Beispiele für die Verwendung von Amazon Rekognition für Kotlin SDK - AWS SDKCode-Beispiele

Weitere AWS SDK Beispiele sind im Repo AWS Doc SDK Examples GitHub verfügbar.

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Beispiele für die Verwendung von Amazon Rekognition für Kotlin SDK

Die folgenden Codebeispiele zeigen Ihnen, wie Sie Aktionen ausführen und allgemeine Szenarien implementieren, indem Sie AWS SDK for Kotlin with Amazon Rekognition verwenden.

Aktionen sind Codeauszüge aus größeren Programmen und müssen im Kontext ausgeführt werden. Aktionen zeigen Ihnen zwar, wie Sie einzelne Servicefunktionen aufrufen, aber Sie können Aktionen in den zugehörigen Szenarien im Kontext sehen.

Szenarien sind Codebeispiele, die Ihnen zeigen, wie Sie bestimmte Aufgaben ausführen, indem Sie mehrere Funktionen innerhalb eines Dienstes oder in Kombination mit anderen aufrufen AWS-Services.

Jedes Beispiel enthält einen Link zum vollständigen Quellcode, in dem Sie Anweisungen zum Einrichten und Ausführen des Codes im Kontext finden.

Aktionen

Das folgende Codebeispiel zeigt die VerwendungCompareFaces.

Weitere Informationen finden Sie unter Vergleich von Gesichtern in Bildern.

SDKfür Kotlin
Anmerkung

Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

suspend fun compareTwoFaces( similarityThresholdVal: Float, sourceImageVal: String, targetImageVal: String, ) { val sourceBytes = (File(sourceImageVal).readBytes()) val targetBytes = (File(targetImageVal).readBytes()) // Create an Image object for the source image. val souImage = Image { bytes = sourceBytes } val tarImage = Image { bytes = targetBytes } val facesRequest = CompareFacesRequest { sourceImage = souImage targetImage = tarImage similarityThreshold = similarityThresholdVal } RekognitionClient { region = "us-east-1" }.use { rekClient -> val compareFacesResult = rekClient.compareFaces(facesRequest) val faceDetails = compareFacesResult.faceMatches if (faceDetails != null) { for (match: CompareFacesMatch in faceDetails) { val face = match.face val position = face?.boundingBox if (position != null) { println("Face at ${position.left} ${position.top} matches with ${face.confidence} % confidence.") } } } val uncompared = compareFacesResult.unmatchedFaces if (uncompared != null) { println("There was ${uncompared.size} face(s) that did not match") } println("Source image rotation: ${compareFacesResult.sourceImageOrientationCorrection}") println("target image rotation: ${compareFacesResult.targetImageOrientationCorrection}") } }
  • APIEinzelheiten finden Sie CompareFacesin der AWS SDKAPIKotlin-Referenz.

Das folgende Codebeispiel zeigt die VerwendungCreateCollection.

Weitere Informationen finden Sie unter Erstellen einer Sammlung.

SDKfür Kotlin
Anmerkung

Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

suspend fun createMyCollection(collectionIdVal: String) { val request = CreateCollectionRequest { collectionId = collectionIdVal } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.createCollection(request) println("Collection ARN is ${response.collectionArn}") println("Status code is ${response.statusCode}") } }

Das folgende Codebeispiel zeigt die VerwendungDeleteCollection.

Weitere Informationen finden Sie unter Löschen einer Sammlung.

SDKfür Kotlin
Anmerkung

Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

suspend fun deleteMyCollection(collectionIdVal: String) { val request = DeleteCollectionRequest { collectionId = collectionIdVal } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.deleteCollection(request) println("The collectionId status is ${response.statusCode}") } }

Das folgende Codebeispiel zeigt die VerwendungDeleteFaces.

Weitere Informationen finden Sie unter Löschen von Gesichtern aus einer Sammlung.

SDKfür Kotlin
Anmerkung

Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

suspend fun deleteFacesCollection( collectionIdVal: String?, faceIdVal: String, ) { val deleteFacesRequest = DeleteFacesRequest { collectionId = collectionIdVal faceIds = listOf(faceIdVal) } RekognitionClient { region = "us-east-1" }.use { rekClient -> rekClient.deleteFaces(deleteFacesRequest) println("$faceIdVal was deleted from the collection") } }
  • APIEinzelheiten finden Sie DeleteFacesin der AWS SDKAPIKotlin-Referenz.

