", image.image_name) raise else: return indexed_faces, unindexed_faces def list_faces(self, max_results): """ Lists the faces currently indexed in the collection. :param max_results: The maximum number of faces to return. :return: The list of faces in the collection. """ try: response = self.rekognition_client.list_faces( CollectionId=self.collection_id, MaxResults=max_results ) faces = [RekognitionFace(face) for face in response["Faces"]] logger.info( "Found %s faces in collection %s.", len(faces), self.collection_id ) except ClientError: logger.exception( "Couldn't list faces in collection %s.", self.collection_id ) raise else: return faces def search_faces(self, face_id, threshold, max_faces): """ Searches for faces in the collection that match another face from the collection. :param face_id: The ID of the face in the collection to search for. :param threshold: The match confidence must be greater than this value for a face to be included in the results. :param max_faces: The maximum number of faces to return. :return: The list of matching faces found in the collection. This list does not contain the face specified by `face_id`. """ try: response = self.rekognition_client.search_faces( CollectionId=self.collection_id, FaceId=face_id, FaceMatchThreshold=threshold, MaxFaces=max_faces, ) faces = [RekognitionFace(face["Face"]) for face in response["FaceMatches"]] logger.info( "Found %s faces in %s that match %s.", len(faces), self.collection_id, face_id, ) except ClientError: logger.exception( "Couldn't search for faces in %s that match %s.", self.collection_id, face_id, ) raise else: return faces def search_faces_by_image(self, image, threshold, max_faces): """ Searches for faces in the collection that match the largest face in the reference image. :param image: The image that contains the reference face to search for. :param threshold: The match confidence must be greater than this value for a face to be included in the results. :param max_faces: The maximum number of faces to return. :return: A tuple. The first element is the face found in the reference image. The second element is the list of matching faces found in the collection. """ try: response = self.rekognition_client.search_faces_by_image( CollectionId=self.collection_id, Image=image.image, FaceMatchThreshold=threshold, MaxFaces=max_faces, ) image_face = RekognitionFace( { "BoundingBox": response["SearchedFaceBoundingBox"], "Confidence": response["SearchedFaceConfidence"], } ) collection_faces = [ RekognitionFace(face["Face"]) for face in response["FaceMatches"] ] logger.info( "Found %s faces in the collection that match the largest " "face in %s.", len(collection_faces), image.image_name, ) except ClientError: logger.exception( "Couldn't search for faces in %s that match %s.", self.collection_id, image.image_name, ) raise else: return image_face, collection_faces class RekognitionFace: """Encapsulates an Amazon Rekognition face.""" def __init__(self, face, timestamp=None): """ Initializes the face object. :param face: Face data, in the format returned by Amazon Rekognition functions. :param timestamp: The time when the face was detected, if the face was detected in a video. """ self.bounding_box = face.get("BoundingBox") self.confidence = face.get("Confidence") self.landmarks = face.get("Landmarks") self.pose = face.get("Pose") self.quality = face.get("Quality") age_range = face.get("AgeRange") if age_range is not None: self.age_range = (age_range.get("Low"), age_range.get("High")) else: self.age_range = None self.smile = face.get("Smile", {}).get("Value") self.eyeglasses = face.get("Eyeglasses", {}).get("Value") self.sunglasses = face.get("Sunglasses", {}).get("Value") self.gender = face.get("Gender", {}).get("Value", None) self.beard = face.get("Beard", {}).get("Value") self.mustache = face.get("Mustache", {}).get("Value") self.eyes_open = face.get("EyesOpen", {}).get("Value") self.mouth_open = face.get("MouthOpen", {}).get("Value") self.emotions = [ emo.get("Type") for emo in face.get("Emotions", []) if emo.get("Confidence", 0) > 50 ] self.face_id = face.get("FaceId") self.image_id = face.get("ImageId") self.timestamp = timestamp def to_dict(self): """ Renders some of the face data to a dict. :return: A dict that contains the face data. """ rendering = {} if self.bounding_box is not None: rendering["bounding_box"] = self.bounding_box if self.age_range is not None: rendering["age"] = f"{self.age_range[0]} - {self.age_range[1]}" if self.gender is not None: rendering["gender"] = self.gender if self.emotions: rendering["emotions"] = self.emotions if self.face_id is not None: rendering["face_id"] = self.face_id if self.image_id is not None: rendering["image_id"] = self.image_id if self.timestamp is not None: rendering["timestamp"] = self.timestamp has = [] if self.smile: has.append("smile") if self.eyeglasses: has.append("eyeglasses") if self.sunglasses: has.append("sunglasses") if self.beard: has.append("beard") if self.mustache: has.append("mustache") if self.eyes_open: has.append("open eyes") if self.mouth_open: has.append("open mouth") if has: rendering["has"] = has return rendering

래퍼 클래스를 사용하여 이미지 세트에서 얼굴 컬렉션을 만든 다음 컬렉션에서 얼굴을 검색합니다.

def usage_demo(): print("-" * 88) print("Welcome to the Amazon Rekognition face collection demo!") print("-" * 88) logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") rekognition_client = boto3.client("rekognition") images = [ RekognitionImage.from_file( ".media/pexels-agung-pandit-wiguna-1128316.jpg", rekognition_client, image_name="sitting", ), RekognitionImage.from_file( ".media/pexels-agung-pandit-wiguna-1128317.jpg", rekognition_client, image_name="hopping", ), RekognitionImage.from_file( ".media/pexels-agung-pandit-wiguna-1128318.jpg", rekognition_client, image_name="biking", ), ] collection_mgr = RekognitionCollectionManager(rekognition_client) collection = collection_mgr.create_collection("doc-example-collection-demo") print(f"Created collection {collection.collection_id}:") pprint(collection.describe_collection()) print("Indexing faces from three images:") for image in images: collection.index_faces(image, 10) print("Listing faces in collection:") faces = collection.list_faces(10) for face in faces: pprint(face.to_dict()) input("Press Enter to continue.") print( f"Searching for faces in the collection that match the first face in the " f"list (Face ID: {faces[0].face_id}." ) found_faces = collection.search_faces(faces[0].face_id, 80, 10) print(f"Found {len(found_faces)} matching faces.") for face in found_faces: pprint(face.to_dict()) input("Press Enter to continue.") print( f"Searching for faces in the collection that match the largest face in " f"{images[0].image_name}." ) image_face, match_faces = collection.search_faces_by_image(images[0], 80, 10) print(f"The largest face in {images[0].image_name} is:") pprint(image_face.to_dict()) print(f"Found {len(match_faces)} matching faces.") for face in match_faces: pprint(face.to_dict()) input("Press Enter to continue.") collection.delete_collection() print("Thanks for watching!") print("-" * 88)

다음 코드 예제에서는 다음과 같은 작업을 수행하는 방법을 보여줍니다.

  • Amazon Rekognition 컬렉션을 생성합니다.

  • 컬렉션에 이미지를 추가하고 컬렉션에서 얼굴을 감지합니다.

  • 컬렉션에서 참조 이미지와 일치하는 얼굴을 검색합니다.

  • 컬렉션을 삭제합니다.

자세한 내용은 컬렉션에서 얼굴 검색을 참조하십시오.

