PCA Hyperparameters
In the CreateTrainingJob
request, you specify the training algorithm. You
can also specify algorithm-specific HyperParameters as string-to-string maps. The
following table lists the hyperparameters for the PCA training algorithm provided by
Amazon SageMaker AI. For more information about how PCA works, see How PCA Works.
Parameter Name | Description |
---|---|
feature_dim |
Input dimension. Required Valid values: positive integer |
mini_batch_size |
Number of rows in a mini-batch. Required Valid values: positive integer |
num_components |
The number of principal components to compute. Required Valid values: positive integer |
algorithm_mode |
Mode for computing the principal components. Optional Valid values: regular or randomized Default value: regular |
extra_components |
As the value increases, the solution becomes more accurate but the
runtime and memory consumption increase linearly. The default, -1,
means the maximum of 10 and Optional Valid values: Non-negative integer or -1 Default value: -1 |
subtract_mean |
Indicates whether the data should be unbiased both during training and at inference. Optional Valid values: One of true or false Default value: true |