Das folgende Codebeispiel zeigt die VerwendungDescribeCollection.

Weitere Informationen finden Sie unter Beschreiben einer Sammlung.

SDKfür Kotlin
Anmerkung

Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

suspend fun describeColl(collectionName: String) { val request = DescribeCollectionRequest { collectionId = collectionName } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.describeCollection(request) println("The collection Arn is ${response.collectionArn}") println("The collection contains this many faces ${response.faceCount}") } }

Das folgende Codebeispiel zeigt die VerwendungDetectFaces.

Weitere Informationen finden Sie unter Erkennen von Gesichtern in einem Bild.

SDKfür Kotlin
Anmerkung

Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

suspend fun detectFacesinImage(sourceImage: String?) { val souImage = Image { bytes = (File(sourceImage).readBytes()) } val request = DetectFacesRequest { attributes = listOf(Attribute.All) image = souImage } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.detectFaces(request) response.faceDetails?.forEach { face -> val ageRange = face.ageRange println("The detected face is estimated to be between ${ageRange?.low} and ${ageRange?.high} years old.") println("There is a smile ${face.smile?.value}") } } }
  • APIEinzelheiten finden Sie DetectFacesin der AWS SDKAPIKotlin-Referenz.

Das folgende Codebeispiel zeigt die VerwendungDetectLabels.

Weitere Informationen finden Sie unter Erkennen von Labels in einem Bild.

SDKfür Kotlin
Anmerkung

Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

suspend fun detectImageLabels(sourceImage: String) { val souImage = Image { bytes = (File(sourceImage).readBytes()) } val request = DetectLabelsRequest { image = souImage maxLabels = 10 } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.detectLabels(request) response.labels?.forEach { label -> println("${label.name} : ${label.confidence}") } } }
  • APIEinzelheiten finden Sie DetectLabelsin der AWS SDKAPIKotlin-Referenz.

Das folgende Codebeispiel zeigt die VerwendungDetectModerationLabels.

Weitere Informationen finden Sie unter Erkennen von unangemessenen Bildern.

SDKfür Kotlin
Anmerkung

Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

suspend fun detectModLabels(sourceImage: String) { val myImage = Image { this.bytes = (File(sourceImage).readBytes()) } val request = DetectModerationLabelsRequest { image = myImage minConfidence = 60f } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.detectModerationLabels(request) response.moderationLabels?.forEach { label -> println("Label: ${label.name} - Confidence: ${label.confidence} % Parent: ${label.parentName}") } } }

Das folgende Codebeispiel zeigt die VerwendungDetectText.

Weitere Informationen finden Sie unter Erkennen von Text in einem Bild.

SDKfür Kotlin
Anmerkung

Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

suspend fun detectTextLabels(sourceImage: String?) { val souImage = Image { bytes = (File(sourceImage).readBytes()) } val request = DetectTextRequest { image = souImage } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.detectText(request) response.textDetections?.forEach { text -> println("Detected: ${text.detectedText}") println("Confidence: ${text.confidence}") println("Id: ${text.id}") println("Parent Id: ${text.parentId}") println("Type: ${text.type}") } } }
  • APIEinzelheiten finden Sie DetectTextin der AWS SDKAPIKotlin-Referenz.

Das folgende Codebeispiel zeigt die VerwendungIndexFaces.

Weitere Informationen finden Sie unter Hinzufügen von Gesichtern zu einer Sammlung.