SDK for Python(Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

Amazon Rekognition 함수를 래핑하는 클래스를 생성합니다.

import logging from pprint import pprint import boto3 from botocore.exceptions import ClientError from rekognition_objects import RekognitionFace from rekognition_image_detection import RekognitionImage logger = logging.getLogger(__name__) class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client @classmethod def from_file(cls, image_file_name, rekognition_client, image_name=None): """ Creates a RekognitionImage object from a local file. :param image_file_name: The file name of the image. The file is opened and its bytes are read. :param rekognition_client: A Boto3 Rekognition client. :param image_name: The name of the image. If this is not specified, the file name is used as the image name. :return: The RekognitionImage object, initialized with image bytes from the file. """ with open(image_file_name, "rb") as img_file: image = {"Bytes": img_file.read()} name = image_file_name if image_name is None else image_name return cls(image, name, rekognition_client) class RekognitionCollectionManager: """ Encapsulates Amazon Rekognition collection management functions. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, rekognition_client): """ Initializes the collection manager object. :param rekognition_client: A Boto3 Rekognition client. """ self.rekognition_client = rekognition_client def create_collection(self, collection_id): """ Creates an empty collection. :param collection_id: Text that identifies the collection. :return: The newly created collection. """ try: response = self.rekognition_client.create_collection( CollectionId=collection_id ) response["CollectionId"] = collection_id collection = RekognitionCollection(response, self.rekognition_client) logger.info("Created collection %s.", collection_id) except ClientError: logger.exception("Couldn't create collection %s.", collection_id) raise else: return collection def list_collections(self, max_results): """ Lists collections for the current account. :param max_results: The maximum number of collections to return. :return: The list of collections for the current account. """ try: response = self.rekognition_client.list_collections(MaxResults=max_results) collections = [ RekognitionCollection({"CollectionId": col_id}, self.rekognition_client) for col_id in response["CollectionIds"] ] except ClientError: logger.exception("Couldn't list collections.") raise else: return collections class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def to_dict(self): """ Renders parts of the collection data to a dict. :return: The collection data as a dict. """ rendering = { "collection_id": self.collection_id, "collection_arn": self.collection_arn, "face_count": self.face_count, "created": self.created, } return rendering def describe_collection(self): """ Gets data about the collection from the Amazon Rekognition service. :return: The collection rendered as a dict. """ try: response = self.rekognition_client.describe_collection( CollectionId=self.collection_id ) # Work around capitalization of Arn vs. ARN response["CollectionArn"] = response.get("CollectionARN") ( self.collection_arn, self.face_count, self.created, ) = self._unpack_collection(response) logger.info("Got data for collection %s.", self.collection_id) except ClientError: logger.exception("Couldn't get data for collection %s.", self.collection_id) raise else: return self.to_dict() def delete_collection(self): """ Deletes the collection. """ try: self.rekognition_client.delete_collection(CollectionId=self.collection_id) logger.info("Deleted collection %s.", self.collection_id) self.collection_id = None except ClientError: logger.exception("Couldn't delete collection %s.", self.collection_id) raise def index_faces(self, image, max_faces): """ Finds faces in the specified image, indexes them, and stores them in the collection. :param image: The image to index. :param max_faces: The maximum number of faces to index. :return: A tuple. The first element is a list of indexed faces. The second element is a list of faces that couldn't be indexed. """ try: response = self.rekognition_client.index_faces( CollectionId=self.collection_id, Image=image.image, ExternalImageId=image.image_name, MaxFaces=max_faces, DetectionAttributes=["ALL"], ) indexed_faces = [ RekognitionFace({**face["Face"], **face["FaceDetail"]}) for face in response["FaceRecords"] ] unindexed_faces = [ RekognitionFace(face["FaceDetail"]) for face in response["UnindexedFaces"] ] logger.info( "Indexed %s faces in %s. Could not index %s faces.", len(indexed_faces), image.image_name, len(unindexed_faces), ) except ClientError: logger.exception("Couldn't index faces in image %s.", image.image_name) raise else: return indexed_faces, unindexed_faces def list_faces(self, max_results): """ Lists the faces currently indexed in the collection. :param max_results: The maximum number of faces to return. :return: The list of faces in the collection. """ try: response = self.rekognition_client.list_faces( CollectionId=self.collection_id, MaxResults=max_results ) faces = [RekognitionFace(face) for face in response["Faces"]] logger.info( "Found %s faces in collection %s.", len(faces), self.collection_id ) except ClientError: logger.exception( "Couldn't list faces in collection %s.", self.collection_id ) raise else: return faces def search_faces(self, face_id, threshold, max_faces): """ Searches for faces in the collection that match another face from the collection. :param face_id: The ID of the face in the collection to search for. :param threshold: The match confidence must be greater than this value for a face to be included in the results. :param max_faces: The maximum number of faces to return. :return: The list of matching faces found in the collection. This list does not contain the face specified by `face_id`. """ try: response = self.rekognition_client.search_faces( CollectionId=self.collection_id, FaceId=face_id, FaceMatchThreshold=threshold, MaxFaces=max_faces, ) faces = [RekognitionFace(face["Face"]) for face in response["FaceMatches"]] logger.info( "Found %s faces in %s that match %s.", len(faces), self.collection_id, face_id, ) except ClientError: logger.exception( "Couldn't search for faces in %s that match %s.", self.collection_id, face_id, ) raise else: return faces def search_faces_by_image(self, image, threshold, max_faces): """ Searches for faces in the collection that match the largest face in the reference image. :param image: The image that contains the reference face to search for. :param threshold: The match confidence must be greater than this value for a face to be included in the results. :param max_faces: The maximum number of faces to return. :return: A tuple. The first element is the face found in the reference image. The second element is the list of matching faces found in the collection. """ try: response = self.rekognition_client.search_faces_by_image( CollectionId=self.collection_id, Image=image.image, FaceMatchThreshold=threshold, MaxFaces=max_faces, ) image_face = RekognitionFace( { "BoundingBox": response["SearchedFaceBoundingBox"], "Confidence": response["SearchedFaceConfidence"], } ) collection_faces = [ RekognitionFace(face["Face"]) for face in response["FaceMatches"] ] logger.info( "Found %s faces in the collection that match the largest " "face in %s.", len(collection_faces), image.image_name, ) except ClientError: logger.exception( "Couldn't search for faces in %s that match %s.", self.collection_id, image.image_name, ) raise else: return image_face, collection_faces class RekognitionFace: """Encapsulates an Amazon Rekognition face.""" def __init__(self, face, timestamp=None): """ Initializes the face object. :param face: Face data, in the format returned by Amazon Rekognition functions. :param timestamp: The time when the face was detected, if the face was detected in a video. """ self.bounding_box = face.get("BoundingBox") self.confidence = face.get("Confidence") self.landmarks = face.get("Landmarks") self.pose = face.get("Pose") self.quality = face.get("Quality") age_range = face.get("AgeRange") if age_range is not None: self.age_range = (age_range.get("Low"), age_range.get("High")) else: self.age_range = None self.smile = face.get("Smile", {}).get("Value") self.eyeglasses = face.get("Eyeglasses", {}).get("Value") self.sunglasses = face.get("Sunglasses", {}).get("Value") self.gender = face.get("Gender", {}).get("Value", None) self.beard = face.get("Beard", {}).get("Value") self.mustache = face.get("Mustache", {}).get("Value") self.eyes_open = face.get("EyesOpen", {}).get("Value") self.mouth_open = face.get("MouthOpen", {}).get("Value") self.emotions = [ emo.get("Type") for emo in face.get("Emotions", []) if emo.get("Confidence", 0) > 50 ] self.face_id = face.get("FaceId") self.image_id = face.get("ImageId") self.timestamp = timestamp def to_dict(self): """ Renders some of the face data to a dict. :return: A dict that contains the face data. """ rendering = {} if self.bounding_box is not None: rendering["bounding_box"] = self.bounding_box if self.age_range is not None: rendering["age"] = f"{self.age_range[0]} - {self.age_range[1]}" if self.gender is not None: rendering["gender"] = self.gender if self.emotions: rendering["emotions"] = self.emotions if self.face_id is not None: rendering["face_id"] = self.face_id if self.image_id is not None: rendering["image_id"] = self.image_id if self.timestamp is not None: rendering["timestamp"] = self.timestamp has = [] if self.smile: has.append("smile") if self.eyeglasses: has.append("eyeglasses") if self.sunglasses: has.append("sunglasses") if self.beard: has.append("beard") if self.mustache: has.append("mustache") if self.eyes_open: has.append("open eyes") if self.mouth_open: has.append("open mouth") if has: rendering["has"] = has return rendering

