Weitere AWS SDK Beispiele sind im Repo AWS Doc SDK Examples
Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Führen Sie einen Amazon Comprehend-Themenmodellierungsjob für Beispieldaten mit einem aus AWS SDK
Wie das aussehen kann, sehen Sie am nachfolgenden Beispielcode:
Führen Sie einen Amazon Comprehend Topic Modeling Job mit Beispieldaten aus.
Informieren Sie sich über den Job.
Extrahieren Sie Auftragsausgabedaten aus Amazon S3.
- Python
-
- SDKfür Python (Boto3)
-
Anmerkung
Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. Erstellen Sie eine Wrapper-Klasse, um Amazon Comprehend Topic Modeling Actions aufzurufen.
class ComprehendTopicModeler: """Encapsulates a Comprehend topic modeler.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def start_job( self, job_name, input_bucket, input_key, input_format, output_bucket, output_key, data_access_role_arn, ): """ Starts a topic modeling job. Input is read from the specified Amazon S3 input bucket and written to the specified output bucket. Output data is stored in a tar archive compressed in gzip format. The job runs asynchronously, so you can call `describe_topics_detection_job` to get job status until it returns a status of SUCCEEDED. :param job_name: The name of the job. :param input_bucket: An Amazon S3 bucket that contains job input. :param input_key: The prefix used to find input data in the input bucket. If multiple objects have the same prefix, all of them are used. :param input_format: The format of the input data, either one document per file or one document per line. :param output_bucket: The Amazon S3 bucket where output data is written. :param output_key: The prefix prepended to the output data. :param data_access_role_arn: The Amazon Resource Name (ARN) of a role that grants Comprehend permission to read from the input bucket and write to the output bucket. :return: Information about the job, including the job ID. """ try: response = self.comprehend_client.start_topics_detection_job( JobName=job_name, DataAccessRoleArn=data_access_role_arn, InputDataConfig={ "S3Uri": f"s3://{input_bucket}/{input_key}", "InputFormat": input_format.value, }, OutputDataConfig={"S3Uri": f"s3://{output_bucket}/{output_key}"}, ) logger.info("Started topic modeling job %s.", response["JobId"]) except ClientError: logger.exception("Couldn't start topic modeling job.") raise else: return response def describe_job(self, job_id): """ Gets metadata about a topic modeling job. :param job_id: The ID of the job to look up. :return: Metadata about the job. """ try: response = self.comprehend_client.describe_topics_detection_job( JobId=job_id ) job = response["TopicsDetectionJobProperties"] logger.info("Got topic detection job %s.", job_id) except ClientError: logger.exception("Couldn't get topic detection job %s.", job_id) raise else: return job def list_jobs(self): """ Lists topic modeling jobs for the current account. :return: The list of jobs. """ try: response = self.comprehend_client.list_topics_detection_jobs() jobs = response["TopicsDetectionJobPropertiesList"] logger.info("Got %s topic detection jobs.", len(jobs)) except ClientError: logger.exception("Couldn't get topic detection jobs.") raise else: return jobs
Verwenden Sie die Wrapper-Klasse, um einen Job zur Themenmodellierung auszuführen und Jobdaten abzurufen.
def usage_demo(): print("-" * 88) print("Welcome to the Amazon Comprehend topic modeling demo!") print("-" * 88) logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") input_prefix = "input/" output_prefix = "output/" demo_resources = ComprehendDemoResources( boto3.resource("s3"), boto3.resource("iam") ) topic_modeler = ComprehendTopicModeler(boto3.client("comprehend")) print("Setting up storage and security resources needed for the demo.") demo_resources.setup("comprehend-topic-modeler-demo") print("Copying sample data from public bucket into input bucket.") demo_resources.bucket.copy( {"Bucket": "public-sample-us-west-2", "Key": "TopicModeling/Sample.txt"}, f"{input_prefix}sample.txt", ) print("Starting topic modeling job on sample data.") job_info = topic_modeler.start_job( "demo-topic-modeling-job", demo_resources.bucket.name, input_prefix, JobInputFormat.per_line, demo_resources.bucket.name, output_prefix, demo_resources.data_access_role.arn, ) print( f"Waiting for job {job_info['JobId']} to complete. This typically takes " f"20 - 30 minutes." ) job_waiter = JobCompleteWaiter(topic_modeler.comprehend_client) job_waiter.wait(job_info["JobId"]) job = topic_modeler.describe_job(job_info["JobId"]) print(f"Job {job['JobId']} complete:") pprint(job) print( f"Getting job output data from the output Amazon S3 bucket: " f"{job['OutputDataConfig']['S3Uri']}." ) job_output = demo_resources.extract_job_output(job) lines = 10 print(f"First {lines} lines of document topics output:") pprint(job_output["doc-topics.csv"]["data"][:lines]) print(f"First {lines} lines of terms output:") pprint(job_output["topic-terms.csv"]["data"][:lines]) print("Cleaning up resources created for the demo.") demo_resources.cleanup() print("Thanks for watching!") print("-" * 88)
-
APIEinzelheiten finden Sie in der Python-Referenz (Boto3) API in AWS SDK den folgenden Themen.
-