SDKfür Kotlin
Anmerkung

Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

suspend fun addToCollection( collectionIdVal: String?, sourceImage: String, ) { val souImage = Image { bytes = (File(sourceImage).readBytes()) } val request = IndexFacesRequest { collectionId = collectionIdVal image = souImage maxFaces = 1 qualityFilter = QualityFilter.Auto detectionAttributes = listOf(Attribute.Default) } RekognitionClient { region = "us-east-1" }.use { rekClient -> val facesResponse = rekClient.indexFaces(request) // Display the results. println("Results for the image") println("\n Faces indexed:") facesResponse.faceRecords?.forEach { faceRecord -> println("Face ID: ${faceRecord.face?.faceId}") println("Location: ${faceRecord.faceDetail?.boundingBox}") } println("Faces not indexed:") facesResponse.unindexedFaces?.forEach { unindexedFace -> println("Location: ${unindexedFace.faceDetail?.boundingBox}") println("Reasons:") unindexedFace.reasons?.forEach { reason -> println("Reason: $reason") } } } }
  • APIEinzelheiten finden Sie IndexFacesin der AWS SDKAPIKotlin-Referenz.

Das folgende Codebeispiel zeigt die VerwendungListCollections.

Weitere Informationen finden Sie unter Sammlungen auflisten.

SDKfür Kotlin
Anmerkung

Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

suspend fun listAllCollections() { val request = ListCollectionsRequest { maxResults = 10 } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.listCollections(request) response.collectionIds?.forEach { resultId -> println(resultId) } } }
  • APIEinzelheiten finden Sie ListCollectionsin der AWS SDKAPIKotlin-Referenz.

Das folgende Codebeispiel zeigt die VerwendungListFaces.

Weitere Informationen finden Sie unter Gesichter in einer Sammlung auflisten.

SDKfür Kotlin
Anmerkung

Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

suspend fun listFacesCollection(collectionIdVal: String?) { val request = ListFacesRequest { collectionId = collectionIdVal maxResults = 10 } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.listFaces(request) response.faces?.forEach { face -> println("Confidence level there is a face: ${face.confidence}") println("The face Id value is ${face.faceId}") } } }
  • APIEinzelheiten finden Sie ListFacesin der AWS SDKAPIKotlin-Referenz.

Das folgende Codebeispiel zeigt die VerwendungRecognizeCelebrities.

Weitere Informationen finden Sie unter Erkennen von Prominenten in einem Bild.

SDKfür Kotlin
Anmerkung

Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

suspend fun recognizeAllCelebrities(sourceImage: String?) { val souImage = Image { bytes = (File(sourceImage).readBytes()) } val request = RecognizeCelebritiesRequest { image = souImage } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.recognizeCelebrities(request) response.celebrityFaces?.forEach { celebrity -> println("Celebrity recognized: ${celebrity.name}") println("Celebrity ID:${celebrity.id}") println("Further information (if available):") celebrity.urls?.forEach { url -> println(url) } } println("${response.unrecognizedFaces?.size} face(s) were unrecognized.") } }

Szenarien

Das folgende Codebeispiel zeigt, wie eine Serverless-Anwendung erstellt wird, mit der Benutzer Fotos mithilfe von Labels erstellen können.

SDKfür Kotlin

Zeigt, wie eine Anwendung zur Verwaltung von Fotobeständen entwickelt wird, die mithilfe von Amazon Rekognition Labels in Bildern erkennt und sie für einen späteren Abruf speichert.

Den vollständigen Quellcode und Anweisungen zur Einrichtung und Ausführung finden Sie im vollständigen Beispiel unter GitHub.

Einen tiefen Einblick in den Ursprung dieses Beispiels finden Sie im Beitrag in der AWS -Community.

In diesem Beispiel verwendete Dienste
  • APIGateway

  • DynamoDB

  • Lambda

  • Amazon Rekognition

  • Amazon S3

  • Amazon SNS

Wie das aussehen kann, sehen Sie am nachfolgenden Beispielcode:

  • Starten Sie Amazon-Rekognition-Aufträge, um Elemente wie Personen, Objekte und Text in Videos zu erkennen.

  • Überprüfen Sie den Auftragsstatus, bis die Aufträge abgeschlossen sind.

  • Gibt die Liste der von jedem Auftrag erkannten Elemente aus.