래퍼 클래스를 사용하여 이미지 세트에서 얼굴 컬렉션을 만든 다음 컬렉션에서 얼굴을 검색합니다.

def usage_demo(): print("-" * 88) print("Welcome to the Amazon Rekognition face collection demo!") print("-" * 88) logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") rekognition_client = boto3.client("rekognition") images = [ RekognitionImage.from_file( ".media/pexels-agung-pandit-wiguna-1128316.jpg", rekognition_client, image_name="sitting", ), RekognitionImage.from_file( ".media/pexels-agung-pandit-wiguna-1128317.jpg", rekognition_client, image_name="hopping", ), RekognitionImage.from_file( ".media/pexels-agung-pandit-wiguna-1128318.jpg", rekognition_client, image_name="biking", ), ] collection_mgr = RekognitionCollectionManager(rekognition_client) collection = collection_mgr.create_collection("doc-example-collection-demo") print(f"Created collection {collection.collection_id}:") pprint(collection.describe_collection()) print("Indexing faces from three images:") for image in images: collection.index_faces(image, 10) print("Listing faces in collection:") faces = collection.list_faces(10) for face in faces: pprint(face.to_dict()) input("Press Enter to continue.") print( f"Searching for faces in the collection that match the first face in the " f"list (Face ID: {faces[0].face_id}." ) found_faces = collection.search_faces(faces[0].face_id, 80, 10) print(f"Found {len(found_faces)} matching faces.") for face in found_faces: pprint(face.to_dict()) input("Press Enter to continue.") print( f"Searching for faces in the collection that match the largest face in " f"{images[0].image_name}." ) image_face, match_faces = collection.search_faces_by_image(images[0], 80, 10) print(f"The largest face in {images[0].image_name} is:") pprint(image_face.to_dict()) print(f"Found {len(match_faces)} matching faces.") for face in match_faces: pprint(face.to_dict()) input("Press Enter to continue.") collection.delete_collection() print("Thanks for watching!") print("-" * 88)

다음 코드 예제에서는 다음과 같은 작업을 수행하는 방법을 보여줍니다.

  • Amazon Rekognition을 사용하여 이미지에서 요소를 감지하고 표시합니다.

  • 이미지를 표시하고 감지된 요소 주위에 경계 상자를 그립니다.

자세한 내용은 경계 상자 표시를 참조하십시오.

SDK for Python(Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

Amazon Rekognition 함수를 래핑하는 클래스를 생성합니다.

import logging from pprint import pprint import boto3 from botocore.exceptions import ClientError import requests from rekognition_objects import ( RekognitionFace, RekognitionCelebrity, RekognitionLabel, RekognitionModerationLabel, RekognitionText, show_bounding_boxes, show_polygons, ) logger = logging.getLogger(__name__) class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client @classmethod def from_file(cls, image_file_name, rekognition_client, image_name=None): """ Creates a RekognitionImage object from a local file. :param image_file_name: The file name of the image. The file is opened and its bytes are read. :param rekognition_client: A Boto3 Rekognition client. :param image_name: The name of the image. If this is not specified, the file name is used as the image name. :return: The RekognitionImage object, initialized with image bytes from the file. """ with open(image_file_name, "rb") as img_file: image = {"Bytes": img_file.read()} name = image_file_name if image_name is None else image_name return cls(image, name, rekognition_client) @classmethod def from_bucket(cls, s3_object, rekognition_client): """ Creates a RekognitionImage object from an Amazon S3 object. :param s3_object: An Amazon S3 object that identifies the image. The image is not retrieved until needed for a later call. :param rekognition_client: A Boto3 Rekognition client. :return: The RekognitionImage object, initialized with Amazon S3 object data. """ image = {"S3Object": {"Bucket": s3_object.bucket_name, "Name": s3_object.key}} return cls(image, s3_object.key, rekognition_client) def detect_faces(self): """ Detects faces in the image. :return: The list of faces found in the image. """ try: response = self.rekognition_client.detect_faces( Image=self.image, Attributes=["ALL"] ) faces = [RekognitionFace(face) for face in response["FaceDetails"]] logger.info("Detected %s faces.", len(faces)) except ClientError: logger.exception("Couldn't detect faces in %s.", self.image_name) raise else: return faces def detect_labels(self, max_labels): """ Detects labels in the image. Labels are objects and people. :param max_labels: The maximum number of labels to return. :return: The list of labels detected in the image. """ try: response = self.rekognition_client.detect_labels( Image=self.image, MaxLabels=max_labels ) labels = [RekognitionLabel(label) for label in response["Labels"]] logger.info("Found %s labels in %s.", len(labels), self.image_name) except ClientError: logger.info("Couldn't detect labels in %s.", self.image_name) raise else: return labels def recognize_celebrities(self): """ Detects celebrities in the image. :return: A tuple. The first element is the list of celebrities found in the image. The second element is the list of faces that were detected but did not match any known celebrities. """ try: response = self.rekognition_client.recognize_celebrities(Image=self.image) celebrities = [ RekognitionCelebrity(celeb) for celeb in response["CelebrityFaces"] ] other_faces = [ RekognitionFace(face) for face in response["UnrecognizedFaces"] ] logger.info( "Found %s celebrities and %s other faces in %s.", len(celebrities), len(other_faces), self.image_name, ) except ClientError: logger.exception("Couldn't detect celebrities in %s.", self.image_name) raise else: return celebrities, other_faces def compare_faces(self, target_image, similarity): """ Compares faces in the image with the largest face in the target image. :param target_image: The target image to compare against. :param similarity: Faces in the image must have a similarity value greater than this value to be included in the results. :return: A tuple. The first element is the list of faces that match the reference image. The second element is the list of faces that have a similarity value below the specified threshold. """ try: response = self.rekognition_client.compare_faces( SourceImage=self.image, TargetImage=target_image.image, SimilarityThreshold=similarity, ) matches = [ RekognitionFace(match["Face"]) for match in response["FaceMatches"] ] unmatches = [RekognitionFace(face) for face in response["UnmatchedFaces"]] logger.info( "Found %s matched faces and %s unmatched faces.", len(matches), len(unmatches), ) except ClientError: logger.exception( "Couldn't match faces from %s to %s.", self.image_name, target_image.image_name, ) raise else: return matches, unmatches def detect_moderation_labels(self): """ Detects moderation labels in the image. Moderation labels identify content that may be inappropriate for some audiences. :return: The list of moderation labels found in the image. """ try: response = self.rekognition_client.detect_moderation_labels( Image=self.image ) labels = [ RekognitionModerationLabel(label) for label in response["ModerationLabels"] ] logger.info( "Found %s moderation labels in %s.", len(labels), self.image_name ) except ClientError: logger.exception( "Couldn't detect moderation labels in %s.", self.image_name ) raise else: return labels def detect_text(self): """ Detects text in the image. :return The list of text elements found in the image. """ try: response = self.rekognition_client.detect_text(Image=self.image) texts = [RekognitionText(text) for text in response["TextDetections"]] logger.info("Found %s texts in %s.", len(texts), self.image_name) except ClientError: logger.exception("Couldn't detect text in %s.", self.image_name) raise else: return texts

