Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Anforderungen an den Artikeldatensatz (ECOMMERCEDomäne)
Ein Artikel-Datensatz speichert Metadaten zu Ihren ECOMMERCE Artikeln. Dies kann Informationen wie Preis, Kategorie und Produktbeschreibung für jeden Artikel beinhalten. Weitere Informationen zu den Artikeldatentypen, die Sie in Amazon Personalize importieren können, finden Sie unterArtikel-Metadaten. Informationen zu allgemeinen Amazon Personalize Personalize-Schemaanforderungen, wie Formatierungsanforderungen und verfügbaren Felddatentypen, finden Sie unterJSONSchemadateien für Amazon Personalize Personalize-Schemas erstellen. Diese Anforderungen gelten für alle Schemas, unabhängig von der Domäne.
Ein Artikeldatensatz ist für alle ECOMMERCE Anwendungsfälle optional. Wenn Sie Artikeldaten haben, empfehlen wir, einen zu erstellen, um die relevantesten Empfehlungen zu erhalten. Wenn Sie einen Artikeldatensatz erstellen, muss Ihr Schema die folgenden Felder enthalten:
-
ITEM_ID
-
PRICE (
float
) -
CATEGORY_L1 (kategorisch)
string
Ihr Schema kann auch die folgenden reservierten Schlüsselwörter enthalten. Für kategoriale Felder können Sie je nach Anwendungsfall Ihren eigenen Wertebereich definieren.
CATEGORY_L2 (kategorisch,)
string
null
CATEGORY_L3 (kategorisch,)
string
null
PRODUCT_ DESCRIPTION (textuell,)
string
null
CREATION_TIMESTAMP (
float
)AGE_ GROUP (kategorisch
string
,null
): Die Altersgruppe, für die der Artikel bestimmt ist. Werte können Neugeborene, Säuglinge, Kinder und Erwachsene sein.ADULT(kategorisch
string
,null
): Gibt an, ob der Artikel ausschließlich Erwachsenen vorbehalten ist, z. B. Alkohol. Die Werte können ja oder nein sein.GENDER(kategorisch
string
,null
): Das Geschlecht, für das der Artikel bestimmt ist. Die Werte können männlich, weiblich und unisex sein.
Um die besten Empfehlungen zu erhalten, empfehlen wir, dass Sie so viele dieser Felder in Ihrem Schema behalten, wie Sie Daten haben. Die Daten, die Sie importieren, müssen Ihrem Schema entsprechen. Die Daten, die Sie importieren, müssen Ihrem Schema entsprechen. Die maximale Anzahl von Metadatenspalten beträgt 100. Es steht Ihnen frei, je nach Ihrem Anwendungsfall und Ihren Daten weitere Felder hinzuzufügen. Solange die Felder nicht als erforderlich oder reserviert aufgeführt sind und die Datentypen unter aufgeführt sindSchema-Datentypen, liegen die Feldnamen und Datentypen bei Ihnen.
Verwenden Sie die reservierten Schlüsselwörter CATEGORY _L2 und CATEGORY _L3 für Elemente mit mehreren Kategorien auf mehreren Ebenen. Weitere Informationen finden Sie unter Verwenden von kategorialen Daten. Informationen zu textuellen und kategorialen Metadaten finden Sie unter. Unstrukturierte Textmetadaten Ein Beispiel für das Standardschema für Artikel-Datensätze für ECOMMERCE Domänen finden Sie unter. Schema für Standardelemente (ECOMMERCEDomäne)
Verwenden von kategorialen Daten
Um kategoriale Daten zu verwenden, fügen Sie ein Feld vom Typ hinzu string
und legen Sie das kategoriale Attribut des Felds true
in Ihrem Schema auf fest. Nehmen Sie dann die kategorialen Daten in Ihre CSV Sammeldatei und die Importe einzelner Artikel auf. Sie können Ihren eigenen Wertebereich auf der Grundlage Ihres Anwendungsfalls definieren. Kategorische Werte können maximal 1000 Zeichen enthalten. Wenn Sie ein Element mit einem kategorialen Wert mit mehr als 1000 Zeichen haben, schlägt Ihr Datensatz-Importjob fehl.
Bei Elementen mit mehreren Kategorien trennen Sie die einzelnen Werte durch den senkrechten Balken '|' voneinander. Für ein CATEGORY _L1-Feld könnten Ihre Daten für ein Element beispielsweise lauten. Electronics|Productivity|Mouse
Wenn Sie über mehrere Ebenen von kategorialen Daten verfügen und einige Elemente mehrere Kategorien für jede Ebene in der Hierarchie haben, fügen Sie für jede Ebene ein Feld hinzu und fügen Sie hinter jedem Feldnamen einen Ebenenindikator an: CATEGORY _L1, _L2, _L3. CATEGORY CATEGORY Auf diese Weise können Sie Empfehlungen auf der Grundlage von Unterkategorien filtern, auch wenn ein Element zu mehreren Kategorien mit mehreren Ebenen gehört. Ein Artikel könnte beispielsweise die folgenden Daten für jede Kategorieebene enthalten:
-
CATEGORY_L1: Elektronik|Produktivität
-
CATEGORY_L2: Produktivität|Computer
-
CATEGORY_L3: Maus
In diesem Beispiel befindet sich das Element in der Hierarchie Elektronik > Produktivität > Maus und Produktivität > Computer > Maus. Wir empfehlen, nur bis zu L3 zu verwenden, aber Sie können bei Bedarf auch mehr Stufen verwenden. Informationen zum Erstellen und Verwenden von Filtern finden Sie unterEmpfehlungen und Benutzersegmente filtern.
Schema für Standardelemente (ECOMMERCEDomäne)
Das Folgende ist das Standardschema für Artikel-Datasets für die ECOMMERCE Domain mit nur den erforderlichen Feldern.
{
"type": "record",
"name": "Items",
"namespace": "com.amazonaws.personalize.schema",
"fields": [
{
"name": "ITEM_ID",
"type": "string"
},
{
"name": "PRICE",
"type": "float"
},
{
"name": "CATEGORY_L1",
"type": [
"string"
],
"categorical": true
}
],
"version": "1.0"
}