SDKfür Kotlin
Anmerkung

Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

Erkennen von Gesichtern in einem Video, das in einem Amazon-S3-Bucket gespeichert ist.

suspend fun startFaceDetection( channelVal: NotificationChannel?, bucketVal: String, videoVal: String, ) { val s3Obj = S3Object { bucket = bucketVal name = videoVal } val vidOb = Video { s3Object = s3Obj } val request = StartFaceDetectionRequest { jobTag = "Faces" faceAttributes = FaceAttributes.All notificationChannel = channelVal video = vidOb } RekognitionClient { region = "us-east-1" }.use { rekClient -> val startLabelDetectionResult = rekClient.startFaceDetection(request) startJobId = startLabelDetectionResult.jobId.toString() } } suspend fun getFaceResults() { var finished = false var status: String var yy = 0 RekognitionClient { region = "us-east-1" }.use { rekClient -> var response: GetFaceDetectionResponse? = null val recognitionRequest = GetFaceDetectionRequest { jobId = startJobId maxResults = 10 } // Wait until the job succeeds. while (!finished) { response = rekClient.getFaceDetection(recognitionRequest) status = response.jobStatus.toString() if (status.compareTo("SUCCEEDED") == 0) { finished = true } else { println("$yy status is: $status") delay(1000) } yy++ } // Proceed when the job is done - otherwise VideoMetadata is null. val videoMetaData = response?.videoMetadata println("Format: ${videoMetaData?.format}") println("Codec: ${videoMetaData?.codec}") println("Duration: ${videoMetaData?.durationMillis}") println("FrameRate: ${videoMetaData?.frameRate}") // Show face information. response?.faces?.forEach { face -> println("Age: ${face.face?.ageRange}") println("Face: ${face.face?.beard}") println("Eye glasses: ${face?.face?.eyeglasses}") println("Mustache: ${face.face?.mustache}") println("Smile: ${face.face?.smile}") } } }

Erkennen von unangemessenen oder anstößigen Inhalten in einem Video, das in einem Amazon-S3-Bucket gespeichert ist.

suspend fun startModerationDetection( channel: NotificationChannel?, bucketVal: String?, videoVal: String?, ) { val s3Obj = S3Object { bucket = bucketVal name = videoVal } val vidOb = Video { s3Object = s3Obj } val request = StartContentModerationRequest { jobTag = "Moderation" notificationChannel = channel video = vidOb } RekognitionClient { region = "us-east-1" }.use { rekClient -> val startModDetectionResult = rekClient.startContentModeration(request) startJobId = startModDetectionResult.jobId.toString() } } suspend fun getModResults() { var finished = false var status: String var yy = 0 RekognitionClient { region = "us-east-1" }.use { rekClient -> var modDetectionResponse: GetContentModerationResponse? = null val modRequest = GetContentModerationRequest { jobId = startJobId maxResults = 10 } // Wait until the job succeeds. while (!finished) { modDetectionResponse = rekClient.getContentModeration(modRequest) status = modDetectionResponse.jobStatus.toString() if (status.compareTo("SUCCEEDED") == 0) { finished = true } else { println("$yy status is: $status") delay(1000) } yy++ } // Proceed when the job is done - otherwise VideoMetadata is null. val videoMetaData = modDetectionResponse?.videoMetadata println("Format: ${videoMetaData?.format}") println("Codec: ${videoMetaData?.codec}") println("Duration: ${videoMetaData?.durationMillis}") println("FrameRate: ${videoMetaData?.frameRate}") modDetectionResponse?.moderationLabels?.forEach { mod -> val seconds: Long = mod.timestamp / 1000 print("Mod label: $seconds ") println(mod.moderationLabel) } } }

Das folgende Codebeispiel zeigt, wie Sie eine App erstellen, die Amazon Rekognition verwendet, um Objekte nach Kategorien in Bildern zu erkennen.

SDKfür Kotlin

Zeigt, wie Amazon Rekognition Kotlin verwendet wird, um eine App API zu erstellen, die Amazon Rekognition verwendet, um Objekte nach Kategorien in Bildern zu identifizieren, die sich in einem Amazon Simple Storage Service (Amazon S3) -Bucket befinden. Die App sendet dem Administrator mithilfe von Amazon Simple Email Service (AmazonSES) eine E-Mail-Benachrichtigung mit den Ergebnissen.

Den vollständigen Quellcode und Anweisungen zur Einrichtung und Ausführung finden Sie im vollständigen Beispiel unter GitHub.

In diesem Beispiel verwendete Dienste
  • Amazon Rekognition

  • Amazon S3

  • Amazon SES