경계 상자와 다각형을 그리는 도우미 함수를 생성합니다.

import io import logging from PIL import Image, ImageDraw logger = logging.getLogger(__name__) def show_bounding_boxes(image_bytes, box_sets, colors): """ Draws bounding boxes on an image and shows it with the default image viewer. :param image_bytes: The image to draw, as bytes. :param box_sets: A list of lists of bounding boxes to draw on the image. :param colors: A list of colors to use to draw the bounding boxes. """ image = Image.open(io.BytesIO(image_bytes)) draw = ImageDraw.Draw(image) for boxes, color in zip(box_sets, colors): for box in boxes: left = image.width * box["Left"] top = image.height * box["Top"] right = (image.width * box["Width"]) + left bottom = (image.height * box["Height"]) + top draw.rectangle([left, top, right, bottom], outline=color, width=3) image.show() def show_polygons(image_bytes, polygons, color): """ Draws polygons on an image and shows it with the default image viewer. :param image_bytes: The image to draw, as bytes. :param polygons: The list of polygons to draw on the image. :param color: The color to use to draw the polygons. """ image = Image.open(io.BytesIO(image_bytes)) draw = ImageDraw.Draw(image) for polygon in polygons: draw.polygon( [ (image.width * point["X"], image.height * point["Y"]) for point in polygon ], outline=color, ) image.show()

Amazon Rekognition에서 반환한 객체를 파싱하기 위한 클래스를 생성합니다.

class RekognitionFace: """Encapsulates an Amazon Rekognition face.""" def __init__(self, face, timestamp=None): """ Initializes the face object. :param face: Face data, in the format returned by Amazon Rekognition functions. :param timestamp: The time when the face was detected, if the face was detected in a video. """ self.bounding_box = face.get("BoundingBox") self.confidence = face.get("Confidence") self.landmarks = face.get("Landmarks") self.pose = face.get("Pose") self.quality = face.get("Quality") age_range = face.get("AgeRange") if age_range is not None: self.age_range = (age_range.get("Low"), age_range.get("High")) else: self.age_range = None self.smile = face.get("Smile", {}).get("Value") self.eyeglasses = face.get("Eyeglasses", {}).get("Value") self.sunglasses = face.get("Sunglasses", {}).get("Value") self.gender = face.get("Gender", {}).get("Value", None) self.beard = face.get("Beard", {}).get("Value") self.mustache = face.get("Mustache", {}).get("Value") self.eyes_open = face.get("EyesOpen", {}).get("Value") self.mouth_open = face.get("MouthOpen", {}).get("Value") self.emotions = [ emo.get("Type") for emo in face.get("Emotions", []) if emo.get("Confidence", 0) > 50 ] self.face_id = face.get("FaceId") self.image_id = face.get("ImageId") self.timestamp = timestamp def to_dict(self): """ Renders some of the face data to a dict. :return: A dict that contains the face data. """ rendering = {} if self.bounding_box is not None: rendering["bounding_box"] = self.bounding_box if self.age_range is not None: rendering["age"] = f"{self.age_range[0]} - {self.age_range[1]}" if self.gender is not None: rendering["gender"] = self.gender if self.emotions: rendering["emotions"] = self.emotions if self.face_id is not None: rendering["face_id"] = self.face_id if self.image_id is not None: rendering["image_id"] = self.image_id if self.timestamp is not None: rendering["timestamp"] = self.timestamp has = [] if self.smile: has.append("smile") if self.eyeglasses: has.append("eyeglasses") if self.sunglasses: has.append("sunglasses") if self.beard: has.append("beard") if self.mustache: has.append("mustache") if self.eyes_open: has.append("open eyes") if self.mouth_open: has.append("open mouth") if has: rendering["has"] = has return rendering class RekognitionCelebrity: """Encapsulates an Amazon Rekognition celebrity.""" def __init__(self, celebrity, timestamp=None): """ Initializes the celebrity object. :param celebrity: Celebrity data, in the format returned by Amazon Rekognition functions. :param timestamp: The time when the celebrity was detected, if the celebrity was detected in a video. """ self.info_urls = celebrity.get("Urls") self.name = celebrity.get("Name") self.id = celebrity.get("Id") self.face = RekognitionFace(celebrity.get("Face")) self.confidence = celebrity.get("MatchConfidence") self.bounding_box = celebrity.get("BoundingBox") self.timestamp = timestamp def to_dict(self): """ Renders some of the celebrity data to a dict. :return: A dict that contains the celebrity data. """ rendering = self.face.to_dict() if self.name is not None: rendering["name"] = self.name if self.info_urls: rendering["info URLs"] = self.info_urls if self.timestamp is not None: rendering["timestamp"] = self.timestamp return rendering class RekognitionPerson: """Encapsulates an Amazon Rekognition person.""" def __init__(self, person, timestamp=None): """ Initializes the person object. :param person: Person data, in the format returned by Amazon Rekognition functions. :param timestamp: The time when the person was detected, if the person was detected in a video. """ self.index = person.get("Index") self.bounding_box = person.get("BoundingBox") face = person.get("Face") self.face = RekognitionFace(face) if face is not None else None self.timestamp = timestamp def to_dict(self): """ Renders some of the person data to a dict. :return: A dict that contains the person data. """ rendering = self.face.to_dict() if self.face is not None else {} if self.index is not None: rendering["index"] = self.index if self.bounding_box is not None: rendering["bounding_box"] = self.bounding_box if self.timestamp is not None: rendering["timestamp"] = self.timestamp return rendering class RekognitionLabel: """Encapsulates an Amazon Rekognition label.""" def __init__(self, label, timestamp=None): """ Initializes the label object. :param label: Label data, in the format returned by Amazon Rekognition functions. :param timestamp: The time when the label was detected, if the label was detected in a video. """ self.name = label.get("Name") self.confidence = label.get("Confidence") self.instances = label.get("Instances") self.parents = label.get("Parents") self.timestamp = timestamp def to_dict(self): """ Renders some of the label data to a dict. :return: A dict that contains the label data. """ rendering = {} if self.name is not None: rendering["name"] = self.name if self.timestamp is not None: rendering["timestamp"] = self.timestamp return rendering class RekognitionModerationLabel: """Encapsulates an Amazon Rekognition moderation label.""" def __init__(self, label, timestamp=None): """ Initializes the moderation label object. :param label: Label data, in the format returned by Amazon Rekognition functions. :param timestamp: The time when the moderation label was detected, if the label was detected in a video. """ self.name = label.get("Name") self.confidence = label.get("Confidence") self.parent_name = label.get("ParentName") self.timestamp = timestamp def to_dict(self): """ Renders some of the moderation label data to a dict. :return: A dict that contains the moderation label data. """ rendering = {} if self.name is not None: rendering["name"] = self.name if self.parent_name is not None: rendering["parent_name"] = self.parent_name if self.timestamp is not None: rendering["timestamp"] = self.timestamp return rendering class RekognitionText: """Encapsulates an Amazon Rekognition text element.""" def __init__(self, text_data): """ Initializes the text object. :param text_data: Text data, in the format returned by Amazon Rekognition functions. """ self.text = text_data.get("DetectedText") self.kind = text_data.get("Type") self.id = text_data.get("Id") self.parent_id = text_data.get("ParentId") self.confidence = text_data.get("Confidence") self.geometry = text_data.get("Geometry") def to_dict(self): """ Renders some of the text data to a dict. :return: A dict that contains the text data. """ rendering = {} if self.text is not None: rendering["text"] = self.text if self.kind is not None: rendering["kind"] = self.kind if self.geometry is not None: rendering["polygon"] = self.geometry.get("Polygon") return rendering

래퍼 클래스를 사용하여 이미지에서 요소를 감지하고 해당 요소의 경계 상자를 표시합니다. 이 예제에 사용된 이미지는 지침 및 추가 코드와 함께 GitHub에서 찾을 수 있습니다.

def usage_demo(): print("-" * 88) print("Welcome to the Amazon Rekognition image detection demo!") print("-" * 88) logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") rekognition_client = boto3.client("rekognition") street_scene_file_name = ".media/pexels-kaique-rocha-109919.jpg" celebrity_file_name = ".media/pexels-pixabay-53370.jpg" one_girl_url = "https://dhei5unw3vrsx.cloudfront.net/images/source3_resized.jpg" three_girls_url = "https://dhei5unw3vrsx.cloudfront.net/images/target3_resized.jpg" swimwear_object = boto3.resource("s3").Object( "console-sample-images-pdx", "yoga_swimwear.jpg" ) book_file_name = ".media/pexels-christina-morillo-1181671.jpg" street_scene_image = RekognitionImage.from_file( street_scene_file_name, rekognition_client ) print(f"Detecting faces in {street_scene_image.image_name}...") faces = street_scene_image.detect_faces() print(f"Found {len(faces)} faces, here are the first three.") for face in faces[:3]: pprint(face.to_dict()) show_bounding_boxes( street_scene_image.image["Bytes"], [[face.bounding_box for face in faces]], ["aqua"], ) input("Press Enter to continue.") print(f"Detecting labels in {street_scene_image.image_name}...") labels = street_scene_image.detect_labels(100) print(f"Found {len(labels)} labels.") for label in labels: pprint(label.to_dict()) names = [] box_sets = [] colors = ["aqua", "red", "white", "blue", "yellow", "green"] for label in labels: if label.instances: names.append(label.name) box_sets.append([inst["BoundingBox"] for inst in label.instances]) print(f"Showing bounding boxes for {names} in {colors[:len(names)]}.") show_bounding_boxes( street_scene_image.image["Bytes"], box_sets, colors[: len(names)] ) input("Press Enter to continue.") celebrity_image = RekognitionImage.from_file( celebrity_file_name, rekognition_client ) print(f"Detecting celebrities in {celebrity_image.image_name}...") celebs, others = celebrity_image.recognize_celebrities() print(f"Found {len(celebs)} celebrities.") for celeb in celebs: pprint(celeb.to_dict()) show_bounding_boxes( celebrity_image.image["Bytes"], [[celeb.face.bounding_box for celeb in celebs]], ["aqua"], ) input("Press Enter to continue.") girl_image_response = requests.get(one_girl_url) girl_image = RekognitionImage( {"Bytes": girl_image_response.content}, "one-girl", rekognition_client ) group_image_response = requests.get(three_girls_url) group_image = RekognitionImage( {"Bytes": group_image_response.content}, "three-girls", rekognition_client ) print("Comparing reference face to group of faces...") matches, unmatches = girl_image.compare_faces(group_image, 80) print(f"Found {len(matches)} face matching the reference face.") show_bounding_boxes( group_image.image["Bytes"], [[match.bounding_box for match in matches]], ["aqua"], ) input("Press Enter to continue.") swimwear_image = RekognitionImage.from_bucket(swimwear_object, rekognition_client) print(f"Detecting suggestive content in {swimwear_object.key}...") labels = swimwear_image.detect_moderation_labels() print(f"Found {len(labels)} moderation labels.") for label in labels: pprint(label.to_dict()) input("Press Enter to continue.") book_image = RekognitionImage.from_file(book_file_name, rekognition_client) print(f"Detecting text in {book_image.image_name}...") texts = book_image.detect_text() print(f"Found {len(texts)} text instances. Here are the first seven:") for text in texts[:7]: pprint(text.to_dict()) show_polygons( book_image.image["Bytes"], [text.geometry["Polygon"] for text in texts], "aqua" ) print("Thanks for watching!") print("-" * 88)

다음 코드 예제에서는 다음과 같은 작업을 수행하는 방법을 보여줍니다.

  • Amazon Rekognition을 사용하여 이미지에서 요소를 감지하고 표시합니다.

  • 이미지를 표시하고 감지된 요소 주위에 경계 상자를 그립니다.

자세한 내용은 경계 상자 표시를 참조하십시오.

SDK for Python(Boto3)
참고

GitHub에 더 많은 내용이 있습니다. AWS 코드 예시 리포지토리에서 전체 예시를 찾고 설정 및 실행하는 방법을 배워보세요.

Amazon Rekognition 함수를 래핑하는 클래스를 생성합니다.

import logging from pprint import pprint import boto3 from botocore.exceptions import ClientError import requests from rekognition_objects import ( RekognitionFace, RekognitionCelebrity, RekognitionLabel, RekognitionModerationLabel, RekognitionText, show_bounding_boxes, show_polygons, ) logger = logging.getLogger(__name__) class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client @classmethod def from_file(cls, image_file_name, rekognition_client, image_name=None): """ Creates a RekognitionImage object from a local file. :param image_file_name: The file name of the image. The file is opened and its bytes are read. :param rekognition_client: A Boto3 Rekognition client. :param image_name: The name of the image. If this is not specified, the file name is used as the image name. :return: The RekognitionImage object, initialized with image bytes from the file. """ with open(image_file_name, "rb") as img_file: image = {"Bytes": img_file.read()} name = image_file_name if image_name is None else image_name return cls(image, name, rekognition_client) @classmethod def from_bucket(cls, s3_object, rekognition_client): """ Creates a RekognitionImage object from an Amazon S3 object. :param s3_object: An Amazon S3 object that identifies the image. The image is not retrieved until needed for a later call. :param rekognition_client: A Boto3 Rekognition client. :return: The RekognitionImage object, initialized with Amazon S3 object data. """ image = {"S3Object": {"Bucket": s3_object.bucket_name, "Name": s3_object.key}} return cls(image, s3_object.key, rekognition_client) def detect_faces(self): """ Detects faces in the image. :return: The list of faces found in the image. """ try: response = self.rekognition_client.detect_faces( Image=self.image, Attributes=["ALL"] ) faces = [RekognitionFace(face) for face in response["FaceDetails"]] logger.info("Detected %s faces.", len(faces)) except ClientError: logger.exception("Couldn't detect faces in %s.", self.image_name) raise else: return faces def detect_labels(self, max_labels): """ Detects labels in the image. Labels are objects and people. :param max_labels: The maximum number of labels to return. :return: The list of labels detected in the image. """ try: response = self.rekognition_client.detect_labels( Image=self.image, MaxLabels=max_labels ) labels = [RekognitionLabel(label) for label in response["Labels"]] logger.info("Found %s labels in %s.", len(labels), self.image_name) except ClientError: logger.info("Couldn't detect labels in %s.", self.image_name) raise else: return labels def recognize_celebrities(self): """ Detects celebrities in the image. :return: A tuple. The first element is the list of celebrities found in the image. The second element is the list of faces that were detected but did not match any known celebrities. """ try: response = self.rekognition_client.recognize_celebrities(Image=self.image) celebrities = [ RekognitionCelebrity(celeb) for celeb in response["CelebrityFaces"] ] other_faces = [ RekognitionFace(face) for face in response["UnrecognizedFaces"] ] logger.info( "Found %s celebrities and %s other faces in %s.", len(celebrities), len(other_faces), self.image_name, ) except ClientError: logger.exception("Couldn't detect celebrities in %s.", self.image_name) raise else: return celebrities, other_faces def compare_faces(self, target_image, similarity): """ Compares faces in the image with the largest face in the target image. :param target_image: The target image to compare against. :param similarity: Faces in the image must have a similarity value greater than this value to be included in the results. :return: A tuple. The first element is the list of faces that match the reference image. The second element is the list of faces that have a similarity value below the specified threshold. """ try: response = self.rekognition_client.compare_faces( SourceImage=self.image, TargetImage=target_image.image, SimilarityThreshold=similarity, ) matches = [ RekognitionFace(match["Face"]) for match in response["FaceMatches"] ] unmatches = [RekognitionFace(face) for face in response["UnmatchedFaces"]] logger.info( "Found %s matched faces and %s unmatched faces.", len(matches), len(unmatches), ) except ClientError: logger.exception( "Couldn't match faces from %s to %s.", self.image_name, target_image.image_name, ) raise else: return matches, unmatches def detect_moderation_labels(self): """ Detects moderation labels in the image. Moderation labels identify content that may be inappropriate for some audiences. :return: The list of moderation labels found in the image. """ try: response = self.rekognition_client.detect_moderation_labels( Image=self.image ) labels = [ RekognitionModerationLabel(label) for label in response["ModerationLabels"] ] logger.info( "Found %s moderation labels in %s.", len(labels), self.image_name ) except ClientError: logger.exception( "Couldn't detect moderation labels in %s.", self.image_name ) raise else: return labels def detect_text(self): """ Detects text in the image. :return The list of text elements found in the image. """ try: response = self.rekognition_client.detect_text(Image=self.image) texts = [RekognitionText(text) for text in response["TextDetections"]] logger.info("Found %s texts in %s.", len(texts), self.image_name) except ClientError: logger.exception("Couldn't detect text in %s.", self.image_name) raise else: return texts

경계 상자와 다각형을 그리는 도우미 함수를 생성합니다.

import io import logging from PIL import Image, ImageDraw logger = logging.getLogger(__name__) def show_bounding_boxes(image_bytes, box_sets, colors): """ Draws bounding boxes on an image and shows it with the default image viewer. :param image_bytes: The image to draw, as bytes. :param box_sets: A list of lists of bounding boxes to draw on the image. :param colors: A list of colors to use to draw the bounding boxes. """ image = Image.open(io.BytesIO(image_bytes)) draw = ImageDraw.Draw(image) for boxes, color in zip(box_sets, colors): for box in boxes: left = image.width * box["Left"] top = image.height * box["Top"] right = (image.width * box["Width"]) + left bottom = (image.height * box["Height"]) + top draw.rectangle([left, top, right, bottom], outline=color, width=3) image.show() def show_polygons(image_bytes, polygons, color): """ Draws polygons on an image and shows it with the default image viewer. :param image_bytes: The image to draw, as bytes. :param polygons: The list of polygons to draw on the image. :param color: The color to use to draw the polygons. """ image = Image.open(io.BytesIO(image_bytes)) draw = ImageDraw.Draw(image) for polygon in polygons: draw.polygon( [ (image.width * point["X"], image.height * point["Y"]) for point in polygon ], outline=color, ) image.show()

Amazon Rekognition에서 반환한 객체를 파싱하기 위한 클래스를 생성합니다.

class RekognitionFace: """Encapsulates an Amazon Rekognition face.""" def __init__(self, face, timestamp=None): """ Initializes the face object. :param face: Face data, in the format returned by Amazon Rekognition functions. :param timestamp: The time when the face was detected, if the face was detected in a video. """ self.bounding_box = face.get("BoundingBox") self.confidence = face.get("Confidence") self.landmarks = face.get("Landmarks") self.pose = face.get("Pose") self.quality = face.get("Quality") age_range = face.get("AgeRange") if age_range is not None: self.age_range = (age_range.get("Low"), age_range.get("High")) else: self.age_range = None self.smile = face.get("Smile", {}).get("Value") self.eyeglasses = face.get("Eyeglasses", {}).get("Value") self.sunglasses = face.get("Sunglasses", {}).get("Value") self.gender = face.get("Gender", {}).get("Value", None) self.beard = face.get("Beard", {}).get("Value") self.mustache = face.get("Mustache", {}).get("Value") self.eyes_open = face.get("EyesOpen", {}).get("Value") self.mouth_open = face.get("MouthOpen", {}).get("Value") self.emotions = [ emo.get("Type") for emo in face.get("Emotions", []) if emo.get("Confidence", 0) > 50 ] self.face_id = face.get("FaceId") self.image_id = face.get("ImageId") self.timestamp = timestamp def to_dict(self): """ Renders some of the face data to a dict. :return: A dict that contains the face data. """ rendering = {} if self.bounding_box is not None: rendering["bounding_box"] = self.bounding_box if self.age_range is not None: rendering["age"] = f"{self.age_range[0]} - {self.age_range[1]}" if self.gender is not None: rendering["gender"] = self.gender if self.emotions: rendering["emotions"] = self.emotions if self.face_id is not None: rendering["face_id"] = self.face_id if self.image_id is not None: rendering["image_id"] = self.image_id if self.timestamp is not None: rendering["timestamp"] = self.timestamp has = [] if self.smile: has.append("smile") if self.eyeglasses: has.append("eyeglasses") if self.sunglasses: has.append("sunglasses") if self.beard: has.append("beard") if self.mustache: has.append("mustache") if self.eyes_open: has.append("open eyes") if self.mouth_open: has.append("open mouth") if has: rendering["has"] = has return rendering class RekognitionCelebrity: """Encapsulates an Amazon Rekognition celebrity.""" def __init__(self, celebrity, timestamp=None): """ Initializes the celebrity object. :param celebrity: Celebrity data, in the format returned by Amazon Rekognition functions. :param timestamp: The time when the celebrity was detected, if the celebrity was detected in a video. """ self.info_urls = celebrity.get("Urls") self.name = celebrity.get("Name") self.id = celebrity.get("Id") self.face = RekognitionFace(celebrity.get("Face")) self.confidence = celebrity.get("MatchConfidence") self.bounding_box = celebrity.get("BoundingBox") self.timestamp = timestamp def to_dict(self): """ Renders some of the celebrity data to a dict. :return: A dict that contains the celebrity data. """ rendering = self.face.to_dict() if self.name is not None: rendering["name"] = self.name if self.info_urls: rendering["info URLs"] = self.info_urls if self.timestamp is not None: rendering["timestamp"] = self.timestamp return rendering class RekognitionPerson: """Encapsulates an Amazon Rekognition person.""" def __init__(self, person, timestamp=None): """ Initializes the person object. :param person: Person data, in the format returned by Amazon Rekognition functions. :param timestamp: The time when the person was detected, if the person was detected in a video. """ self.index = person.get("Index") self.bounding_box = person.get("BoundingBox") face = person.get("Face") self.face = RekognitionFace(face) if face is not None else None self.timestamp = timestamp def to_dict(self): """ Renders some of the person data to a dict. :return: A dict that contains the person data. """ rendering = self.face.to_dict() if self.face is not None else {} if self.index is not None: rendering["index"] = self.index if self.bounding_box is not None: rendering["bounding_box"] = self.bounding_box if self.timestamp is not None: rendering["timestamp"] = self.timestamp return rendering class RekognitionLabel: """Encapsulates an Amazon Rekognition label.""" def __init__(self, label, timestamp=None): """ Initializes the label object. :param label: Label data, in the format returned by Amazon Rekognition functions. :param timestamp: The time when the label was detected, if the label was detected in a video. """ self.name = label.get("Name") self.confidence = label.get("Confidence") self.instances = label.get("Instances") self.parents = label.get("Parents") self.timestamp = timestamp def to_dict(self): """ Renders some of the label data to a dict. :return: A dict that contains the label data. """ rendering = {} if self.name is not None: rendering["name"] = self.name if self.timestamp is not None: rendering["timestamp"] = self.timestamp return rendering class RekognitionModerationLabel: """Encapsulates an Amazon Rekognition moderation label.""" def __init__(self, label, timestamp=None): """ Initializes the moderation label object. :param label: Label data, in the format returned by Amazon Rekognition functions. :param timestamp: The time when the moderation label was detected, if the label was detected in a video. """ self.name = label.get("Name") self.confidence = label.get("Confidence") self.parent_name = label.get("ParentName") self.timestamp = timestamp def to_dict(self): """ Renders some of the moderation label data to a dict. :return: A dict that contains the moderation label data. """ rendering = {} if self.name is not None: rendering["name"] = self.name if self.parent_name is not None: rendering["parent_name"] = self.parent_name if self.timestamp is not None: rendering["timestamp"] = self.timestamp return rendering class RekognitionText: """Encapsulates an Amazon Rekognition text element.""" def __init__(self, text_data): """ Initializes the text object. :param text_data: Text data, in the format returned by Amazon Rekognition functions. """ self.text = text_data.get("DetectedText") self.kind = text_data.get("Type") self.id = text_data.get("Id") self.parent_id = text_data.get("ParentId") self.confidence = text_data.get("Confidence") self.geometry = text_data.get("Geometry") def to_dict(self): """ Renders some of the text data to a dict. :return: A dict that contains the text data. """ rendering = {} if self.text is not None: rendering["text"] = self.text if self.kind is not None: rendering["kind"] = self.kind if self.geometry is not None: rendering["polygon"] = self.geometry.get("Polygon") return rendering

래퍼 클래스를 사용하여 이미지에서 요소를 감지하고 해당 요소의 경계 상자를 표시합니다. 이 예제에 사용된 이미지는 지침 및 추가 코드와 함께 GitHub에서 찾을 수 있습니다.

def usage_demo(): print("-" * 88) print("Welcome to the Amazon Rekognition image detection demo!") print("-" * 88) logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") rekognition_client = boto3.client("rekognition") street_scene_file_name = ".media/pexels-kaique-rocha-109919.jpg" celebrity_file_name = ".media/pexels-pixabay-53370.jpg" one_girl_url = "https://dhei5unw3vrsx.cloudfront.net/images/source3_resized.jpg" three_girls_url = "https://dhei5unw3vrsx.cloudfront.net/images/target3_resized.jpg" swimwear_object = boto3.resource("s3").Object( "console-sample-images-pdx", "yoga_swimwear.jpg" ) book_file_name = ".media/pexels-christina-morillo-1181671.jpg" street_scene_image = RekognitionImage.from_file( street_scene_file_name, rekognition_client ) print(f"Detecting faces in {street_scene_image.image_name}...") faces = street_scene_image.detect_faces() print(f"Found {len(faces)} faces, here are the first three.") for face in faces[:3]: pprint(face.to_dict()) show_bounding_boxes( street_scene_image.image["Bytes"], [[face.bounding_box for face in faces]], ["aqua"], ) input("Press Enter to continue.") print(f"Detecting labels in {street_scene_image.image_name}...") labels = street_scene_image.detect_labels(100) print(f"Found {len(labels)} labels.") for label in labels: pprint(label.to_dict()) names = [] box_sets = [] colors = ["aqua", "red", "white", "blue", "yellow", "green"] for label in labels: if label.instances: names.append(label.name) box_sets.append([inst["BoundingBox"] for inst in label.instances]) print(f"Showing bounding boxes for {names} in {colors[:len(names)]}.") show_bounding_boxes( street_scene_image.image["Bytes"], box_sets, colors[: len(names)] ) input("Press Enter to continue.") celebrity_image = RekognitionImage.from_file( celebrity_file_name, rekognition_client ) print(f"Detecting celebrities in {celebrity_image.image_name}...") celebs, others = celebrity_image.recognize_celebrities() print(f"Found {len(celebs)} celebrities.") for celeb in celebs: pprint(celeb.to_dict()) show_bounding_boxes( celebrity_image.image["Bytes"], [[celeb.face.bounding_box for celeb in celebs]], ["aqua"], ) input("Press Enter to continue.") girl_image_response = requests.get(one_girl_url) girl_image = RekognitionImage( {"Bytes": girl_image_response.content}, "one-girl", rekognition_client ) group_image_response = requests.get(three_girls_url) group_image = RekognitionImage( {"Bytes": group_image_response.content}, "three-girls", rekognition_client ) print("Comparing reference face to group of faces...") matches, unmatches = girl_image.compare_faces(group_image, 80) print(f"Found {len(matches)} face matching the reference face.") show_bounding_boxes( group_image.image["Bytes"], [[match.bounding_box for match in matches]], ["aqua"], ) input("Press Enter to continue.") swimwear_image = RekognitionImage.from_bucket(swimwear_object, rekognition_client) print(f"Detecting suggestive content in {swimwear_object.key}...") labels = swimwear_image.detect_moderation_labels() print(f"Found {len(labels)} moderation labels.") for label in labels: pprint(label.to_dict()) input("Press Enter to continue.") book_image = RekognitionImage.from_file(book_file_name, rekognition_client) print(f"Detecting text in {book_image.image_name}...") texts = book_image.detect_text() print(f"Found {len(texts)} text instances. Here are the first seven:") for text in texts[:7]: pprint(text.to_dict()) show_polygons( book_image.image["Bytes"], [text.geometry["Polygon"] for text in texts], "aqua" ) print("Thanks for watching!") print("-" * 88)

다음 코드 예제에서는 Amazon Rekognition을 사용하여 이미지의 범주별로 객체를 감지하는 앱을 빌드하는 방법을 보여줍니다.

SDK for Python(Boto3)

를 사용하여 다음을 수행할 수 있는 웹 애플리케이션을 AWS SDK for Python (Boto3) 생성하는 방법을 보여줍니다.

  • 사진을 Amazon Simple Storage Service (Amazon S3) 버킷에 업로드합니다.

  • Amazon Rekognition을 사용하여 사진을 분석하고 레이블을 지정합니다.

  • Amazon Simple Email Service(Amazon SES)를 사용하여 이미지 분석에 대한 이메일 보고서를 보냅니다.

이 예제에는 두 가지 주요 구성 요소가 포함되어 있습니다. 바로 JavaScript로 작성되고 React로 빌드된 웹 페이지와 Python으로 작성되고 Flask-RESTful로 빌드된 REST 서비스입니다.

React 웹 페이지를 사용하여 다음을 수행할 수 있습니다.

  • S3 버킷에 저장된 이미지 목록을 표시합니다.

  • 컴퓨터에서 S3 버킷에 이미지를 업로드합니다.

  • 이미지에서 감지된 항목을 식별하는 이미지와 레이블을 표시합니다.

  • S3 버킷의 모든 이미지에 대한 보고서를 받고 보고서의 이메일을 보냅니다.

웹 페이지가 REST 서비스를 호출합니다. 서비스가 다음 작업을 수행하기 위해 AWS 에 요청을 전송합니다.

  • S3 버킷의 이미지 목록을 가져오고 필터링합니다.

  • S3 버킷에 사진을 업로드합니다.

  • Amazon Rekognition을 사용하여 개별 사진을 분석하고 사진에서 감지된 항목을 식별하는 레이블 목록을 가져옵니다.

  • S3 버킷의 모든 사진을 분석하고 Amazon SES를 사용하여 보고서를 이메일로 보냅니다.

전체 소스 코드와 설정 및 실행 방법에 대한 지침은 GitHub에서 전체 예제를 참조하십시오.

이 예제에서 사용되는 서비스
  • Amazon Rekognition

  • Amazon S3

  • Amazon SES

다음 코드 예제에서는 Amazon Rekognition을 사용하여 이미지의 범주별로 객체를 감지하는 앱을 빌드하는 방법을 보여줍니다.

SDK for Python(Boto3)

를 사용하여 다음을 수행할 수 있는 웹 애플리케이션을 AWS SDK for Python (Boto3) 생성하는 방법을 보여줍니다.

  • 사진을 Amazon Simple Storage Service (Amazon S3) 버킷에 업로드합니다.

  • Amazon Rekognition을 사용하여 사진을 분석하고 레이블을 지정합니다.

  • Amazon Simple Email Service(Amazon SES)를 사용하여 이미지 분석에 대한 이메일 보고서를 보냅니다.

이 예제에는 두 가지 주요 구성 요소가 포함되어 있습니다. 바로 JavaScript로 작성되고 React로 빌드된 웹 페이지와 Python으로 작성되고 Flask-RESTful로 빌드된 REST 서비스입니다.

React 웹 페이지를 사용하여 다음을 수행할 수 있습니다.

  • S3 버킷에 저장된 이미지 목록을 표시합니다.

  • 컴퓨터에서 S3 버킷에 이미지를 업로드합니다.

  • 이미지에서 감지된 항목을 식별하는 이미지와 레이블을 표시합니다.

  • S3 버킷의 모든 이미지에 대한 보고서를 받고 보고서의 이메일을 보냅니다.

웹 페이지가 REST 서비스를 호출합니다. 서비스가 다음 작업을 수행하기 위해 AWS 에 요청을 전송합니다.

  • S3 버킷의 이미지 목록을 가져오고 필터링합니다.

  • S3 버킷에 사진을 업로드합니다.

  • Amazon Rekognition을 사용하여 개별 사진을 분석하고 사진에서 감지된 항목을 식별하는 레이블 목록을 가져옵니다.

  • S3 버킷의 모든 사진을 분석하고 Amazon SES를 사용하여 보고서를 이메일로 보냅니다.

전체 소스 코드와 설정 및 실행 방법에 대한 지침은 GitHub에서 전체 예제를 참조하십시오.

이 예제에서 사용되는 서비스
  • Amazon Rekognition

  • Amazon S3

  • Amazon SES

다음 코드 예제에서는 Amazon Rekognition을 사용하여 비디오에서 사람과 객체를 감지하는 방법을 보여줍니다.

SDK for Python(Boto3)

Amazon Rekognition을 사용하여 비동기식 감지 작업을 시작해 동영상의 얼굴, 객체 및 사람을 감지할 수 있습니다. 또한 이 예제에서는 작업이 완료되고 주제에 대한 Amazon Simple Queue Service(Amazon SQS) 대기열을 구독할 때 Amazon Simple Notification Service(Amazon SNS) 주제를 알리도록 Amazon Rekognition을 구성합니다. 대기열이 작업에 대한 메시지를 받으면 작업이 검색되고 결과가 출력됩니다.

이 예제는 GitHub에서 가장 잘 볼 수 있습니다. 전체 소스 코드와 설정 및 실행 방법에 대한 지침은 GitHub에서 전체 예제를 참조하세요.

이 예제에서 사용되는 서비스
  • Amazon Rekognition

  • Amazon S3

  • Amazon SES

  • Amazon SNS

  • Amazon SQS

다음 코드 예제에서는 Amazon Rekognition을 사용하여 비디오에서 사람과 객체를 감지하는 방법을 보여줍니다.

SDK for Python(Boto3)

Amazon Rekognition을 사용하여 비동기식 감지 작업을 시작해 동영상의 얼굴, 객체 및 사람을 감지할 수 있습니다. 또한 이 예제에서는 작업이 완료되고 주제에 대한 Amazon Simple Queue Service(Amazon SQS) 대기열을 구독할 때 Amazon Simple Notification Service(Amazon SNS) 주제를 알리도록 Amazon Rekognition을 구성합니다. 대기열이 작업에 대한 메시지를 받으면 작업이 검색되고 결과가 출력됩니다.

이 예제는 GitHub에서 가장 잘 볼 수 있습니다. 전체 소스 코드와 설정 및 실행 방법에 대한 지침은 GitHub에서 전체 예제를 참조하세요.

이 예제에서 사용되는 서비스
  • Amazon Rekognition

  • Amazon S3

  • Amazon SES

  • Amazon SNS

  • Amazon SQS

프라이버시사이트 이용 약관쿠키 기본 설정
© 2025, Amazon Web Services, Inc. 또는 계열사. All rights reserved.